Research Paper Volume 2, Issue 1 pp 28—42
Attainment of polarity promotes growth factor secretion by retinal pigment epithelial cells: Relevance to age-related macular degeneration
- 1 Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- 2 Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- 3 Arnold and Mabel Beckman Macular Research Center at the Doheny Eye Institute, Los Angeles, CA 90033, USA
- 4 Department of Ophthalmology, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- 5 These two authors contributed equally to this work
Received: December 20, 2009 Accepted: December 26, 2009 Published: December 27, 2009
https://doi.org/10.18632/aging.100111How to Cite
Abstract
The antiangiogenic and neurotrophic growth factor, pigment epithelial derived factor (PEDF), and the proangiogenic growth factor, vascular endothelial growth factor-A (VEGF), are released from retinal pigment epithelial (RPE) cells where they play a critical role in the pathogenesis of age-related macular degeneration (AMD). Since RPE polarity may be altered in advanced AMD, we studied the effect of polarization of differentiated, human RPE monolayer cultures on expression and secretion of PEDF and VEGF. Polarized RPE demonstrated apical microvilli, expression of tight junction proteins, apical localization of Na/K- ATPase, and high transepithelial resistance (490 ± 17 Ω•cm2). PEDF secretion was about 1000 fold greater than that for VEGF in both polarized and non-polarized cultures. Polarization of the RPE monolayer increased PEDF secretion, which was predominantly apical, by 34 fold (p<0.02) and VEGF secretion, which was predominantly basolateral, by 5.7 fold (p<0.02). Treatment of non-polarized RPE cultures with bone morphogenetic protein-4 (BMP-4) had no effect on PEDF or VEGF secretion, but resulted in a dose-dependent >2-fold increase in basolateral VEGF secretion (p<0.05) in polarized cultures. Our data show that polarity is an important determinant of the level of PEDF and VEGF secretion in RPE and support the contention that loss of polarity of RPE in AMD results in marked loss of neurotrophic and vascular support for the retina potentially leading to photoreceptor loss and blindness.