Research Paper Volume 12, Issue 15 pp 15414—15435

Depletion of exosomal circLDLR in follicle fluid derepresses miR-1294 function and inhibits estradiol production via CYP19A1 in polycystic ovary syndrome

class="figure-viewer-img"

Figure 8. The regulatory role of circLDLR-miR-1294-CYP19A1 ceRNA network in KGN cells. (A) Overexpression (OE) or siRNA knockdown (si) of circLDLR in KGN donor cells changed circLDLR level in exosomes. (B) The abundance of CYP19A1 in exosomes from KGN donor cells with overexpression (OE) or siRNA knockdown (si) of circLDLR. (C) The expression level of circLDLR in recipient cells was changed by exosomes derived from donor cells with altered circLDLR expression. (D) The expression level of miR-1294 in recipient cells was inversely changed by exosomes derived from donor cells with altered circLDLR expression. (E, F) CYP19A1 expression in recipient cells was accordingly affected by exosomes derived from donor cells with altered circLDLR expresson at both RNA level (E) and protein level (F). GAPDH was used as the internal controls for circLDLR and CYP19A1. U6 was used as the internal controls for miR-1294. (G) Effects of exosomal circLDLR on E2 production in the recipient KGN cells. Each experiment was performed six times. OE, over expression circLDLR; si, knockdown circLDLR by siRNA; NC, negative control (empty vector or negative siRNA, accordingly). * indicates p < 0.05, ** indicates p < 0.01, NS, no significant difference. The results are presented as means ±SEM.