Figure 4. Electrophysiological, Ca 2+ influx, and expression evidence of functional KATP channels in adult IPCs. (A1-C) Membrane depolarization of adult IPCs in response to glucose and glibenclamide. (A1) Trace of membrane potential from an adult IPC in the whole brain preparation shows that exposure to high glucose (80 mM) evoked a reversible membrane depolarization. (A2) Trace of membrane potential from an adult IPC shows that exposure to a commonly known KATP channel blocker, glibenclamide (glib, 20 μM) also evoked a reversible membrane depolarization. (B1 and B2) traces of membrane potential from adult non-IPCs show that these cells do not respond to glucose or glibenclamide. (C) Average membrane potential response to glucose and glibenclamide of IPCs (N=5) and non-IPCs (N=3). Glucose (*) and glibenclamide (**) significantly increased membrane potential of IPCs as compared to non-IPCs, *p and **p <0.05 (Student's t test). Each bar represents mean