Research Paper Volume 8, Issue 1 pp 192—207
miR-320a mediates doxorubicin-induced cardiotoxicity by targeting VEGF signal pathway
- 1 Division of Cardiology, Departments of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
Received: August 26, 2015 Accepted: January 18, 2016 Published: January 30, 2016
https://doi.org/10.18632/aging.100876How to Cite
Abstract
Vascular homeostasis abnormalities may involve in doxorubicin induced cardiotoxicity.
Enhanced cardiac miR-320a expression, reduced cardiac microvessel density and impaired cardiac function were observed in mice treated by anthracycline doxorubicin. To further explore the role of miR-320a in doxorubicin induced cardiotoxicity, microRNA mimics/inhibitor in vitro and rAAV administration in vivo were employed in mice.
Knockdown of miR-320a not only resulted in enhanced proliferation and inhibited apoptosis in cultured endothelial cells, but also attenuated cardiac abnormalities induced by doxorubicin. On the contrary, overexpression of miR-320a enhanced apoptosis in vitro, and aggravated vessel abnormalities in heart and subsequent cardiac dysfunction in mice. Furthermore, Western blot assays showed that VEGF-A was a potential target of miR-320a, which was verified by anti-Ago2 co-immunoprecipitation. Moreover, as same as miR-320a, siRNA against VEGF-A reinforced doxorubicin induced endothelial cells injury. Finally, the negative effects of miR-320a on vascular homeostasis and cardiac function were alleviated by VEGF-A re-expression in doxorubicin treated mice.
Our observations demonstrate that miR-320a play important roles in doxorubicin induced cardiotoxicity via vessel homeostasis in heart and thus, inhibition of miR-320a may be applied to the treatment of cardiac dysfunction induced by anthracycline.