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INTRODUCTION 
 

Preimplantation genetic testing for aneuploidy (PGT-A) 

has emerged as a powerful tool in assisted reproductive 

technology, offering the potential to enhance the 

chances of successful embryo implantation and 

pregnancy. The detection of chromosomal abnormalities, 
or aneuploidies, in preimplantation embryos has long 

been a concern in reproductive medicine. Effective 

noninvasive screening tests for aneuploidies have been 

developed and are superior to maternal age alone as a 

method of identifying candidates for invasive testing 

[1]. As the global population continues to age, the issue 

of maternal aging and its implications on in vitro 

fertilization has become a topic of increasing concern 

and scholarly interest [2]. Women are now delaying 

childbearing, with the average age of first birth rising 
from 21 in 1970 to 26.9 in 2018 [3]. This trend has  

been driven by social and cultural advancements, as 

well as significant progress in artificial reproductive 
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ABSTRACT 
 

There is no doubt that maternal aging, also known as reproductive aging, can contribute to the increased  
rates of aneuploidy observed in blastocysts generated from women of advanced age who undergo in vitro 
fertilization (IVF). Additionally, the hatching process of the blastocyst, which is crucial for successful 
implantation, may be impaired in aneuploid embryos. Aneuploid embryos often exhibit abnormal cell division 
and chromosomal distribution, which can lead to disruptions in the hatching process. Due to ethical restrictions, 
preimplantation genetic testing for aneuploidy (PGT-A) is unavailable in all countries. Therefore, our 
retrospective study of 502 couples who underwent intracytoplasmic sperm injection (ICSI) aimed to elucidate if 
embryonic features, such as the ability to hatch and embryonic diameter, could be a reliable estimator for the 
success rate after embryo transfer, especially for women aged 26–45 years, and for IVF clinics which do not have 
access to PGT-A. The small hatching blastocysts (Bl. 5) group had a significant (p < 0.001) higher percentage of 
euploid embryos (≤35 Y- 73%, >35Y- 51%) compared to large (Bl. 4) counterparts (≤35 Y-58%, >35 Y- 38%). In 
patients aged 34-38 years, we detected 10% more euploid blastocysts in the hatching group than the expanding 
ones, which was a significant difference (p < 0.05). In conclusion, when selecting non-PGT-A tested embryos for 
embryo transfer (ET) or frozen embryo transfer (FET), a small hatching blastocyst seems to be a better choice 
than a large expanded one, especially for advanced-age patients for whom the risk of aneuploidy is higher. 
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technology, which has enabled women of advanced 

maternal age to conceive [4]. However, this shift has 

also brought to light the challenges associated with 

advancing maternal age. After the age of 35, rates of 

infertility, chromosomal abnormalities, and pregnancy 

complications increase dramatically. Older women are 

disproportionately represented among the population 

treated for infertility, particularly older primiparae, and 

a growing proportion of births are the result of assisted 

reproductive technology, such as in vitro fertilization 

(IVF) or intracytoplasmic sperm injection (ICSI) [5]. 

Researchers have sought to understand the underlying 

mechanisms behind the decline in fertility and embryo 

quality with advancing maternal age. The selection  

of embryos for transfer is one of the most crucial 

decisions during an IVF/ICSI procedure, as successful 

implantation and the birth of a healthy child depend 

upon the accuracy of the aforementioned selection.  

The basic, non-invasive method of identifying the 

embryo with the best prognosis for implantation is  

the assessment of embryonic morphology using the 

Gardner scoring system, which is based on the degree  

of embryonic expansion, as well as the morphology  

of the inner cell mass (ICM) and the trophectoderm 

(TE) [6]. Besides, morphological defects during early 

embryo development are also taken into account, such 

as cellular fragmentation, blastomere multinucleation, 

asymmetry of blastomeres, irregular shape, and 

vacuoles [7–10]. The assessment is normally carried  

out by an experienced embryologist, whose decision 

may be supported by time-lapse systems which provide 

additional, morphokinetic data [11]. Noteworthy, for 

over a decade, PGT-A has become the most important 

tool for the selection of healthy embryos for transfer 

[12]. Despite the advantages of using PGT-A in the IVF 

procedure, many untested embryos are still transferred 

due to the lack of indications for PGT-A, the young age 

of the patient, the patient’s decision to reduce costs, or 

the use of cryopreserved untested embryos. Moreover, 

PGT-A is not authorized in all countries. Therefore, 

numerous attempts have been made to predict the 

success of implantation and the birth of a healthy child 

on the basis of various morphological and morphometric 

parameters of the blastocyst, such as inner cell mass 

size and shape, the ratio of the size of ICM to the 

diameter of the blastocyst, and measurements of 

blastocyst expansion, especially when generated form 

advanced age patients [13–16]. Blastocoel expansion is 

also an important predictor of embryo transfer outcome. 

Some authors have reported that the degree of blastocoele 

expansion is positively correlated with implantation  

rate and that spontaneously hatching blastocysts (Bl. 5) 

have a better potential than expanded blastocysts  
(Bl. 4) to implant and establish a pregnancy [17–19]. 

Additionally, correlations between the expansion rate of 

blastocysts and their ploidy were found [20]. Blastocyst 

diameter and expansion rate are difficult parameters  

to analyze due to their dynamic nature, but in recent 

years, knowledge about the process of blastocyst 

expansion has been improved thanks to time-lapse 

analysis [20–22]. In embryological practice, when 

selecting a blastocyst for ET, apart from its morphology 

and degree of expansion, we also take into account its 

ability to hatch and often notice expanding blastocysts 

with a large diameter that do not hatch or smaller ones 

that are hatching. In such a situation, there is a dilemma 

of which blastocyst should be selected for transfer. 

Therefore, the aim of this study was to elucidate if  

the blastocyst size can be a reliable parameter for  

IVF clinics that cannot perform preimplantation tests 

for ploidy. Moreover, we intend to shed light on 

blastocyst’s ability to expand or hatch with regard to 

maternal age. 

 

MATERIALS AND METHODS 
 

This was a retrospective study of 502 couples who 

underwent ICSI cycles at a Krakovi Clinic in Kraków 

(Poland) from 2021–2024. Institutional ethics committee 

approval (KBKA/06/O/2024) was obtained. 

 

Inclusion criteria 

 

Women aged 26–45 years who underwent ICSI,  

PGT-A, and single embryo transfer of a euploid 

blastocyst were included in this retrospective study. 

Only expanded (Bl. 4) or hatching (Bl. 5) blastocysts  

of excellent, good, or medium quality were included in 

the study. Table 1, shows the general characteristics of 

the patients and blastocysts. 

 

Study design 

 

In the first step of the study, as depicted in the scheme 

below, the diameter of 1150 blastocysts was analyzed  

to classify them as “small” or “large” blastocysts, and 

then in the second step to select “large unhatched” and 

“small hatched” blastocysts, respectively (Figure 1). As 

a third step, the PGT-A results were analyzed between 

these two groups of blastocysts. Finally, the outcome of 

FET for 201 euploid large unhatched and small hatched 

blastocysts was analyzed (Figure 2). 

 

Clinical protocols 

 

Patients were treated using either the long agonist 

protocol or the short antagonist protocol, as will be 

described below. The agonist and antagonist protocols 

were continued up to and including the day of  
human chorionic gonadotropin (hCG; Eutrig, IBSA 

Farmaceutici) administration, which was when the 

leading follicle reached a diameter of 18 mm or more 
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Table 1. General characteristics of the patients and blastocysts. 

 
Maternal age 

Total 
≤35 Y >35 Y 

Number of patients 211 291 502 

Age (years), mean ± SD 32.5 ± 2 38.7 ± 3 35.3 ± 4 

BMI (kg/m2), mean ± SD 22.6 ± 4 22.8 ± 3 22.7 ± 3 

AMH (ng/ml), mean ± SD 3.22 ± 3.2 2.1 ± 2 2.7 ± 2.2 

Indications for IVF    

Female factor, % 53% 51% 52% 

Male factors, % 19% 18% 19% 

Combined, % 28% 31% 29% 

No of blastocysts, n 654 496 1150 

No of blastocysts/patient, mean ± SD 3.1 ± 2 1.7 ± 1 2.3 ± 1.3 

BL. 4 - Expanded blastocysts, n (%) 307/654 (47%)a 328/496 (66%)c 635/1150 (55%) 

BL. 5 - Hatching blastocysts, n (%) 347/654 (53%)a 168/496 (34%)c 515/1150 (45%) 

Total euploid rate, n (%) 405/654 (62%)a 188/496 (38%)c 563/1150 (49%) 

Euploid rate BL. 4, n (%) 184/307 (60%)a 105/328 (32%)c 289/635 (45%) 

Euploid rate, BL. 5, n (%) 222/347 (64%)a 67/164 (41%)c 289/515 (56%) 

Diameter (µm), mean ± SD, range 192 ± 11 (155–225) 188 ± 6 (155–219) 190 ± 11 (155–225) 

Diameter BL. 4 (µm), mean ± SD, range 186 ± 15 (155–225) 183 ± 10 (155–221) 185 ± 12 (155–225) 

Diameter BL. 5 (µm), mean ± SD, range 196 ± 11 (158–223) 193 ± 7 (165–210) 195 ± 10 (158–223) 

Small diameter BL. 4 (<185 µm), n (%) 172/307 (56%)a 151/328 (46%)b 323/635 (51%) 

Small diameter BL. 5 (<195 µm), n (%) 177/347 (51%)a 64/168 (38%)b 221/515 (43%) 

Large diameter BL. 4 (≥185 µm), n (%) 135/307 (44%)a 177/328 (54%)b 312/635 (49%) 

Large diameter BL. 5 (≥195 µm), n (%) 170/347 (49%)a 104/168 (62%)b 274/515 (53%) 

Abbreviations: AMH: Anti-Mullerian hormone; BMI: the body-mass index is the weight in kilograms divided by the square of 
the height in meters. a:bvalues with different superscripts within the same rows differ significantly (p < 0.05), a:cdiffer highly 
significantly (p < 0.001). 
 

and at least three follicles reached a diameter of  

17 mm or more. Recombinant Follicle Stimulating 

Hormone (rFSH; Folitropin alfa, Bemfola, Gedeon 

Richter) was then stopped, and a single s.c. bolus of 

10,000 IU hCG (Eutrig 5000 IU, IBSA Farmaceutici) or 

6,500 IU of recombinant human chorionic gonadotropin 

(rhCG/Ovitrelle 250 ug, Merck Serono) was administered 

36 h before the planned time of oocyte retrieval. All 

follicles 12 mm or larger were aspirated. In case of a 

potential risk of ovarian hyperstimulation syndrome 

(OHSS) in an antagonist cycle, the trigger to induce 

ovulation was a single s.c. bolus of triptorelin 2 mg, and 

a freeze-all policy was applied. 

 

Antagonist protocol 

 

A gonadotrophin realising hormone (GnRH) antagonist, 

Cetrorelix (Cetrotide, 0.25 mg/d, Merck Serono) or 

Ganirelix (Orgalutran 0.25 mg/d, Organon), was 

administered sc, commencing when the largest follicle 

reached a diameter of 14 mm. rFSH/human menopausal 

gonadotrophin (hMG; Menopur, Ferring Pharmaceuticals) 

was initiated on day 2–4 of the cycle. 

 

Long agonist protocol 

 

Starting one week before the expected menses  

(cycle day 18–23), patients received sc the GnRH 

agonist, triptorelin (Decapeptyl, Gonapeptyl Daily,  

0.1 mg/d, Ferring GmbH). After successful pituitary 

downregulation (when the serum estradiol (E2) levels 

were <40 pg/mL), ovarian stimulation was commenced 

with a fixed daily dose of 150–300 IU rFSH sc with or 

without an additional 75–150 IU hMG. 

 

Frozen embryo transfer (FET) 

 

Treatment with oral E2 (17beta-estradiol 2 mg, 

Estrofem, Novo Nordisk, Denmark) was started on the 

first, second or third day of the cycle to prime the 
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endometrium and suppress spontaneous follicle growth. 

Oral estradiol was administered in an incremental 

fashion: 2 mg/day during days 1–7, 4 mg/day during 

days 8–12, and 6 mg/day during days 13 to embryo 

transfer. Usually, after 12–14 days of E2 administration, 

a vaginal ultrasound examination was performed for 

endometrial thickness measurement and to confirm the 

absence of a leading follicle. When the endometrial 

thickness was >7 mm, progesterone (P4, Progesteronum 

400 mg, Cyclogest, Gedeon Richter) supplementation 

was commenced, and the timing of FET was scheduled 

accordingly. For true natural cycle (t-NC), transvaginal 

sonography (TVS) was performed on day 2 or 3 of 

menses to rule out any cyst or corpus luteum remaining 

from the previous cycle. Cycle cancellation was usually 

undertaken in cycles with serum P4 >1.5 ng/ml on  

day 2 or 3 of menses. Transvaginal ultrasonographic 

monitoring was usually started on days 8–10, and 

endocrine monitoring, measuring serum E2, luteinizing 

hormone (LH) and P4, was performed when the leading 

follicle attained a mean diameter of approximately 15 

mm in diameter. Following frequent endocrine and 

ultrasonographic monitoring, the day of ovulation was 

precisely documented on alternate days or daily to 

schedule the timing of FET. 

 

Laboratory protocols 

 

Oocyte-cumulus complexes (COCs) were identified 

using a stereoscopic microscope and then washed  

and incubated (approx. 3 h) in the washing medium 

(Gynemed, Germany) under a 6.0% CO2, 5.0% O2 

atmosphere. After incubation, oocytes were denuded 

using hyaluronidase and mechanical pipetting. Only 

oocytes in metaphase II with a first polar body were 

used for further procedures. For ICSI, fresh semen 

 

 
 

Figure 1. Representative microscopic photographs of the two different types of analyzed blastocysts. (A) Shows an exemplary 

photograph of a large expanding blastocyst (group Bl. 4; ≤185 µm). (B) Shows an exemplary photograph of a large expanding blastocyst 
(group Bl. 4; >185 µm). (C) Shows a small hatching blastocyst (group Bl. 5; ≤195 µm). (D) Shows a large hatching blastocyst (group Bl. 5; 
>195 µm). 
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obtained by masturbation and analyzed according to 

WHO guidelines (2021) was used. A sperm sample was 

prepared for ICSI by the density gradient method 

(Gynemed, Germany). ICSI was performed using a 

Nikon Eclipse CS100 microscope and an RI Integra 3 

micromanipulator (Research Instruments, Germany), 

following the standard technique. Embryos were in vitro 

cultured in SAGE® medium (Origio, Denmark) in an 

atmosphere of 6.0% CO2, 5.0% O2, and balanced N2 at 

37°C. Blastocysts were graded according to the Gardner 

scoring criteria (1) based on the degree of expansion,  

as well as ICM and TE morphology. Only “excellent” 

(Bl. 4AA, 5AA), “good” (Bl. 4AB, 4BA, 5AB, 5BA), 

and “medium” quality (Bl. 4 BB, 5BB) blastocysts  

were included in the study. Blastocysts were biopsied 

120–124 h after ICSI, using the same micromanipulator 

and microscope used for ICSI. The zona pellucida was 

perforated using an Octax® laser (Vitrolife, Sweden)  

for 250 μsec. The biopsied TE cells were washed with 

Dulbecos phosphate-buffered saline (D-PBS) and placed 

in 0.2 mL polymerase chain reaction (PCR) tubes for 

referral to Igenomix Inc. (Spain) and analysed by next-

generation sequencing (NGS). Following the biopsy, 

blastocysts were incubated for 1.5 h in Sage® medium 

and then vitrified. According to the manufacturer’s 

protocol, blastocysts were vitrified using Kitazato® 

media and the Cryotop device (Kitazato, Japan). 

Blastocysts were warmed in Kitazato media for a 

minimum of 1.5 h before transfer and then placed in 

EmbryoGlue® medium (Vitrolife, Sweden) or in Sage® 

medium. More than 95% of transfers were performed  

in Embryo Glue® medium. Assisted hatching was not 

performed since large unhatched blastocysts had a  

very thin zona pellucida and small ones began to hatch 

spontaneously. 

 

Blastocyst measurements and classification 

 

Blastocyst measurements were made from images using 

MultiScan® software. Blastocysts were graded twice, 

for the first time at 120 ± 1 h after ICSI, to grade the 

degree of expansion and qualify for biopsy. Two 

measurements were made for each blastocyst, including 

the zona pellucida and the average value of the diameter

 

 
 

Figure 2. Scheme showing the study design. 
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was determined. All activities related to blastocyst 

measurement were always performed by two 

embryologists. The average diameter for hatching 

blastocysts was 195 ± 12 µm, and for expanding 

blastocysts was 185 ± 10 µm. On this basis, Bl. 5 with  

a diameter <195 µm was classified as “small Bl 5”  

and Bl 5 ≥195 as “large Bl. 5”. Expanding blastocysts 

with a diameter <185 µm were classified as “small Bl 

4” and Bl 4 ≥185 as “large Bl. 4”. 

 

Interpretation of PGT-A results 

 

The diagnosis algorithm generates a graph representing 

the chromosomal copy number variation (CNV) of the 

sample analysed when compared to the reference 

bioinformatics baseline generated from multiple normal 

samples. An embryo is considered euploid when the 

graph shows no “threshold” deviations from the 

reference bioinformatics baseline for any of the 24 

chromosomes assessed. “Threshold” embryos with less 

than 30% full chromosome aneuploidy and less than 

50% segmental and sex chromosome aneuploidy in  

the biopsy are reported as euploid. An embryo is 

considered aneuploid when an aneuploidy or partial 

aneuploidy is detected as a result of a “Threshold” 

deviation from the reference bioinformatics baseline 

with points shifting upwards for a gain (trisomy) and 

downwards for a loss (monosomy). Partial aneuploidies 

are specified with chromosome number, arm (p,q), 

cytoband and fragment size in megabases (Mb). 

“Threshold”- embryos with more than 30% full 

chromosome and/or 50% segmental and sex 

chromosome aneuploidy in the biopsy are reported as 

aneuploid (according to Igenomix Laboratory, Spain). 

 

Statistical analysis 

 

Non-parametric data, such as differences in the 

percentage values between groups, were assessed by the 

Chi-Square test since we did not assume a specific 

distribution of the variables measured on nominal  

and ordinal scales. Parametric data were expressed as 

means ± SD and compared by two-way ANOVA to 

draw conclusions about the populations which the data 

were generated from. Differences were considered 

significant when the P-value was ≤ 0.05. The statistical 

analysis was performed using PQStat 1.6.2 (PQStat 

Soft, Poznan, Poland). 

 

Chi-Square test formula: 
 

 
2

2 ( )i i
c

i

O E
x

E

 −
=  

 

Where: c = Degrees of freedom; O = Observed Value; 

E = Expected Value. 

RESULTS 
 
In the first phase of the study, 1150 blastocysts were 

measured; 635 (55%) expanded blastocysts (Bl. 4) and 

515 (45%) hatching blastocysts. In patients with 

advanced maternal age, we observed a significantly 

lower percentage of hatching blastocysts compared to 

younger women (34% (≤35 Y) vs. 53% (>35 Y), 

p < 0.001) (Table 1, Figure 3). Moreover, Table 1 

shows the results of blastocyst morphometry depending 

on maternal age and ability to hatch. The greater 

average diameter (195 ± 10 µm) was recorded in the 

hatching blastocyst group with a range of 158–223 µm 

in relation to the expanding ones (185 ± 12 µm)  

with a range of 155–225 µm. Among the expanding 

blastocysts, 49% (n = 312) were classified as “large Bl. 

4”, meaning a diameter of ≥185 µm. In patients >35 

years of age, there were larger Bl. 4 compared to 

younger patients (54% vs. 44%, p < 0.05). Among the 

hatching blastocysts, 43% (n = 221) were classified as 

“small Bl. 5” (≤195 µm). Significantly smaller Bl. 5 

were noticed in the group of younger patients (51%  

vs. 38%, p < 0.05). The PGT-A testing of all 1150 

blastocysts revealed that 563 (49%) were euploid. 

Figure 4 shows the percentage of euploid blastocysts 

with regard to their developmental stage and maternal 

age. In young patients (≤34 years of age) and in those 

with advanced maternal age (>38 years of age), no 

significant differences regarding euploidy were detected 

between the Bl. 4 and Bl. 5 groups. However, in 

patients aged 34–38 years, we detected 10% more 

euploid blastocysts in the hatching group than the 

expanding ones (p < 0.05). Figure 5 presents the size 

(diameter) distribution of expanding and hatching 

blastocysts in different age groups. Interestingly, in both 

the Bl 4 and Bl 5 blastocyst groups, a greater variation 

in embryo diameter was observed in younger patients, 

with a standard deviation of 15 vs. 10 for Bl 4 and a 

standard deviation of 11 vs. 7 for the Bl 5 group. 

 
Figure 6 shows a percentage of euploid blastocysts with 

regard to their diameter. There is no difference in 

euploidy between Bl. 4 and Bl. 5 blastocysts with 

diameters of 170–190 µm. Noteworthy, those blastocysts 

with diameters either <170 µm or >190 µm, the 

hatching blastocysts have a higher euploid rate (<170 

µm (p < 0.05), >190 µm (p < 0.001). 

 
Then, the PGT-A results of blastocysts that started 

hatching at a small diameter and those that did not start 

hatching despite reaching a large diameter were 

analyzed in patients aged ≤35 years and >35 years 

(Table 2). In both age groups, the small hatching 
blastocysts (Bl. 5) group had a significant (p < 0.05) 

higher percentage of euploid embryos compared to 

large (Bl. 4), (73% vs. 58% in group ≤35 Y, 51% vs. 
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Figure 3. Percentage of expanding and hatching blastocysts in different age groups. a:b, A:B, b:c, B:C, a:A, b:B - values with 

different superscripts within bars differ significantly (p < 0.05), a:c, A:C, c:C - differ highly significantly (p < 0.001). 

 

 

 
 

Figure 4. Percentage of euploid blastocysts with regard to their stadium of development, meaning expanding and 
hatching blastocysts with regard to the maternal age. a:b - values with different superscripts within points differ significantly 

(p < 0.05). 
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38% in group >35 Y). In the next stage, the FET results 

of 201 euploid blastocysts classified in the first stage as 

small hatching (n = 99) and large expanding (n = 102) 

were analyzed (Table 2). The implantation rate and 

pregnancy losses were similar between large and small 

euploid blastocysts, and no significant differences due 

to maternal age were recorded. 
 

DISCUSSION 
 

There is no doubt that maternal aging can contribute  

to the increased rates of aneuploidy observed in 

blastocysts generated from women of advanced age 

who undergo in vitro fertilization. The impact of 

maternal age on embryo quality and the likelihood of 

aneuploidy is well described, too. Our study provided 

evidence that in patients aged 34–38 years, there  

were 10% more euploid blastocysts in the hatching 

group compared to the expanding ones, which was a 

significant difference (p < 0.05). Women of advanced 

age have a higher rate of aneuploidy in their embryos, 

which can negatively impact implantation, sustained 

pregnancy, and live birth rates. Additionally, the 

hatching process of the blastocyst, which is crucial for 

successful implantation, may be impaired in aneuploid 

embryos. Moreover, aneuploid embryos often exhibit

 

 
 

Figure 5. Size (diameter) distribution at expanding and hatching blastocysts in different age groups. 
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Table 2. Chromosomal status and implantation potential of blastocysts with regard to their diameter and ability 
to hatch. 

Maternal age  
(years) 

Blastocyst size  
(diameter, µm) 

Euploid rate  
n (%) 

FET of euploid blastocyst 

Implantation rate  
n (%) 

Ongoing pregnancy  
n (%) 

≤35 Y 

Large Bl. 4 (≥185 µm) 78/135 (58%)a 38/50 (76%) 36/50 (72%) 

Small Bl. 5 (<190 µm) 129/177 (73%)b 36/51 (71%) 35/51 (70%) 

Total 207/312 (66%) 74/101 (73%) 71/101 (70%) 

>35 Y 

Large Bl. 4 (≥185 µm) 67/177 (38%)A 37/52 (71%) 32/52 (61%) 

Small Bl. 5 (<190 µm) 33/64 (51%)B 32/48 (69%) 29/48 (60%) 

Total 100/241 (41%) 69/100 (69%) 61/100 (61%) 

a:b, A:Bvalues with different superscripts within the same column differ significantly (p < 0.05), a:A, b:Bdiffer highly significantly  
(p < 0.001). 

 

abnormal cell division and chromosomal distribution, 

disrupting the hatching process [23]. This being  

said, researchers have explored various interventions 

to mitigate the effects of maternal aging on IVF 

outcomes. Consequently, numerous attempts have been 

made to identify morphological markers of embryos 

that will predict their health and implantation potential. 

It has been well recognized that embryo morphology 

based on the Gardner scale is a significant predictor  

of implantation rate [23–25] and that euploidy rates 

are increased in blastocysts with better morphology 

[26, 27]. However, Alfarawati et al. reported that while 

about 52% of the excellent blastocysts were aneuploid, 

about 30% of the poorer-grade blastocysts were 

euploid, demonstrating why morphology alone cannot 

be relied on to ensure the transfer of euploid embryos 

[14]. The relationship between the degree of expansion 

and the implantation potential and ploidy of embryos 

has been equally well described. A few authors 

reported high implantation, pregnancy, and live birth 

rates with the transfer of hatching/hatched blastocysts 

[18, 28, 29]. Huang et al. showed a significantly higher 

number of euploid embryos in the region of highest 

expansion without taking into account spontaneous

 

 
 

Figure 6. Percentage of euploid blastocysts with regard to their diameter. a:b - values with different superscripts within points 

differ significantly (p < 0.05), a:c - differ highly significantly (p < 0.001). 
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hatching [21]. Also, it has been observed that some 

blastocysts fail to hatch despite the high degree of 

expansion and thinning of zona pellucida (ZP) [30].  

In our study, we wanted to compare the ploidy and 

implantation potential of small-diameter blastocysts 

that start hatching and large-diameter blastocysts  

that have not started to hatch. When analyzing the 

ability to hatch based on the diameter, we found  

the highest percentage of euploid embryos (≤35 Y- 

73%, >35 Y- 51%) in the group of blastocysts that  

started the hatching process with a small diameter.  

In contrast, large, expanded, good, and excellent-

quality blastocysts that had not started hatching had 

significantly more chromosomal defects than small-

hatching blastocysts (≤35 Y- 58%, >35 Y- 38%). Of 

the 1150 blastocysts that underwent PGT-A analysis in 

this study, 49% were aneuploid. This is a similar result 

compared to other studies, where the percentage of 

aneuploidies usually exceeds 50% [14, 31, 32]. Based 

on the study results, it appears that the degree of 

expansion alone, even in good and excellent quality 

blastocysts, is not suitable for selecting embryos for 

ET or predicting their ploidy. Achieving a pregnancy 

and a healthy baby relies not only on the embryo’s 

chromosomal status but also on its implantation 

potential and its ability to maintain a pregnancy. Some 

investigators have indicated that blastocyst expansion 

is an important predictor of embryo transfer outcome 

[17–19, 33, 34], and a meta-analysis of FET outcomes 

found that the degree of blastocoele expansion, rather 

than the grade of ICM/TE, significantly affected  

the likelihood of pregnancy [35]. Many significant 

functions in the process of blastocyst implantation 

occur around the blastocoele expansion stage. These 

functions involve hCG-mediated signaling, adhesion, 

invasion of the endometrium, and maternal recognition 

of pregnancy, which are essential for successful 

implantation and proper development of pregnancy 

[14, 36–38]. It seems logical that good-quality 

blastocysts with large diameters would have more 

trophectoderm cells, providing them with a greater 

implantation potential. On the other hand, some 

previous studies suggested that blastocysts vitrified  

at an earlier developmental stage and with smaller 

blastocoeles have a higher cryosurvival rate and higher 

implantation rate after thawing [39–41]. In our study, 

after FET of euploid embryos, the implantation rate 

and pregnancy losses were similar between large 

expanded and small hatching blastocysts. However,  

it should be remembered that only euploid embryos 

were transferred, and assisted hatching and collapse 

were performed before the biopsy, which could have 

improved the cryo-survival rate of large blastocysts. 
 

A limitation of our research appears to be the clinical 

difficulties in interpreting PGT-A results due to the 

occurrence of mosaic embryos. In our study, we  

used a binary classification of embryos, where full 

euploid and low-level mosaic embryos are classified as 

euploid embryos and full aneuploid and high-level 

mosaic embryos are classified as aneuploid. In clinical 

practice, a simplified classification into euploid and 

aneuploid is often used because we do not know the true 

level of mosaicism. The level of mosaicism obtained 

from PGT-A depends on the number of cells in a 

specific sample and the quality of these cells (viability, 

apoptosis). Moreover, the presence of mosaicism  

in a TE biopsy may not reflect the chromosomal 

constitution of the whole embryo. According to the 

literature, low-medium mosaicism embryos have 

equivalent developmental potential as fully euploid 

ones, and no significant difference was observed 

between infants from euploid and mosaic blastocyst 

transfers [42–44]. On the other hand, other authors 

reported that the embryos classified as low-level 

mosaic embryos showed a significant reduction in 

implantation compared with euploid embryo transfers 

by 12% [45]. Thus, the discussion on reporting and 

transferring mosaic embryos is still relevant, and these 

procedures should be standardized. 
 

CONCLUSIONS 
 

In conclusion, when selecting non-PGT-A tested 

embryos for ET/FET, a small hatching blastocyst is a 

better choice than a large expanded one, especially for 

advanced maternal-age patients for whom the risk of 

aneuploidy is higher. This might be related to the fact 

that the zona pellucida of aged oocytes tends to be 

harder, and therefore, the presumptive blastocysts 

expand but have difficulties hatching. Moreover, the 

increase of aneuploidy and the lower ability to hatch is 

also related to the fact that mammalian oocytes are in 

the ovary from the beginning of life and, consequently, 

exposed to numerous environmental and epigenetic 

insults. However, when transferring euploid embryos, 

there are no differences in the implantation potential 

between large expanded or small hatching blastocysts, 

which leads to the conclusion that aneuploidy correlates 

with decreasing hatching. 
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