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ABSTRACT 
 

Microvascular endothelial dysfunction, characterized by impaired neurovascular coupling, reduced glucose 
uptake, blood-brain barrier disruption, and microvascular rarefaction, plays a critical role in the pathogenesis  
of age-related vascular cognitive impairment (VCI). Emerging evidence points to non-cell autonomous 
mechanisms mediated by adverse circulating milieu (an increased ratio of pro-geronic to anti-geronic circulating 
factors) in the pathogenesis of endothelial dysfunction leading to impaired cerebral blood flow and cognitive 
decline in the aging population. In particular, age-related adipose dysfunction contributes, at least in part, to an 
unfavorable systemic milieu characterized by chronic hyperglycemia, hyperinsulinemia, dyslipidemia, and 
altered adipokine profile, which together contribute to microvascular endothelial dysfunction. Hence, in the 
present study, we aimed to test whether thermogenic stimulation, an intervention known to improve adipose 
and systemic metabolism by increasing cellular energy expenditure, could mitigate brain endothelial 
dysfunction and improve cognition in the aging population. Eighteen-month-old C57BL/6J mice were treated 
with saline or β3-adrenergic agonist (CL 316, 243, CL) for 6 weeks followed by functional analysis to assess 
endothelial function and cognition. CL treatment improved neurovascular coupling responses and rescued brain 
glucose uptake in aged animals. In addition, CL treatment also attenuated blood-brain barrier leakage and 
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INTRODUCTION 
 

Age-related cognitive impairment has become a major 

public concern as its associated loss of independence 

confers a substantial global health and economic 

burden. Vascular cognitive impairment and dementia 

(VCID) is the second most common cause of dementia 

only next to Alzheimer’s disease (AD) and accounts for 

almost 20–30% of cases. One of the primary clinical 

manifestations of vascular pathologies is impaired 

cerebral blood flow (CBF) or chronic cerebral 

hypoperfusion which has been reported to be positively 

associated with cognitive decline both in preclinical and 

clinical studies [1–5]. Microvascular endothelial cells, 

which form the inner lining of all cerebral vessels, play 

multifaceted roles in regulating cerebral blood flow and 

cognition. First, endothelial nitric oxide contributes to 

neurovascular coupling responses (NVC), a critical 

vasodilatory mechanism that maintains neuronal 

homeostasis and function by promptly matching local 

neuronal activity with the required increase in cerebral 

blood flow (CBF) [6, 7]. Secondly, endothelial glucose 

uptake through Glut1 (endothelial isoform 55kDa) 

controls the first point of glucose entry into the brain 

and critically contributes to the maintenance of whole-

brain energy homeostasis in addition to supporting its 

metabolic needs [8]. Thirdly, endothelial cells 

maintain the structural integrity of the blood-brain 

barrier (BBB), which prevents the entry of serum 

constituents into the brain parenchyma, and 

subsequent glial activation and neuroinflammation  

[9, 10]. Lastly, endothelial angiogenesis is key to 

maintaining the optimal cerebral microvascular density 

needed to achieve adequate perfusion to the entire 

brain [11]. Accumulating evidence points to age-

related impairment in endothelial function, metabo-

lism, and structure resulting in impaired NVC [12, 13], 

attenuated glucose uptake leading to hypo-metabolism 

[14, 15], BBB leakage leading to neuro-inflammation 

[16, 17] and microvascular rarefaction [18, 19]. All 

these mechanisms synergistically act to reduce cerebral 

blood flow or perfusion and contribute to cognitive 

decline in aging. 
 

The majority of the previous research in the 

microvascular aging field has primarily focused on 

targeting cell-intrinsic mechanisms including 

senescence, oxidative stress, DNA damage, etc. 

However, a paradigm shift in the mechanistic view of 

endothelial dysfunction has occurred since the 

emergence of results from heterochronic parabiosis 

studies in recent years. These studies where young and 

old mice share the circulation for an extended period 

highlight the pro-aging role of circulating factors  

in accelerating endothelial dysfunction [20–24]. 

Especially, altered systemic and metabolic milieu in 

aging including chronic inflammation, hyperglycemia, 

hyperinsulinemia, and dyslipidemia has been implicated 

in endothelial dysfunction [25–30]. In addition, age-

related reduction in the circulating vasoprotective 

factors such as IGF1 and adiponectin could also 

potentially contribute to microvascular aging [31–33]. 

Conforming to this overall idea, several meta-analysis 

studies have reported that patients diagnosed with age-

related diabetes, dyslipidemia, and metabolic syndrome 

have an elevated risk of developing cognitive 

impairment later in their lifetime [34–37]. Overall, these 

studies signify the importance of interventions that 

improve metabolic dysfunction in treating and/or 

preventing VCI in aging. 

 

Adipose tissue plays a central role in whole-body 

energy homeostasis through its direct involvement in 

glucose and lipid metabolism and also indirectly via its 

crosstalk with other systemic tissues through secreted 

factors. Age-related pathological changes in adipose 

tissue contribute to metabolic dysfunction through 

ectopic lipid deposition, insulin resistance, and low-

grade chronic inflammation [33, 38–41], all of which 

have been implicated in accelerating endothelial aging. 

On the other hand, improvements in adipose tissue 

metabolism, at least in part, contribute to the delayed 

aging phenotype observed in response to several well-

known anti-aging interventions [33, 41–43]. More 

importantly, adipose-related metabolic dysfunction in 

middle age precedes the onset of cognitive decline later 

in life [44–47], suggesting that interventions that restore 

adipose and systemic metabolism could be targeted to 

delay or prevent brain endothelial dysfunction and VCI 

in aging. 

 
We have recently reported that the pharmacological 

activation of adipose thermogenesis, a catabolic 

phenomenon marked by increased fuel oxidation and 

associated neuroinflammation in the cortex and increased microvascular density in the hippocampus of aged 
mice. More importantly, these beneficial changes in microvascular function translated to improved cognitive 
performance in aged mice. Our results suggest that β3-adrenergic agonist treatment improves multiple aspects 
of cerebromicrovascular function and can be potentially repurposed for treating age-associated cognitive 
decline. 
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energy expenditure, improved the overall systemic 

metabolism in aged mice [48]. Specifically, we used a 

β3-adrenergic receptor agonist (β3AR, CL, 216243) to 

stimulate thermogenesis in aged mice. β3ARs are 

predominantly expressed in the white and brown 

adipose tissue and play a critical role in the 

maintenance and activation of lipolytic and thermo-

genic machinery. β3AR agonists (CL, 316243 in 

rodents and FDA-approved mirabegron in humans) 

have been extensively validated as a pharmacological 

means to stimulate thermogenesis and improve 

systemic glucose and lipid metabolism [49–51], 

however, its relevance in aged subjects has remained 

questionable. Addressing this, we have recently shown 

that the metabolic benefits of β3AR agonist treatment 

are preserved in aged mice [48]. Chronic β3AR 

stimulation increased whole-body energy expenditure, 

reduced fat mass, improved glucose tolerance and 

insulin sensitivity, increased circulating adiponectin 

levels, and reduced ectopic lipid deposition in aged 

mice [48]. In the present study, we wanted to examine 

whether β3AR stimulation-mediated improvements in 

systemic metabolism and circulating milieu can 

mitigate microvascular endothelial dysfunction and 

cognitive decline in aged mice. 

 

MATERIALS AND METHODS 
 

Animals and treatment 

 

All animal protocols were approved by the 

Institutional Animal Care and Use Committee at the 

University of Oklahoma Health Sciences Center 

(OUHSC). Aged C57BL/6J male and female mice (18 

months old) were obtained from the aging colony 

maintained by the National Institute on Aging and 

were fed a standard chow diet (PicoLab Rodent Diet 

5053) with continuous access to water and enrichment. 

The animals were housed in the conventional animal 

housing facility with a 12:12-hour light-dark cycle at 

OUHSC. Aged mice were implanted subcutaneously 

with osmotic minipumps filled with saline or β3-AR 

agonist (CL 316,243 (CL) R&D Systems-Cat. No. 

1499/50, 0.75 nmol/h) to enable continuous infusion 

for 6 weeks as previously described [51]. At the end of 

4 weeks of treatment, the mice were subjected to 

behavioral assays including radial arm water maze 

(RAWM) and Y-maze to assess spatial learning and 

memory-related cognitive outcomes. A sub-cohort of 

animals underwent PET/CT imaging to assess glucose 

uptake at the end of 4 weeks. All the animals were 

sacrificed at the end of 6 weeks and brain tissues were 

collected and either stored at -80C for protein analysis 

or fixed in 10% formalin for paraffin embedding. A 

separate cohort of young (3–4 mos) and aged (20–22 

mos) C57BL/6J animals were also used for validation 

of NVC and PET/CT imaging techniques. Power 

calculation: To achieve >80% power with 0.05 types I 

error rate, we require a minimum of 7 animals per 

group for protein and functional assessments and a 

minimum of 10 animals per group for behavioral 

analyses. These calculations assume an effect size 

comparable to that observed in our previously 

published data on the variables under study. 

 

Radial arm water maze test 

 

Spatial memory and long-term memory in mice were 

assessed by performance in the radial arm water maze 

(RAWM) test as described previously [52, 53]. The 

RAWM consisted of eight 9 cm wide arms that radiated 

out from the open central area, with a submerged 

escape platform located at the end of one of the arms. 

Food-grade white paint was added to make the water 

opaque and mask the escape platform. Visual cues 

were marked inside the maze at the end of each arm. 

The movement of mice was monitored by a video 

tracking system directly above the maze and the 

parameters including distance, time, and latency to 

escape were recorded using Ethovision software 

(Noldus Information Technology Inc., Leesburg, VA, 

USA). The experiment consisted of three consecutive 

days of learning trials (Days 1–3), followed by a 7-day 

break (Days 4–10), a probe trial on Day 11, and a 

reversal trial on Day 12. During the learning phase, 

mice underwent eight trials/day. The data from 8 trials 

were consolidated as a single block per day totaling 3 

blocks for 3 learning days (Learning day 1, 2 and 3). In 

each trial, mice were started in an arm not containing 

the submerged escape platform and were allowed up to 

1 minute to locate it. To ensure task familiarization, 

mice were allowed to spend 30 seconds on the platform 

after the first trial on Day 1. Following the learning 

phase, mice were housed in their home cages for 7 days 

before being subjected to the probe trial (Day 11), 

which assessed memory recall of the platform’s 

original location through four 1-minute trials (grouped 

into 1 block designated as Probe). On the reversal trial 

(Day 12), the platform was moved to a new arm 

(neither adjacent nor diametrically opposite to the 

original location), and mice were tested for their ability 

to relearn its location. This relearning phase involved 

eight trials, grouped into one block termed as Reversal. 

The mice were charged an error whenever they entered 

an incorrect arm (all four paws within the distal half of 

the arm) or spent 15 seconds at the center without 

entering any arm. 

 

Neurovascular coupling assessments 

 

After completion of behavioral tests, neurovascular 

coupling responses were assessed in a sub-group of 
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animals using laser speckle contrast imaging as 

described previously [53, 54]. Briefly, mice were 

anesthetized with 2% isoflurane, endotracheally 

intubated and ventilated, but quickly switched to 

0.5%-1% maintenance dose during the measurement of 

NVC responses. Cardio respiratory parameters such as 

blood pressure were monitored and maintained within 

the physiological range throughout the experiments. 

The right femoral artery was cannulated with a 

pressure transducer to continuously monitor and 

maintain the arterial blood pressure between 90–110 

mmHg (Living Systems Instrumentations, Burlington, 

VT, USA). Further a thermostatic heating pad (Kent 

Scientific Co., Torrington, CT, USA) was used to 

maintain rectal temperature at 37°C. End-tidal CO2 

(including dead space) was maintained between 3.2% 

and 3.7% to keep blood gas values within the 

physiological range (PaCO2 levels were consistently 

maintained between 35–45 mmHg, and PaO2 levels 

remained above 90 mmHg) during all procedures. 

Following immobilization in the stereotaxic frame, the 

scalp and periosteum were opened and the skull was 

thinned using a dental drill. To avoid overheating 

during drilling, dripping buffer was infused at the 

drilling site. After placement of the laser speckle 

contrast imager (Perimed, Jarfalla, Sweden) above the 

thinned site, CBF responses on the left somatosensory 

cortex were captured by stimulating the right whiskers 

for 30s at 5Hz from side to side. A total of six trials 

were performed with 5–10-minute intervals between 

them. The average of the CBF changes during the 6 

trials was expressed as a % increase from the baseline 

values. 

 
18F-FDG PET/CT imaging to assess brain glucose 

uptake 

 

Briefly, overnight-fasted animals were injected with 
18F-FDG (100 μCi) via the tail vein. After 2 hours of 

FDG uptake, a 15-minute PET image was acquired 

immediately followed by a 2-minute CT image. Both 

images were acquired using an MI Labs Vector6 

machine (Utrecht, Netherlands). Images were 

reconstructed and registered using MI Labs software. 

ROI for the brain was then manually selected and the 
18F activity in this ROI was quantified in the 

corresponding region of the registered PET image using 

AMIRA software (Thermo Fisher Scientific). Percent 

injected dose (% ID) was calculated as the activity 

(µCi) in the brain decay corrected to the time of the 

injection (i.t.) divided by the injected activity (µCi). The 

standard uptake value (SUV) was calculated by 

normalizing the % ID to the body weight of the animals. 
The imaging and analysis were performed in the 

Research imaging facility (RIF) at the College of 

Pharmacy in OUHSC. 

BBB permeability assays 

 

BBB permeability was assessed by quantifying the 

levels of extravasated fluorescent tracers in brain 

lysates as described previously by Devraj et al. [55]. 

Briefly, the mice were injected with 100 µl of 2 mM 

of 3Kda FITC dextran tracer (#D3305, Thermo Fisher 

Scientific, Waltham, MA, USA) by intraperitoneal 

injection. After 15 minutes, the mice were 

anesthetized and cardiac perfusion with ice-cold PBS 

was performed to remove the tracers from the 

vascular compartment. Cortex and hippocampus 

regions of the brain were dissected from one sagittal 

section of hemibrain and the other half of the brain 

was stored in formalin for immunofluorescence 

analysis. The permeability index was assessed by 

measuring the fluorescence intensity in the serum and 

brain homogenates (cortex and hippocampus) at an 

excitation/emission (nm) value of 490/520 using a 

plate reader. All raw fluorescence values (RFU) were 

corrected for background using tissue homogenates 

or serum from sham animals that did not receive 

tracer injection. The permeability index was 

calculated using the following formula: Permeability 

Index (mL/g) = (Tissue RFUs/g tissue 

weight)/(Serum RFUs/mL serum). 

 

Immunohistochemistry for microvascular density  

 

Microvascular density was assessed by 

immunostaining for endothelial cells. Frozen OCT-

embedded brains were cut sagittally (35 μm) and 

stored in cryoprotectant solution (25% glycerol, 25% 

ethylene glycol, 25% of 0.1 m phosphate buffer, and 

25% water) at −20°C. Sections were rinsed with Tris-

buffered saline (TBS) and permeabilized with TBS 

with 0.05% Tween-20. After blocking with 5% BSA 

and 1% fish gelatin in TBS at room temperature for 2 

h, sections were immunostained with a cocktail of 

anti-endomucin (1:75, Millipore) and anti-CD31 (1:50, 

BD biosciences) antibodies for 48 hrs at 4°C. Sections 

were washed for 5 min (3×) with TBST followed by 

incubation with goat anti-rat Alexa Fluor 488 

secondary antibody (1:500, Thermo Fisher Scientific) 

for 2 hours at room temperature. The sections were 

then washed with TBST for 5 min (3×) and mounted 

onto slides using a Prolong antifade mounting medium 

(Thermo Fisher Scientific). Confocal images were 

obtained using Leica SP8 MP confocal laser scanning 

microscope using tiling mode and 10X objective. High 

resolution Z-stacks (tiles) were stitched to depict the 

whole brain followed by imaging with 20X objective. 

At least 2 representative z stacked images were 
captured in the cortex and hippocampus and the vessel 

density and vessel lengths were calculated using the 

AngioTool software. 
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Capillary-based immunoassay for Glut 1 protein 

expression 

 

Frozen cortex and hippocampus samples were lysed 

using 1X cell lysis buffer (Cell Signaling Technology, 

Danvers, MA, USA) containing Halt protease and 

phosphatase inhibitor cocktail (Thermo Fisher Scientific, 

#PI78440). The lysates were obtained by mincing the 

tissue using a Dounce homogenizer followed by 

centrifugation at 16,000 g for 10 min at 4°C. The clear 

supernatant was collected and the protein concentrations 

were determined using the Pierce BCA Protein Assay Kit 

(Thermo Fisher Scientific, #23227). Automated western 

blots were performed using Jess capillary-based immuno-

assay using 12-230 kDa separation with protein 

normalization (PN) module using the Compass for SW 

Software 6.2.0 (Protein Simple). Protein samples were 

diluted with 0.1X sample buffer and loaded at 0.5 mg/mL 

optimized concentration. Anti-GLUT1 antibody (Abcam 

#ab115730) was loaded at 1:50 dilution. The peak area 

for 45kDa and 55kDa isoforms of GLUT1 were 

calculated using the dropped line peak integration and 

normalized to the total protein content (PN module) using 

the Compass for SW Software 6.2.0 (Protein Simple). 

 

Milliplex assays for cytokine analysis 

 

Protein lysates from cortex samples were analyzed for 

inflammatory markers (Millipore Sigma 

#MCYTOMAG-70K-PMX) using Milliplex kits. The 

values from protein lysates were normalized to the total 

protein content in each sample assessed by BCA assay 

and expressed as pg/ug of protein. 

 

Statistical analysis 

 

Statistical analyses were performed using Graph pad 

prism 9.3.1 (GraphPad Software, San Diego, CA, USA) 

and the data are expressed as mean ± SEM. Data were 

analyzed by two-tailed, unpaired student’s t-test and 

p < 0.05 were considered statistically significant. 

 

Data availability statement 

 

The data that support the findings of this study are 

available from the corresponding author upon 

reasonable request. 

 

RESULTS 
 

Chronic β3AR stimulation improved neurovascular 

coupling responses and brain glucose uptake in aged 

mice 

 

We assessed neurovascular coupling in the somato-

sensory cortex via laser speckle contrast imaging 

following 6 weeks of CL treatment in aged mice. 

Cerebral blood flow responses in the somatosensory 

cortex in response to contralateral whisker stimulation 

were significantly increased in aged mice treated with 

CL (~10% increase in CBF, comparable to levels 

observed in young mice as reported in previous 

publications [53, 56]) when compared with age-

matched controls (representative pseudocolor flowmetry 

maps are shown in Figure 1A and the summary data are 

shown in Figure 1B). Next, we utilized 18F-FDG 

PET/CT imaging to measure in vivo brain glucose 

uptake, another critical endothelial function mediated 

by glucose transporters expressed on the luminal 

surface that regulates whole-brain energy metabolism. 

First, we validated 18F-FDG PET/CT imaging technique 

to detect age-related decreases in brain glucose uptake. 

In agreement with previous studies [57], we were able 

to demonstrate a significant age-dependent decline in 

brain glucose uptake (Figure 1C). Following validation 

of the imaging technique, we investigated whether CL 

treatment improved brain glucose uptake in aged 

animals. Consistent with improved NVC, brain glucose 

uptake was also significantly improved in aged animals 

following CL treatment (representative PET images are 

shown in Figure 1D and the summary data are shown in 

Figure 1E). Glucose uptake at the BBB is mediated by 

GLUT1 transporter, which has 2 isoforms: 55kDa 

isoform expressed in the luminal side of the BBB 

endothelial cells and the 45kDa isoform expressed in 

the astrocytic end-feet. Correlating with increased brain 

glucose uptake, CL treatment significantly increased 

GLUT1 levels in the hippocampus of the aged mice. 

However, interestingly only the 55kDa endothelial 

GLUT1 isoform was upregulated while no changes 

were observed with the 45kDa astrocytic isoform 

(Figure 1F–1K). CL-induced increase in endothelial 

GLUT1 was also region-specific as we did not observe 

similar changes in the cortex of aged mice (Figure 1F–

1K). These results demonstrate that chronic β3AR 

treatment improved NVC and brain glucose uptake 

potentially mediated through endothelial GLUT1 in 

aged mice. 

 

Chronic β3AR stimulation attenuated BBB leakage 

and neuroinflammation, and increased microvascular 

density in aged mice 

 

Next, we evaluated the effects of β3AR stimulation on 

microvascular endothelial structure which critically 

contributes to the maintenance of BBB integrity in aged 

mice. To determine BBB permeability, 3kDa FITC 

labeled dextran was injected intraperitoneally, and the 

extravasation of the injected tracer was quantified in the 
hippocampus and cortex tissue lysates after perfusion. 

CL treatment attenuated BBB leakage both in the 

hippocampus and cortex tissue of aged mice evident 
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from the decreased permeability of the injected tracer in 

the brain parenchyma (Figure 2A, 2B). 

 

Intact BBB is crucial to prevent the trafficking of 

immune cells and other plasma proteins into the brain 

parenchyma. However, with aging, increased BBB 

permeability to blood constituents results in aberrant 

glial activation which ultimately leads to neuro-

inflammation. Hence, we wanted to assess if CL 

treatment mediated mitigation of BBB leakage 

improved inflammation in the aging brain. We assessed 

inflammation by measuring the protein levels of

 

 
 

Figure 1. Effects of chronic β3-AR treatment on neurovascular coupling, brain uptake, and GLUT1 expression in aged mice. 
(A) Representative pseudocolor laser speckle flowmetry maps of baseline cerebral blood flow (CBF) (upper row; shown for orientation 
purposes) and CBF changes in the somatosensory cortex relative to baseline during contralateral whisker stimulation (bottom row, left 
circle, 30 s, 5 Hz) in aged mice treated with saline (aged controls) or CL 316,243 (aged CL). The color bar represents CBF as a percent change 
from the baseline. (B) Summary data as a % increase in CBF (n = 4–5 in each group, males). (C) 18F-FDG uptake in the young and aged brain 
represented as SUV (%ID/g body weight) (n = 4 in each group, males). (D) Representative 18F-FDG-PET images of aged control and  
CL-treated mice. Warmer colors represent higher activity in PET images. (E) Quantification of FDG uptake in the brain represented as SUV 
(%ID/g body weight) (n = 4 in each group, males). (F, G) Representative images of GLUT1 chemiluminescent signals for hippocampus and 
cortex lysates in capillaries created by the compass SW software for Jess analysis. (H–K) Peak areas for 55 and 45kDa GLUT1 isoforms 
normalized for total protein in the samples. Data are mean ± S.E.M. (n = 8–9 in each group, males). *P < 0.05 vs. aged controls. 
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Figure 2. Effects of chronic β3-AR treatment on BBB permeability, inflammatory markers and microvascular density in aged 
mice. (A) Workflow representing the steps in the BBB permeability assay. (B) BBB permeability index calculated to assess the permeability 

of 3kDa FITC tracer in the cortex and hippocampus of aged controls and CL-treated mice (n = 7–11 in each group, males) (C) Protein levels 
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of pro-inflammatory cytokines and chemokines assessed by multiplex magnetic assay (n = 6–9 in each group, both sexes). A table 
presenting the exact levels of cytokines and chemokines, normalized to total protein levels, in both the saline- and CL-treated aged mouse 
groups is provided. The table also includes p-values to indicate statistical differences between the two groups. (D) Representative images of 
brain sections stained with endomucin and CD31 in the cortex and hippocampus. Middle panel represents the whole brain picture stitched 
from images obtained by tiling mode. Red box indicates the region imaged at 20x magnification for quantification of the vessel density and 
vessel length in the cortex and the hippocampus. Bar graphs indicate the quantification data for vessel density and total vessel length 
analysis in the cortex and the hippocampus (n = 4–8 in each group, males). Data are mean ± S.E.M. *P < 0.05 vs. aged controls. 

 

pro-inflammatory cytokines and chemokines in the 

cortex protein lysates. Conforming to improved BBB 

function, CL treatment significantly reduced the protein 

levels of various pro-inflammatory mediators such as 

IL5, Eotaxin, GCSF, GM-CSF, MIP-1b and MCP1 

respectively (Figure 2C). Further, CL treatment 

improved the microvascular density and the total vessel 

length in the hippocampus, although such changes were 

not observed in the cortex region of aged mice (Figure 

2D). These findings indicate that CL treatment 

significantly improved microvascular structure in aged 

mice. 

 

Chronic β3AR stimulation improved spatial learning 

and memory in aged mice 

 

To examine the effects of thermogenic stimulation on 

cognitive performance, especially spatial learning, and 

memory, we performed radial arm water maze test in 

aged mice after 6 weeks of CL treatment. First, we 

quantified the combined number of errors calculated 

across all the trials between the control and CL-treated 

aged mice. CL treatment significantly reduced the 

number of errors before reaching the target when 

compared to controls (Figure 3A, 3B). During the 

learning trials, we also observed that the mice from both 

groups progressively took less time to find the target 

suggestive of task learning (Figure 3C). On the last 

learning and probe trial, CL-treated aged mice took 

significantly less time to reach the target indicative of 

improved learning plasticity and memory when 

compared to controls. Further, a similar trend for 

improved relearning was also observed during the 

reversal trial in aged mice with CL treatment, however, 

they did not attain statistical significance. CL treatment 

did not affect swim speed during the test indicating that 

modulation of motor function did not contribute to the 

improved cognitive performance in CL-treated aged 

mice (Figure 3D). 

 

DISCUSSION 
 

Age-related metabolic diseases share strong pathogenic 

links with cerebromicrovascular dysfunction and 

cognitive impairment [58]. Supporting this idea, several 
epidemiological studies have demonstrated a causal 

association between metabolic syndrome in mid-life 

with decreased cerebral blood flow and cognitive 

decline later in life [44–47]. Adipose tissue dysfunction 

significantly contributes to the pathogenesis of 

metabolic disorders with aging through impaired 

glucose and lipid metabolism, altered adipokine 

secretion, increased secretion of pro-inflammatory 

mediators, and ectopic lipid deposition. Hence, 

interventions that improve adipose function and in turn 

peripheral metabolism might also confer protective 

effects on cerebral microvasculature and cognitive 

functions in aging. To test this, we chose thermogenic 

stimulation using β3AR agonists, a method previously 

well-established to improve adipose and systemic 

metabolism in both rodents and humans [59–62]. 

Although the effects of β3AR agonists on systemic 

metabolism have only been well-characterized in young 

animals, our studies showed that it also effectively 

improved multiple metabolic parameters including 

adiposity, glucose metabolism, insulin sensitivity, 

circulating adiponectin, and ectopic lipid deposition 

[48]. More importantly, these systemic improvements 

were associated with improved microvascular function, 

reduced neuroinflammation and enhanced cognition in 

aged mice, indicating that the beneficial effects of 

thermogenesis extend beyond metabolic tissues. Our 

results are in line with previous studies which also show 

that CL treatment improved brown adipose tissue 

thermogenesis and cognition in a triple transgenic 

mouse model of AD (3xTg-AD) [63] and chicks [64], 

albeit the mechanisms remain uncharacterized. 

 

We posit that the mechanisms underlying the cognitive 

benefits of CL treatment in aging are multifactorial. First, 

it is highly likely that restoration of glucose uptake due to 

increased endothelial GLUT1 expression had a positive 

impact on brain energy metabolism and cognition in 

aging. GLUT1 is highly expressed in the brain micro-

vascular endothelial cells [65], where it regulates BBB 

integrity and cerebral blood flow responses [66] in 

addition to supporting metabolic needs. Endothelial 

GLUT1 deficiency has been linked to impaired cerebral 

blood flow, BBB breakdown, and cognitive impairment in 

AD mice models [66]. Further, reduced GLUT1 

expression anticipates the onset of microvascular 

dysfunction and clinical manifestations in mild cognitive 

impairment (MCI) and AD patients [67, 68], suggesting a 

pathogenic role for impaired endothelial glucose uptake in 

age-related vascular cognitive impairment. Based on these 

findings, it is highly likely that increased endothelial 

glucose uptake via GLUT1 (55kDa isoform) contributed 

to the restoration of BBB integrity leading to reduced 
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neuroinflammation and improved learning and memory in 

aged mice. In addition, studies have also pointed to a role 

for GLUT1 in eNOS-mediated endothelial relaxation [69] 

and hence GLUT1 potentially also contributes to 

improved neurovascular coupling observed in CL-treated 

aged mice. However, the mechanistic contribution of 

GLUT1 deficiency to neurovascular uncoupling in aging 

is yet to be investigated. 

 

Secondly, the potential role of adipose-secreted 

factors on cerebral microvasculature should also be 

considered as adipose tissue is the primary tissue 

target for CL. Specifically, we have observed that CL 

treatment significantly increased the circulating levels 

of adiponectin, a well-known vasoprotective adipokine 

with insulin-sensitizing [70] and anti-inflammatory 

properties [70–74]. Adiponectin has been shown to 

protect endothelial cells against high glucose and 

oxidized LDL-induced oxidative stress [75, 76], 

increase the production of NO by activating AMPK-

eNOS signaling [11, 77, 78], and maintain capillarity 

and microvascular blood flow [79] Adiponectin 

 

 
 

Figure 3. Effects of chronic β3-AR treatment on cognitive performance in aged mice. (A) Radial arm water maze- Heatmap 

showing an animal from each group that was chosen at random and the amount of time they spent in different arms and also the traces 
indicating the path the mice took to reach the target. Please take note that the aged controls took longer paths and made more errors in 
finding the target platform when compared to the CL-treated mice. (B) Cumulative errors calculated during the learning, probe, and 
reversal trials. (C) Time to escape calculated during each of the learning, probe and reversal day trials and (D). Swim speed (cm/s) in radial 
arm water maze test (n = 6–10/group, both sexes). Data are mean ± S.E.M. *P < 0.05 vs. aged controls, ns-not significant. 
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was also reported to inhibit atherogenesis [73] and to 

modulate inflammatory processes in cerebro-

microvascular endothelial cells [77]. Further, studies 

have also established a critical role for adiponectin in 

the anti-aging vascular effects of caloric restriction [80, 

81]. Given that adiponectin receptors (primarily 

AdipoR1) are expressed in brain microvascular 

endothelial cells [82], it raises the possibility that 

adiponectin could directly influence endothelial out-

comes in CL-treated aged mice. It should also be noted 

that adipose tissue secretome is not just limited to 

adipokines but includes a wide repertoire of molecules 

such as bioactive lipids, peptides, and extracellular 

vesicles. Future studies should address whether CL 

treatment impacted these other adipose-secreted factors 

to modulate microvascular function and cognition in 

aging. 

 

Thirdly, CL could also directly act on the brain to 

confer cognitive benefits in aging. The presence of 

β3AR mRNA has been documented in multiple brain 

regions [83], albeit at much lower levels than in adipose 

tissue. Amibegron, another β3AR agonist, has been 

shown to possess anxiolytic properties in rodents 

through modulation of neurotrophic and apoptotic 

pathways in the hippocampal neurons [84]. However, 

unlike amibegron which is BBB permeant, CL does not 

cross the BBB [85] and it is unlikely that CL directly 

influenced neuronal function. Alternatively, microvascular 

endothelial cells are indeed exposed to CL in circulation 

and are a potential target for its central actions. β3AR 

expression in the brain microvascular endothelial cells 

has not been defined yet, however, it is present and 

physiologically active in the coronary and retinal 

endothelial cells [86, 87]. In both the heart and retinal 

microvessels, stimulation of β3ARs induces eNOS 

activation and vasodilatory responses [86, 87]. Whether 

β3AR stimulation exerts similar actions in brain 

microvessels is yet to be characterized. 

 

Although these findings are promising, several 

important caveats must be acknowledged. One of the 

major limitations in this study is that we could not 

consistently include both sexes in all the experiments 

and hence the sexual dimorphic effects of CL treatment 

could not be addressed. Additionally, the absence of a 

young control group limits the interpretation of the 

extent to which CL treatment improved cerebrovascular 

function in aged mice. Future studies incorporating both 

sexes and young controls will provide a more 

comprehensive understanding on the cerebrovascular 

rejuvenating effects of β3AR agonists in aging and to 

lay the groundwork for clinical investigations. 

Furthermore, this study did not address the possibility 

that changes in other cell types, such as pericytes, 

astrocytes, or vascular smooth muscle cells, may have 

contributed to the beneficial effects of β3AR agonists in 

the aging brain. Follow-up studies will focus on 

investigating the cell-type-specific effects of β3AR 

agonists in mediating improvements in NVC, BBB 

integrity and neuroinflammation in aging. Taken 

together, our findings show that chronic β3AR agonist 

treatment exerts robust microvascular protective effects 

in aged mice, which likely conferred cognitive benefits 

in aged mice. While β3AR agonists are being tested in 

clinical studies for metabolic disorders [49, 50], it could 

be a valuable therapeutic strategy to repurpose them for 

the treatment of age-related vascular cognitive 

impairment. 
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