Abstract

Aging is arguably the most familiar yet least-well understood aspect of human biology. The role of epigenetics in aging and age-related diseases has gained interest given recent advances in the understanding of how epigenetic mechanisms mediate the interactions between the environment and the genetic blueprint. While current concepts generally view global deteriorations of epigenetic marks to insidiously impair cellular and molecular functions, an active role for epigenetic changes in aging has so far received little attention. In this regard, we have recently shown that early-life adversity induced specific changes in DNA methylation that were protected from an age-associated erasure and correlated with a phenotype well-known to increase the risk for age-related mental disorders. This finding strengthens the idea that DNA (de-)methylation is controlled by multiple mechanisms that might fulfill different, and partly contrasting, roles in the aging process.