Research Paper Volume 11, Issue 22 pp 10016—10030

Silencing of long non-coding RNA H19 downregulates CTCF to protect against atherosclerosis by upregulating PKD1 expression in ApoE knockout mice

class="figure-viewer-img"

Figure 4. H19 is capable of suppressing the transcriptional level of PKD1 through binding to CTCF. (A) The binding ability of H19 to CTCF assessed by RIP. *, p < 0.05 vs. IgG. (B) The predicted binding site of CTCF on the promoter region of PKD1 through JASPAR (http://jaspar.genereg.net/). (C) The luciferase activity of PKD1-Wt/Mut after transfection of oe-CTCF or CTCF-ASO determined by dual-luciferase reporter gene assay. * p < 0.05 vs. the oe-NC group; # p < 0.05 vs. the NC-ASO group. (D) The binding ability of CTCF to the promoter region of PKD1 evaluated by ChIP assay. * p < 0.05 vs. IgG. (E) The transfection efficiency of oe-H19 and sh-CTCF determined by RT-qPCR. * p < 0.05 vs. the oe-H19 + sh-NC group. (F, G) The mRNA and protein level of PKD1 normalized to GAPDH after overexpressing H19 or knocking down CTCF measured by RT-qPCR and Western blot analysis (the unprocessed blots are shown in Supplementary Figure 2). * p < 0.05 vs. the oe-H19 + sh-NC group. The data were measurement data and expressed by mean ± standard deviation. Data differences between two groups were analyzed by unpaired t-test; comparisons made among multiple groups were analyzed by one-way ANOVA. n = 6. The experiments were repeated three times independently.