Abstract

Members of the signal transducers and activators of transcription (STATs) family of proteins, which connect cytokine signaling to activation of transcription, are frequently activated in human cancers. Suppressors of cytokine signaling (SOCS) are transcriptional targets of activated STAT proteins that negatively control STAT signaling. SOCS1 expression is silenced in multiple human cancers suggesting a tumor suppressor role for this protein. However, SOCS1 not only regulates STAT signaling but can also localize to the nucleus and directly interact with the p53 tumor suppressor through its central SH2 domain. Furthermore, SOCS1 contributes to p53 activation and phosphorylation on serine 15 by forming a ternary complex with ATM or ATR. Through this mechanism SOCS1 regulates the process of oncogene-induced senescence, which is a very important tumor suppressor response. A mutant SOCS1 lacking the SOCS box cannot interact with ATM/ATR, stimulate p53 or induce the senescence phenotype, suggesting that the SOCS box recruits DNA damage activated kinases to its interaction partners bound to its SH2 domain. Proteomic analysis of SOCS1 interaction partners revealed other potential targets of SOCS1 in the DNA damage response. These newly discovered functions of SOCS1 help to explain the increased susceptibility of Socs1 null mice to develop cancer as well as their propensity to develop autoimmune diseases. Consistently, we found that mice lacking SOCS1 displayed defects in the regulation of p53 target genes including Mdm2, Pmp22, PUMA and Gadd45a. The involvement of SOCS1 in p53 activation and the DNA damage response defines a novel tumor suppressor pathway and intervention point for future cancer therapeutics.