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INTRODUCTION 
 

Dementia is primarily a clinical condition affecting the 

aging population and is typically chronic and progressive. 
The preclinical stage may be characterized by mild 

cognitive impairment, frequently accompanied by 

behavioural abnormalities. Most functioning capacities 

are severely compromised in the later stages of dementia, 

leading to considerable decline and eventually complete 

dependency. Neuropathological abnormalities can begin 

as early as 20 years before clinical manifestation  
[1]. Both external and internal factors play a role in 

developing the disease process. Microbes settled in the 

gut serve as a connecting link between the external and 
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ABSTRACT 
 

Introduction: With increased life expectancy, there is an increase in aging population and prevalence of 
dementia. Ghrelin is a key regulator of spatial memory and cognition. The gut microbiome may affect the 
circulating levels of unacylated ghrelin (UAG) and acylated ghrelin (AG). Thus, we explore the potential 
association of the gut microbiome, AG, and cognitive health in the aging dementia patient. 
Methods: 40 dementia patients and 40 controls were recruited. Fecal Microbiome analysis using 16S rRNA 
sequencing was performed on 18 samples. A mixed-method approach was employed for robust interpretation. 
Results: Dementia patients had an increased serum AG and AG/UAG ratio. With the increase in AG among 
dementia subjects, a significant decrease in species richness was observed. Bifidobacterium longum, 
Eubacterium biforme, Fecalibacterium prausnitzii, Lactobacillus ruminis, and Prevotella copri contributed to 
substantial differences in beta-diversity. Blautia obeum was associated with Mini-Mental State Examination 
(MMSE), and Fecalibacterium prausnitzii was associated with Montreal Cognitive Assessment (MoCA) Scale. 
Discussion: This pilot study indicates a complex interaction between AG, gut microbiome, and cognitive scores. 
Increased AG corresponds to both dementia and gut dysbiosis, intricately interconnecting the gut-brain axis. 
The circulating AG and associated gut microbiome might be a putative biomarker for dementia. 
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internal environment, and they act through humoral and 

vagal pathways to establish a gut-brain axis. Microbes 

influence the gut-brain axis through secretion of various 

metabolites like short chain fatty acids (SCFA) and 

other biologically active molecules like gamma amino 

butyric acid (GABA), serotonin, dopamine [2]. Notably, 

ghrelin, a hormone secreted by enteroendocrine cells  

of stomach is decreased with increase in SCFA like 

acetate, butyrate and propionate [3]. The gut hormone 

ghrelin plays a vital role in this gut-brain axis. UAG 

represents ∼80–90% of circulating ghrelin. UAG 

undergoes a unique post-translational modification in 

which the peptide gets acylated, primarily by octanoic 

acid, on a serine residue over the third amino acid to 

produce AG. Studies linked to this hormone found no 

significant difference in total ghrelin levels in dementia. 

Instead, there was an increase in AG and a subsequent 

decrease in UAG levels in the cases [4]. In contrast, 

another study reported a notable reduction in plasma 

AG/UAG ratio in the Parkinson’s disease dementia 

(PDD) group compared to the PD group with intact 

cognition and controls, which contradicts the earlier 

findings [5]. Studies also provide evidence that pro-

inflammatory dysbiosis promotes the development of 

Parkinson’s disease (PD) by interfering with intestinal 

permeability [6]. Reduced microbial diversity in the gut, 

with a notable shift toward pro-inflammatory taxa is 

also frequently observed in dementia, and Alzheimer’s 

patients [7]. Gut microbiota and their metabolites can 

alter the signaling of the ghrelin receptor [8–10]. 

However, it is unclear whether gut dysbiosis and ghrelin 

interact in aging dementia subjects. In this study,  

we aim to investigate the interactions of microbial 

composition and diversity and the gut hormone  

ghrelin in aging dementia patients with MMSE scores 

between 15 and 25 to further delineate their cognitive 

health. 

 

RESULTS 
 

Serum acylated ghrelin significantly increased in 

dementia 
 

Dementia clinical assessment scorings like MMSE, 

MoCA, GADL, and HADS were used to diagnose 

dementia from the study participants, and dementia 

patient scores were found to differ significantly from 

the controls (Table 1). AG (ng/mL) was higher among 

the cases than in the controls (0.97 ± 0.8 vs. 0.58 ± 

0.28, p = 0.007), whereas the levels of UAG (ng/mL) 

were insignificant. The ratio of AG/UAG in dementia 

subjects was significantly higher than the controls  

(47.0 ± 23.2 vs. 32.9 ± 28.3, p = 0.019). When adjusted 
for age, the age-adjusted ghrelin ratio (AAGR) was 

also significantly different between cases and controls 

(1.33 ± 0.93 vs. 0.53 ± 0.68) (Figure 1A). To exclude 

the metabolic alteration of ghrelin, we estimated 

insulin, which was found to be insignificant. 

 

Bacterial taxonomy identification using 16S rRNA 

sequencing 

 

Microbiome analysis was performed on nine participants 

from both study groups. On average, 295,684 reads  

per sample were obtained using the Illumina MiSeq.  

At the Phylum level, 24 OTUs were identified, with 

Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, 

and Verrucomicrobia ranking as the top 5 phyla across 

all groups. Taxonomic annotation revealed the presence 

of 93 OTUs at the species level. Following data 

filtration, 53 OTUs accounting for 99% of total counts 

at species level were retained and used for all 

microbiome analyses. 

 

Variation in microbiota abundance and incidence 

 

The core microbiota of the top 15 species shows 

distinctions in both abundance and incidence between 

the control and dementia groups (Figure 1B). Certain 

microbes, such as Prevotella copri, exhibit 16% 

abundance and are present in over 78% of the 

dementia group, while in the control group, they  

are 33% abundant and are present in all (100%). 

Similarly, Bifidobacterium longum displays 2% and 

18% abundance in the control and dementia groups, 

with distinctions in incidence at 33% and 89%, 

respectively. Meanwhile, Eubacterium biforme shows 

14% and 2% abundance in the control and dementia 

groups, with incidence rates of 67% and 44%, 

respectively. Lactobacillus ruminis has 8% and 11% 

abundance in the control and dementia groups, with 

incidence rates of 33% and 78%, respectively. 

 

Distinct microbial diversity identified in dementia 

 

Alpha diversity indices did not show any  

differences between the control and dementia groups 

(Supplementary Figure 1A); however, comparing 

within dementia subgroup based on AG levels (AG >1 

ng/ml and AG <1 ng/ml), species richness (28.8 ± 7.5 

vs. 39 ± 5.1, p = 0.04) (Figure 1C) was found to be 

significantly different. In contrast, beta diversity 

showed a significant difference between control and 

dementia groups (p = 0.009) (Figure 1D). A SIMPER 

test identifies five species that are determinants of  

beta diversity differences between the control and 

dementia groups based on the Bray-Curtis dissimilarity 

index (Figure 1E); they are Bifidobacterium longum 

(70%), Eubacterium biforme (60%), Fecalibacterium 
prausnitzii (49%), Lactobacillus ruminis (36%), and 

Prevotella copri (22%). The log-transformed F/B  

ratio showed no differences between the control and 



www.aging-us.com 3 AGING 

Table 1. Demographic and clinical parameter comparison in cases and controls. 

Parameters Overall (n = 80) Controls (n = 40) Cases (n = 40) p-value# 

Categorical n (%) 

Sex 
Male 53 (66.25) 24 (72.5) 29 (72.5) 

0.344a 
Female 27 (33.75) 16 (27.5) 11 (27.5) 

Education 

None 5 (6.25) 2 (7.5) 3 (7.5) 

0.964a 
Till Matriculation 48 (60) 24 (60) 24 (60) 

Higher Secondary 13 (16.25) 7 (15) 6 (15) 

Graduation 14 (17.5) 7 (17.5) 7 (17.5) 

Alcohol 
No 73 (91.25) 37 (90) 36 (90) 

1a 
Yes 7 (8.75) 3 (10) 4 (10) 

Smoking 
No 76 (95) 39 (92.5) 37 (92.5) 

0.615a 
Yes 4 (5) 1 (7.5) 3 (7.5) 

Continuous mean (range) 

Age (in years) 67.7 (60–85) 69.3 (60–85) 66.2 (60–81) <0.001b 

MMSE Score 26 (15–30) 29 (26–30) 19 (15–25) <0.001b 

MoCA Score 26 (11.5–30) 28 (26–30) 21 (11.5–25) <0.001b 

GADL Score 23 (8.5–27) 26 (25.5–27) 13.05 (8.5–20) <0.001b 

HADS - A Score 5 (0–12) 2 (0–4) 9.5 (7–12) <0.001b 

HADS - D Score 5 (0–11.5) 2 (0–3) 9 (8–11.5) <0.001b 

AG (ng/mL) 0.75 (0.21–5.85) 0.58 (0.21–1.47) 0.97 (0.33–5.85) <0.001b 

UAG (ng/mL) 0.02 (0.007–0.062) 0.022 (0.007–0.045) 0.021 (0.013–0.062) 0.2b 

AG/UAG ratio 39 (7–139) 33 (7–139) 47 (15–104) <0.001b 

AAGR 0.88 (−1.15–3.67) 0.53 (−1.15–1.92) 1.33 (−0.62–3.67) <0.001b 

Insulin (µIU/mL) 9.78 (0.98–29.98) 9.56 (1.31–29.98) 10 (0.98–26.61) 0.92b 

#Significance based on p-value, p < 0.05 is significant. aChi-Square test. bStudent t-test. Abbreviations: AG: Acylated Ghrelin; 
UAG: Unacylated Ghrelin; AG/UAG: Acylated Ghrelin to Unacylated Ghrelin ratio; AAGR: Age Adjusted Ghrelin Ratio; n: 
sample size. 

 

 
 

Figure 1. (A) Clinical data comparison (AG, UAG, AG/UAG, AAGR) between dementia and controls. (B) Relative abundance vs. incidence for 

the top 15 abundant species. Incidence refers to the number of patients in which a species is observed when its abundance is >1%. 
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(C) Alpha diversity indices (Species Richness, Shannon Index, Simpson Index, and Pielou’s Evenness index) with statistical comparison 
between AG >1 and AG <1 within the dementia group. AG, Acylated Ghrelin. (D) Beta diversity using Bray-Curtis dissimilarity is plotted on 
the principal coordinate axis (PCoA), with density labelled on each axis to represent the variation between sample points for each group. 
(E) Influential species with Bray-Curtis dissimilarity (%) in beta diversity differences between the dementia and control groups. 

 

dementia groups (Supplementary Figure 1B). No 

differences were observed in beta diversity in dementia 

subgroups based on AG. 

 

Species-specific community interaction identified 

using co-occurrence network 

 

Species co-occurrence network analysis shows 

representative high-degree species in the control 

network. Communities of microbes were formed 

within each network according to the Louvain method. 

In each community, the bacteria with the highest 

degree of centrality were labelled in the network as 

representative of that community if it were amongst 

the top 20 species when arranged in descending 

order. In controls, Dorea formicigenerans, Clostridium 
perfringens, Blautia obeum, Streptococcus anginosus, 

Ruminococcus bromii, and Prevotella stercorea were 

representative (Figure 2A). Whereas in the dementia 

group, Bifidobacterium adolescentis, Blautia producta, 

and Eubacterium biforme (Figure 2B) were found to be 

representative. The top 20 species in the dementia group 

did not include species representing community 3, 

when analyzed according to the degree of centrality. 

The disparate importance of certain bacteria in healthy 

and dementia networks was analysed using a metric of 

species influence referred to as the degree of centrality. 

We used the degree of centrality as an indicator of 

keystone species, with species having a higher degree 

of centrality in one network than the other, implying 

the increased influence of that species in the particular 

group. The degree of centrality was normalized, and 

their difference in dementia and controls was calculated 

to identify outliers that referred to bacteria of vastly 

differing importance in the two networks. We identified 

that Prevotella copri, Collinsella aerofaciens, and 

Clostridium perfringens had enhanced centrality in the 

control network. Eubacterium biforme, Eggerthella lenta, 

Blautia producta, and Bifidobacterium adolescentis 

were enhanced in the dementia network (Figure 2C). 

 

 
 

Figure 2. (A) Co-occurrence network showing bacteria (with total abundance >10) in the control group. Each node represents a bacteria, 

and the color represents the community it belongs to. The size of the node is proportional to the degree of the node. Edges are coloured 
green and red, indicating positive and negative co-occurrence, respectively. The thickness of the edge indicates the strength of the 
association. Representative high-degree bacteria from each community are labeled. (B) Co-occurrence network of microbes in the 
dementia group. (C) Difference in normalized degree centrality for each node between control and dementia networks. Positive values 
indicate a higher degree of centrality in the control network. Highlighted nodes correspond to outlier species. 
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MoCA and 14 OTUs contribute to the neural 

network model decision 

 

A neural network model was created for classifying 

dementia and healthy controls taking normalized 

species abundance data and clinical parameters as 

features. Data were classified into training, validation, 

and test datasets. The test dataset showed a model 

accuracy of 100%. The percentage contribution of 

individual features in model decision using SHAP was 

visualized (Figure 3A). Out of the clinical parameters, 

MoCA scores played a crucial role in model decisions, 

implying reliability; 14 out of 53 species considered  

for the model contributed to the model decision. The 

ROC curve showed a distinction for the classification  

of dementia (Figure 3B), with Blautia obeum having 

an AUC of 0.83, Eggerthella lenta with an AUC  

of 0.71, and AG with an AUC of 0.66. Of the 53 

species, 12 were significantly associated with different 

clinical parameters with R2 >0.55 in the dementia  

group (Supplementary Figure 2A). In contrast, 13 in  

the control group (Supplementary Figure 2B) exhibited 

significant association in a linear regression analysis. 

 

Ghrelin and specific species correlate with dementia 

scores 

 

A Mantel correlation test between influential species 

and clinical parameters showed a significant association 

between Fecalibacterium prausnitzii and MoCA (r² = 

0.46, p = 0.02) in the dementia group (Supplementary 

Figure 3A), while Prevotella copri with AG/UAG  

ratio (r² = 0.4, p = 0.01), and Bifidobacterium longum 

with MMSE (r² = 0.53, p = 0.03) in the control  

group (Supplementary Figure 3B). Similarly, between 

differential features (species) in the neural network model 

and clinical parameters, a significant association was 

observed between Veillonella dispar with socioeconomic 

status (SES) (r² = 0.58, p = 0.03), Blautia obeum with 

MMSE (r² = 0.37, p = 0.02), Pyramidobacter piscolens 

with age (r² = 0.47, p = 0.004), Blautia producta with 

AG/UAG ratio (r² = 0.51, p = 0.01), Bacteroides 

eggerthii with age (r² = 0.41, p = 0.03), and AG (r² = 

0.47, p = 0.01) in the dementia group (Supplementary 

Figure 4A). In the control group, Streptococcus 

anginosus was associated with MOCA (r² = 0.44,  

p = 0.03), and Roseburia faecis was associated with  

AG (r² = 0.52, p = 0.01) (Supplementary Figure 4B), 

respectively. 

 

Latent variable 2 significantly delineates dementia 

 

An SEM model delineates the effects of a species  

group along with age and AG in dementia (Figure  

4A). Initially, we eliminated species with no impact 

and non-significant indications of latent variables. 

Prevotella copri and Collinsella aerofaciens were 

removed from lv1, and Collinsella stercoris, 

Ruminococcus gnavus, Bifidobacterium adolescentis, 

Eubacterium biforme, Bifidobacterium longum, and 

Lactobacillus ruminis were removed from lv2. The final 

model shows lv1 having a positive effect on dementia 

(1.55), while lv2 shows a negative impact on dementia 

(−1.31). The standardized factor loading values from 

lv1 to each of the indicators of lv1 were as follows:  

0.61 for Fecalibacterium prausnitzii and 0.95 for 

Clostridium perfringens. Similarly, standardized factor 

loading values from lv2 to each of the indicators of lv2 

were as follows: for Eggerthella lenta 0.66, Bacteroides 

eggerthii 0.93, Blautia producta 0.74, for age 0.34,

 

 
 

Figure 3. (A) Important features contributing to neural network model decision. The X- axis indicates the percentage of contribution. The 

above features from a pool of 61 features (including species OTU table (n = 53) and clinical parameters (n = 8)) made up 100 percent of the 
model decision. (B) ROC curve analysis. Abbreviation: AG: Acylated Ghrelin. 
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and AG 0.63. The lv2 shows a significant difference, 

while lv1 doesn’t show any differences between the 

control and dementia groups (Figure 4B). 
 

DISCUSSION 
 

The significant difference in dementia assessment 

scores: MMSE, MoCA, GADL, and HADS indicated 

that the cases and controls clinically differ in their 

cognition levels. Our findings showed an increased 

level of AG among dementia patients compared  

to healthy controls, while UAG levels remained 

unchanged, replicating earlier study [4]. Hence, the 

ratio of AG/UAG is significantly higher in dementia 

cases than in healthy controls, which is contradictory 

to the previous finding where plasma AG/UAG  

was found to be decreased among PDD patients  

[5], implicating normal functioning of the enzyme  

ghrelin-O-acyltransferase (GOAT), which catalyzes 

ghrelin acylation in this patient cohort. Increased AG 

in dementia patients might be a compensatory 

response to underlying neuronal damage, probably 

due to decreased neurogenesis or increased 

neuroinflammation. 

 

Ghrelin is the ‘hunger’ hormone and hence subjected to 

changes with fasting levels and BMI. Insulin, being 

released in response to blood sugar is also subject to the 

same confounding factors that will affect ghrelin. As 

our mentioned insulin values do not vary significantly 

between cases and controls, it is unlikely that ghrelin 

also varies between the groups due to confounding 

factors. This excludes confounding factors from our 

analysis and points to the significant difference in 

ghrelin being associated with cognitive impairment of 

the patient. 

 

On the other hand, AG is described to have a vital anti-

inflammatory action to improve leaky gut evoked by 

lipopolysaccharides [11, 12]. Since AG was found to be

 

 
 

Figure 4. (A) The structural equation model (SEM) for dementia. A circle represents latent variables (lv1 and lv2), and a square 

represents observed variables or indicators. (CFI = 0.797, GFI = 0.697, X2/df = 2.083). The darker the lines, the stronger the 
association. Digits show regression coefficients. F_p, Faecalibacterium prausnitzii; C_p, Clostridium perfingens; B_g,Bacteroides eggerthii; 
B_p, Blautia producta; E_l, Eggerthella lenta; AG, Acylated Ghrelin; Dmn, dementia; lv1, latent variable1; lv2, latent variable2; AGE, Age of 
Study Participants. (B) Comparison of the latent variable values between study groups obtained for each parameter of the structural 
equation model defined in Figure 4A. Latent variable values for (1) lv1 and (2) lv2. 
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increased in dementia and with AG >1, species richness 

was found to be decreased, implying underlying  

leaky gut. Previous studies reported AG as a potential 

biomarker for neurodegenerative diseases. In our  

study, the total number of species was significantly 

higher in patients with AG <1 ng/ml compared to 

patients with AG >1 ng/ml in the dementia subgroup, 

another indicator of increased AG with dysbiosis;  

this implicating AG’s potential role in both ends of the 

gut-brain axis. 

 

We found that Prevotella copri and Eubacterium biforme 

had reduced frequency and abundances in dementia, 

conforming to previous findings of a decrease in both 

these microbes in neurodegenerative diseases [13]. 

Further, our Mantel correlation analysis showed that 

Prevotella copri was significantly associated with 

AG/UAG in controls. Prevotella copri is an SCFA-

producing bacteria that helps maintain an intact mucosal 

barrier at the gut lining, contributing to its anti-

inflammatory role. Prevotella copri, infact alleviates the 

oxidative stress induced neurological deficits that might 

be involved with dementia pathogenesis [14]. Our 

results show an overall incidence of 100% and an 

abundance of 33% of Prevotella copri in all the healthy 

controls, implying it may be protective against dementia 

or the predominant microbe of a healthy Indian gut. 

The beta diversity was markedly different between the 

dementia and the control group. Fecalibacterium 
prausnitzii, Prevotella copri, Eubacterium biforme, and 

Lactobacillus ruminus were responsible for the 

differences in beta diversity. Fecalibacterium prausnitzii, 
a contributing species to the differences in beta 

diversity, correlated with MoCA scores in both Mantel 

and linear regression correlation analysis, aligning with 

a previous study [15]. Fecalibacterium prauznitzii is 

implicated in reducing the intestinal permeability  

by increased expression of tight junction proteins, 

decreased release of serotonin and tissue cytokines in 

chronic low-grade inflammations, which is relevant  

to leaky gut in the background of dementia [16]. 

Moreover, Fecalibacterium prausnitzii was found to 

have higher abundance and incidence in controls, 

suggesting it has a neuroprotective property owing to  

its anti-inflammatory role [17]. 

 

The species co-occurrence network showed that 

specific species interact more by dominating distinct 

communities in controls and dementia, suggesting  

an altered community structure. Prevotella copri, 
Collinsella aerofaciens, and Clostridium perfringens 

had a higher influence within the control network of 

which Prevotella copri is present in all the control 
participants and has an enhanced centrality in the 

control network, complementing the abundance data 

where it had 100% abundance in the control group. 

Our results show that in controls, Clostridium 
perfringens is positively associated with AG, which is 

known to cause acute gastrointestinal infection with 

ranging severity of diarrhoea. This bacterium has found 

its place in regulating the inflammatory genes in the 

gut-brain axis [18]. 

 

The species showing increased centrality in the 

dementia network are Bifidobacterium adolescentis, 
Blautia producta, Eggerthella lenta, and Eubacterium 

biforme. Bifidobacterium adolescentis has been shown 

to increase the production of GABA, an inhibitory 

neurotransmitter [19]. GABAergic dysfunction has been 

associated with memory loss in Alzheimer’s dementia 

[20]. Hence, the enhanced centrality of these microbes 

in dementia may imply a pathogenic role. Eggerthella 

lenta showed an enhanced centrality in the dementia 

network and significantly contributed to the decision on 

the neural network model. 

 

Out of the 61 features used in model training,14 bacteria 

were found to be in the features that contribute to 100% 

of model decisions. Our study found Akkermansia 

mucinphilia contribution almost equivalent to MoCA 

where the latter is an established dementia scoring 

scale. 

 

Further, to identify whether these bacteria could be 

discriminatory markers between dementia patients  

and healthy subjects, we further conducted a mantel 

correlation analysis to test these bacteria’s correlation 

with clinical parameters. Among the bacteria that 

showed significant correlation, Blautia obeum correlated 

positively to MMSE in the dementia group. Moreover, 

it also had an AUC of 0.86 in our ROC curve analysis 

for classifying dementia. Belonging to the same Blautia 

genera, Blautia producta showed an enhanced centrality 

in the dementia network and was among the species 

contributing to the neural network model decision. A 

decrease in Blautia obeum has been associated with 

neurological disorders, and dysbiosis in the Blautia 

genera has been associated with cognitive decline  

[21, 22]. These studies, along with our results, show 

that Blautia obeum and Blautia producta are likely to  

be associated with the development of dementia. 
 

The coefficients associated with each latent variable 

(lv1 and lv2) to dementia were of opposite signs, 

further asserting the validity of our separation into 

groups based on impact on dementia. lv2 values 

differed significantly between controls and dementia 

patients, implying the use of lv2 as a prospective 

biomarker in diagnosing dementia. Further, Blautia 
producta, Eggethella lenta, and Bacteroides eggerthii 

are likely to be closely associated with the pathogenesis 

of dementia. 
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This interplay of microbiome and ghrelin is displayed 

with the significantly different values of lv2 as it 

utilizes both AG and species indices for its evaluation. 

The cross-sectional nature of the study limits the scope 

to understand the casual relationships. 

 

Although a smaller sample size limited the study, 

overall, it provides evidence regarding the shift in 

microbial diversity as dementia progresses. Considering 

the low sample size, it is important to acknowledge  

that overfitting to the data may be a possible factor 

contributing to the network’s 100% accuracy in 

classifying data. The factors contributing to model 

accuracy still provide important insight into influential 

species in the dysbiosis seen in dementia and must  

be studied in future longitudinal studies. By including 

intestinal permeability markers, neuroinflammatory 

markers, and advanced brain imaging investigations,  

we could have improved our understanding of the  

role of altering gut microbiome and its association  

with increased AG in the pathogenesis of dementia. 

This study also provides a basis and potentially useful 

biomarkers which can be further explored in longitudinal 

studies to provide insight on the causative, rather than 

associative nature of the described bacteria. 

 

METHODS 
 

Study design and participant description 
 

This cross-sectional observational study included 

participants aged ≥60 years. Trauma, stroke, and 

malignancy-induced dementia subjects were excluded 

from the study. A total of 40 clinically diagnosed 

dementia patients and 40 age, gender, and geography-

matched controls were recruited from the Neurology 

OPD, All India Institute of Medical Sciences, 

Bhubaneswar, Odisha, India. Dementia assessment  

was done using clinical scores such as MMSE  

(Mini-Mental State Examination), MoCA (Montreal 

Cognitive Assessment), GADL (General Activities of 

Daily Living Scale), and HADS (Hospital Anxiety and 

Depression Scale). The flow chart of the study design is 

shown in Figure 5. Demographic parameters like age, 

sex, education, alcohol and smoking history and clinical 

parameters like MMSE, MoCA, GADL, HADS, AG, 

UAG, AG/UAG, AAGR, and insulin were compared in 

Table 1. n referred to sample size. Ethics approval was 

obtained from the Institutional Ethics Committee (IEC 

Ref #: IEC/AIIMS BBSR/PG Thesis/2020-21/107), 

AIIMS Bhubaneswar. Written informed consent was 

obtained from all the study participants, and all research 

was performed following the Declaration of Helsinki. 

 

Sample size 

 

A sample size of 40 was calculated in each group to get 

the power of the study to 80% with an effect size of 

0.631 based on the mean and pooled SD values of AG 

from earlier findings [5]. Nine participants from each 

group were selected for microbiome analysis. 

 

Serum sample collection 

 

After obtaining informed written consent, a 5 ml  

venous blood sample was collected from all the study

 

 
 

Figure 5. Flow diagram of the study. 
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participants after an overnight fast of 8–10 hrs. This 

sample was centrifuged (Labline brushless centrifuge) 

for serum separation, and serum was aliquoted and 

stored at −20°C until further analysis. AG and UAG 

were estimated per the manufacturer’s instructions using 

the Human AG ELISA kit and Human UAG ELISA 

kit, respectively (Bioassay Technology Laboratory PVT 

Ltd., Zhejiang, China). Insulin was measured using a 

Human Insulin ELISA kit (Biogenix INC. PVT. Ltd, 

Lucknow, India) per the manufacturer’s instructions. 

Student t-test was used for pairwise comparison of 

clinical scores, Ghrelin levels, AG/UAG ratio, and age-

adjusted ghrelin ratio (AAGR) between dementia and 

controls. AAGR = 6+ (log10 (AG/UAG))-(Age/10). 

 

Fecal sample collection, DNA isolation, and 

sequencing 

 

Ten grams of fecal samples were collected from study 

participants, and 0.2 g of stool was used to isolate  

DNA with a modified DNeasy Powerlyzer PowerSoil 

kit (Cat No: 12855-100, Qiagen, Qiagen GmbH, 

Germany). DNA concentration was assessed with a 

Qubit 4.0 fluorometer (Thermo Fisher, Singapore). 

Twenty-five nanograms of DNA were then utilized to 

amplify the 16S rRNA hypervariable V3-V4 region 

using Illumina MiSeq [23]. All samples that passed  

the QC threshold (Q20 >95%) were used for further 

analysis. 

 

Raw reads processing and microbiome analysis 

 

Raw reads were decontaminated by adapter and 

barcode removal using TrimGalore v0.6.10 [24].  

Low-quality reads were trimmed using Fastp [25]. 

Taxonomic profiling was performed using Kraken2 

[26], aligning it into the GREENGENES v.13.8-99 

database. The reads were clustered into OTUs 

(Operational Taxonomic Units) with a similarity 

threshold of 97%. For microbiome analysis, we had  

set a filtration criterion for making the species OTU 

table where a total count of more than 10 was 

considered. The relative abundance of species and  

the relative abundance vs. incidence of the top 15 

abundant species was calculated, where incidence is 

taken as the presence of species in respective groups’ 

samples when abundance is >1%. 

 

Diversity analysis 

 

Alpha diversity was assessed for control and dementia 

groups and subgroups based on AG concentration  

(AG >1 ng/ml and AG <1 ng/ml). In Alpha indices 
species richness, shannon diversity, simpson diversity, 

pielou’s evenness was measured, A Student t-test was 

used to compare alpha indices between the control and 

dementia groups. At the same time, beta diversity was 

estimated using the Bray-Curtis dissimilarity index, 

plotted on PCoA (Principal coordinate analysis) 

ordination, followed by a PERMANOVA test used for 

comparison in beta diversity using the Adonis function. 

Both alpha and beta diversity were estimated using 

vegan package [27]. SIMPER test was used to identify 

the species that distinguished groups based on the Bray-

Curtis dissimilarity in beta diversity. A natural log-

transformed F/B ratio (Firmicutes to Bacteroidetes)  

was calculated, and a t-test was used for statistical 

comparison between control and dementia. The ggpubr 

package was used for statistical analyses [28]. Linear 

regression model was used to find the interaction 

between species and clinical parameters in the control 

and dementia groups. All the statistical analysis was 

performed using R. A p-value < 0.05 is considered 

statistically significant. 

 

Neural network 

 

A multi-layered perceptron neural network (MLPNN) 

was used to predict diseased conditions (Dementia) 

from controls. Normalization of compositional data 

(scale/centre) was done on all samples with total 

abundance across all samples greater than 10. Disease 

condition was classified into binary numbers with 

controls, and dementia represented as 0 and 1, 

respectively. A validation and test dataset of controls 

and diseased patients were separated after shuffling  

to prevent bias and overfitting. Hyperparameters  

were optimized using ADAM optimizer. The model  

was created using TensorFlow on Python [29]. The 

contribution of features to accuracy on the test dataset 

was assessed using the SHAP package on Python.  

Test accuracy and contributing features were calculated 

[30]. 

 

Co-occurrence network analysis 

 

Networks were created separately for the patients and 

control group using the MicNet Toolbox [31]. The 

toolbox uses the SparCC method of creating correlation 

matrices for compositional data [32]. Iterative SparCC 

was done with 20 iterations and log transformation of 

data. Communities of bacteria were created using the 

Louvain method. Representative high-degree bacteria in 

both networks were labeled. The degree centralities of 

each node in patients and controls were normalized.  

The normalized values of the patients’ group were 

subtracted from the control group and plotted. 

 

Mantel test 

 

The Mantel correlation test calculated the potential 

species in beta diversity interaction with clinical 
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parameters. This test was used to determine the 

interaction between two distance matrices. Bray-Curtis 

distance matrix was used for species, while Euclidean 

distance metric was used for clinical parameters. 

Differential features (Species) in neural network model 

decisions have been taken for correlation with clinical 

parameters using the Mantel Test. Mantel test calculation 

was performed using the R package linkET [33]. 

 
ROC curve 

 

Differential features (Species) in neural network model 

decision and ghrelin levels were used to classify 

dementia at different cut-off values in sensitivity vs.  

1-specificity receiver operating characteristic curve 

(ROC) was generated using SPSS v.25.0 software [34]. 

The cut-offs were set at >0.65 for clinical data and 

>0.70 for microbes. 

 
Structural equation model 

 

We constructed a structural equation model (SEM) 

using normalized (scaled/centered) species abundance, 

AG, and age data for dementia and control groups. The 

SEM was constructed using the CFA function of the 

lavaan package [35]. The observed variable representing 

dementia in the structural equation was set as a 

categorical variable. To construct the SEM, we assumed 

the presence of two latent variables, one with a positive 

effect on dementia and the other with a negative impact, 

explaining the binary categorical variables representing 

dementia. Based on previous analyses, we categorized 

species into two groups, one with a positive effect and 

the other with a negative impact, based on their 

abundance and influence. Each group was assigned to 

one latent variable as an indicator. We removed species 

with no effect and non-significant indicators for the 

latent variable. The final model was constructed using 

the remaining species, age, and AG as observed 

variables. The overall goodness of fit, including the chi-

square (χ2) statistic, degrees of freedom (df), whole 

model p-value, the goodness of fit index (GFI), and  

the comparative fit index (CFI), was calculated. The 

lavPredict function was used to calculate both latent 

variable values (lv1 = latent variable 1 and lv2 = latent 

variable 2) for each sample. The latent variable values 

were compared between groups using the Wilcoxon 

rank-sum test with the ggpubr package. The semPlot 

package was used to visualize the SEM model [36]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. (A) Alpha diversity comparison between dementia and control group. (B) Log transformed Firmicutes/Bacteroidetes 

ratio comparison between dementia and control group. 

 

 

 
 

Supplementary Figure 2. Regression between species and clinical parameters. (A) Dementia Group, (B) Control Group. Red lines 

show a negative association, and green lines show a positive association. Thicker lines show r2 >0.6. 
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Supplementary Figure 3. Mantel test between influential species in beta diversity and clinical scores and ghrelin levels. 
(A) Dementia Group. (B) Control Group. Brown color lines show a significant association (p < 0.05). 

 

 

 
 

Supplementary Figure 4. Mantel test between important species in neural network and clinical scores and ghrelin levels. 
(A) Dementia group. (B) Control Group. Brown color lines show a highly significant association (p < 0.01), and dark cyan color lines show a 
significant association (p < 0.05). 

 

 


