Expression of Concern
This article is currently under investigation. We strongly recommend that this article is not cited until the investigation is completed.
Research Paper Volume 12, Issue 13 pp 13502—13517

Weighted correlation gene network analysis reveals a new stemness index-related survival model for prognostic prediction in hepatocellular carcinoma

class="figure-viewer-img"

Figure 5. Verification of the prognostic prediction accuracy of the new survival model. (A, C) The Kaplan-Meier survival curve (A), ROC curve (B) and Risk curve (C) analyses of the high-risk and low-risk HCC patients of the training dataset from the TCGA database based on the new survival model is shown. (DF) The Kaplan-Meier survival curve (D), ROC curve (E) and Risk curve (F) of the high-risk and low-risk HCC patients in the test dataset from the ICGC database based on the new survival model is shown. The horizontal axis of the Kaplan-Meier survival curve is survival time (month) and the vertical axis is patient survival, which is used to evaluate the prognostic prediction ability of the new model (P < 0.05 is considered to be statistically significant); the ROC curve evaluates the sensitivity and specificity of the model, in which the Abscissa is the specificity of the model and the ordinate is the sensitivity; moreover, the risk curve shows that the risk of death increases with the increase of the risk score of the new survival model.