Research Paper Volume 9, Issue 4 pp 1153—1185

The age- and sex-specific decline of the 20s proteasome and the Nrf2/CncC signal transduction pathway in adaption and resistance to oxidative stress in Drosophila melanogaster

class="figure-viewer-img"

Figure 8. Males show no tissue-specific differences in the adaptive proteolytic capacity of the 20S proteasome, but do exhibit age-dependent changes in proteasomal basal activity. Body segments were collected from male progeny of the Actin-GS-255B strain crossed to the w[1118] strain that were used as controls, or that were pretreated with either 10µM or 100µM hydrogen peroxide. Individual proteolytic capacity of the 20S proteasome (caspase/peptidyl glutamyl-peptide hydrolyzing-like activity, trypsin-like, and chymotrypsin-like activity) was measured in the abdomen, head, and thorax. (A-C) Abdomen isolated from 3 day old (green) and 60 day old (black) males following hydrogen peroxide pretreatment. (A) Caspase-like activity. (B) Trypsin-like activity. (C) Chymotrypsin-like activity. (D-F) Head isolated from 3 day old (green) and 60 day old (black) males following hydrogen peroxide pretreatment. (D) Caspase-like activity. (E) Trypsin-like activity. (F) Chymotrypsin-like activity. (G-I) Thorax isolated from 3 day old (green) and 60 day old (black) males following hydrogen peroxide pretreatment. (G) Caspase-like activity. (H) Trypsin-like activity. (I) Chymotrypsin-like activity.