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INTRODUCTION 
 

The broad interest in ELOVL2 (Elongation of Very Long 

Chain Fatty Acids Protein 2) in the field of aging research 

is highlighted by more than a hundred scholarly articles 

discussing its link with epigenetic aging. This extensive 

body of research confirms its critical role and widespread 

recognition within the scientific community. Consistently 

heralded as a potent epigenetic biomarker, ELOVL2 has 

proven indispensable in elucidating the biological 
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ABSTRACT 
 

This study introduces EpiAgePublic, a new method to estimate biological age using only three specific sites on the 
gene ELOVL2, known for its connection to aging. Unlike traditional methods that require complex and extensive 
data, our model uses a simpler approach that is well-suited for next-generation sequencing technology, which is a 
more advanced method of analyzing DNA methylation. This new model overcomes some of the common 
challenges found in older methods, such as errors due to sample quality and processing variations. 
We tested EpiAgePublic with a large and varied group of over 4,600 people to ensure its accuracy. It performed 
on par with, and sometimes better than, more complicated models that use much more data for age 
estimation. We examined its effectiveness in understanding how factors like HIV infection and stress affect 
aging, confirming its usefulness in real-world clinical settings. 
Our results prove that our simple yet effective model, EpiAgePublic, can capture the subtle signs of aging with 
high accuracy. We also used this model in a study involving patients with Alzheimer’s Disease, demonstrating 
the practical benefits of next-generation sequencing in making precise age-related assessments. 
This study lays the groundwork for future research on aging mechanisms and assessing how different 
interventions might impact the aging process using this clock. 
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processes associated with aging [1, 2]. ELOVL2 has been 

integrated into epigenetic clocks to accurately determine 

age-related differences across various disease groups, 

highlighting its utility in age prediction [3]. Research 

indicates that ELOVL2 affects the aging process through 

its role in regulating lipid metabolism, with its epigenetic 

alterations closely linked to age prediction capabilities (Li 

et al., 2022). Additionally, the CpG sites within 

ELOVL2’s regulatory regions play a crucial role in age 

prediction models, underscoring the gene’s central 

importance in epigenetic clocks [4]. Since it is well 

known that there is a close correlation in methylation 

between juxtaposed CpG positions [5–8], we reasoned 

that including additional CpGs in the region could 

increase the accuracy of the analysis. Therefore, we 

designed the primers to cover not only the three CpGs 

discussed (cg16867657, cg21572722, and cg24724428) 

but also to capture ten additional CpGs within the same 

region. 

 

Further research has shown that DNA methylation 

patterns of ELOVL2 are associated with age-related 

macular degeneration, establishing it as a reliable 

biomarker for aging in ocular tissues (Saptarshi et al., 

2021). In addition, ELOVL2 methylation has been 

utilized in forensic science for age estimation, which 

underscores its critical value in age prediction 

applications (Brenna & Kothapalli, 2021).  

 

In summary, ELOVL2 is a fundamental gene in the 

development of epigenetic clocks and age prediction 

models. Its methylation patterns serve as a robust 

indicator of biological age, demonstrating significant 

utility across various research and clinical contexts. 

 

Nevertheless, traditional epigenetic clocks primarily 

utilize Illumina Infinium BeadChips, which analyze 

hundreds of thousands of CpG sites. However, this 

approach is prone to technical variances from sample 

preparation, probe hybridization, chemistry, and batch 

effects, which often compromise data reliability [9]. 

Despite efforts to mitigate these issues through 

normalization and batch correction, significant 

challenges persist, particularly affecting the clocks' 

utility in both basic and translational research, including 

short-term longitudinal studies like clinical trials. 

 

Next-generation sequencing (NGS) significantly 

enhances the precision and scope of epigenetic studies 

by addressing the limitations of traditional array 

technologies, such as technical noise and reliance on 

predefined sequences. With its high-throughput 

capability, base-resolution accuracy, and broader 

genomic coverage, NGS not only allows for detailed 

examination of methylation patterns across diverse 

genomic contexts but also facilitates the discovery of 

novel methylation sites. This comprehensive approach 

allows for more accurate identification of differentially 

methylated regions, providing a robust alternative that 

surpasses traditional methods in both detail and 

scalability [10]. The accuracy of DNA methylation 

determination of bisulfite-converted DNA by next-

generation sequencing is dependent on the number of 

reads to achieve statistical power because of the 

heterogeneity of methylation profiles even in the same 

tissue. Therefore, reducing the number of regions that 

are required to be sequenced for a given biomarker 

would increase the depth of sequencing and, thus, the 

power for accurate determination of its DNA 

methylation, especially when samples are multiplexed, 

to increase the cost-effectiveness of the biomarker. We, 

therefore, examined in this study whether we need the 

hundreds or thousands of regions that are used in all 

current epigenetic clocks to develop an accurate and 

cost-effective epigenetic clock.  

 

Most current clocks use blood as a biological sample. 

Saliva has become a valuable resource for epigenetic age 

estimation due to its non-invasive collection, ease of 

handling, and rich DNA content from both epithelial and 

white blood cells. This mixed cellular composition 

captures systemic biological signals, reflecting both oral 

health and broader immune responses, making it suitable 

for large-scale studies and clinical settings where less 

invasive methods enhance participant compliance. 

Additionally, saliva mirrors the methylome of blood and 

other tissues, which supports its use in epigenetic studies 

exploring the effects of environmental exposures, 

lifestyle, and disease states on aging [11]. Research shows 

saliva's relevance in studying various health conditions, 

such as its association with Parkinson's disease and certain 

carcinomas through differential methylation patterns [12, 

13]. Additionally, saliva has been utilized to evaluate 

epigenetic age acceleration, with adjustments made for 

cell type proportions in the samples [14]. It has also been 

instrumental in developmental studies linking birth weight 

with DNA methylation [15] and evaluating childhood 

BMI and social disparities through epigenetic markers 

[16]. 

 

This utility highlights saliva's potential to advance our 

understanding of biological aging and age-related 

diseases. In this study, we assess the performance of 

various biological clocks in saliva versus blood. 

 

This study introduces EpiAgePublic, a new epigenetic 

aging model that leverages just three strategically selected 

CpG sites within the ELOVL2 gene, a key marker strongly 

associated with aging. Inspired by minimal-marker 

models like the “Epigenetic age-predictor for mice based 

on three CpG sites [17], EpiAgePublic is optimized for 

next-generation sequencing technologies. Unlike 
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traditional array-based clocks that rely on hundreds to 

thousands of CpG sites, this model demonstrates the 

effectiveness of using fewer markers to accurately predict 

age, thus addressing common limitations of older 

methods. This method not only mitigates issues related to 

DNA quality and batch effects but also enhances the 

model’s specificity and clinical applicability. 

 

Validated against a comprehensive dataset comprising 

4,625 individuals, EpiAgePublic has shown predictive 

accuracies on par with, or even exceeding, those of 

well-established epigenetic clocks such as DNAmAge 

(Horvath’s Clock) and DNAmPhenoAge. The model’s 

performance was rigorously evaluated in various 

clinical contexts, including its correlation with HIV 

infection and stress levels, underscoring its utility 

alongside more traditional, complex clocks. 

 

Our results affirm that EpiAgePublic, despite its 

simplicity in focusing on only three CpG sites, 

effectively captures the biological intricacies of aging. 

This demonstrates its viability as a powerful tool for 

aging research and clinical application. We also 

determined that the clock performs well on saliva 

samples. We next developed a targeted amplification-

next-generation sequencing assay that captures 13 CpG 

sites around the ELOVL2 gene and used a proprietary 

model on DNA methylation data from the ELOVL2 

region. The model was further employed in a clinical 

study on Alzheimer’s Disease, where next-generation 

sequencing was utilized to assess epigenetic age. This 

application not only highlighted EpiAgePublic’s 

precision but also illustrated the significant advantages 

of next-generation sequencing in enhancing the 

accuracy of epigenetic age evaluations. By using saliva 

as the biological sample, we increase the feasibility of 

wide usage of this clock. 

 

MATERIALS AND METHODS 
 

Estimation of DNA methylation age 

 
The Horvath’s DNAmAge, Hannum’s 

DNAmAgeHannum, DNAmPhenoAge, 

DNAmAgeSkinBloodClock, and DNA GrimAge (both 

versions 1 and 2) methylation ages were determined  

using the online DNA Methylation Age Calculator, 

provided by the Clock Foundation: https://dnamage. 

clockfoundation.org/. 

 

EpiAge for next-generation sequencing data from 

individuals in the Alzheimer’s Disease study was 

obtained through a commercial service provided by 

HKG epiTherapeutics. This service utilizes a 

proprietary model based on DNA methylation data 

within the same ELOVL2 region discussed in this paper, 

specifically designed for next-generation sequencing 

applications. The analysis was performed in triplicate. 

 

Development and application of the EpiAgePublic 

model to investigate biological aging dynamics 

 

In this study, we developed the EpiAgePublic model to 

explore the impact of various clinical outcomes on 

biological aging. Linear regression was employed to 

assign weights to three targeted CpG sites: cg16867657, 

cg21572722, and cg24724428. We selected these three 

CpG sites from a set of 13 CpGs used in our previous 

study [18] due to their presence on standard DNA 

methylation microarray platforms. This enabled us to 

validate the model across a wide range of publicly 

available datasets derived from these platforms. The 

model calculates beta values using the formula:  

 

( .

. - . - . .

cg16867657 cg 21572722

cg 24724428
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24 45 ( 30 44)) 42 91

 



+

+ 
 

 

Model training 

The model was trained using a comprehensive DNA 

methylation dataset aggregated from four public 

databases: GSE55763, GSE157131, GSE40279, and 

GSE30870, as detailed in Table 1. This training 

dataset, derived from Illumina 450K and Epic array 

platforms, encompasses a demographic range of 

individuals aged 0 to 103 years, including Caucasian-

European, Hispanic Mexican, and African American 

ethnic groups. The sex distribution was balanced, 

comprising 2506 males, 2079 females, and 40 

individuals with unspecified gender. 

 

The selection of this diverse dataset was critical for 

developing an inclusive and representative 

EpiAgePublic model. The model achieved an R-

squared value of 0.7512 in the training cohort, 

indicating its robust ability to accurately reflect the 

relationship between DNA methylation patterns and 

biological age.  

 

Model validation 

 

After development, the EpiAgePublic model was 

validated on independent datasets, which included 

several additional public cohorts listed in Table 1. 

These validation datasets were not part of the training 

cohort and were used to test the generalizability and 

robustness of the model across different populations 

and clinical contexts. The validation results showed 

that the model maintained high accuracy and 

robustness, supporting its effectiveness as a reliable 

indicator of biological aging across diverse 

populations. 

https://dnamage.clockfoundation.org/
https://dnamage.clockfoundation.org/
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Table 1. Comprehensive dataset summary for epigenetic age model development and clinical studies. 

GSE ID 
Sample tissue 

type 
Total samples Age range Cohort description 

Methylation 

platform 
Dataset application Purpose 

GSE55763 Blood 2711 23.7 - 75 General Population 450K epiAgePublic model Training 

GSE157131 Blood 1218 26.41 - 94.74 General Population 450K/Epic epiAgePublic model Training 

GSE40279 Blood 656 31 - 68 General Population 450K epiAgePublic model Training 

GSE30870 Blood 40 30 - 48 General Population 450K epiAgePublic model Training 

GSE78874 Saliva 258 36-88 General Population 450K epiAgePublic validation Validation 

GSE150643 Saliva 240 9.19-15.85 General Population 450K epiAgePublic validation Validation 

GSE92767 Saliva 54 18-73 General Population 450K epiAgePublic validation Validation 

GSE99029 Saliva 57 21-91 General Population 450K epiAgePublic validation Validation 

GSE67751 Blood 92 24 - 68 Healthy and HIV Patients 450K HIV Validation 

GSE117859 Blood 608 25 - 75 HIV Patients 450K HIV Validation 

GSE53840 Blood 120 31 - 68 HIV Patients 450K HIV Validation 

GSE185391 Blood 86 30 - 48 HIV Patients 450K HIV treatment Validation 

GSE167202 Blood 525 17-96 Healthy, COVID-19 and other 

infections 

Epic COVID-19 Validation 

GSE168739 Blood 407 19-61 COVID-19 patients Epic COVID-19 Validation 

GSE72680 Blood 422 18-77 Trauma and Psychiatric 

Symptoms in African 

Americans 

450K Stress Validation 

GSE128235  Blood 533 18-87 Depression 450K Controls, Depression Validation 

GSE125105 Blood 847 17-87 Depression 450K Controls, Depression Validation 

GSE144858 Blood 300 52-90 Alzheimer’s 450K Controls, MCI, Alzheimer’s Validation 

 

Epigenetic age acceleration (EAA) 

 

Epigenetic Age Acceleration (EAA) measures 

biological aging dynamics. It is computed as the 

difference between DNA methylation age and 

chronological age. A positive EAA value indicates that 

an individual’s biological age surpasses their 

chronological age, suggesting accelerated aging. This 

metric is used to compare aging rates across different 

clinical conditions by analyzing the differences in EAA 

between a specific condition and a control group. 

 

Data source 

The DNA methylation data used in this study were 

derived from publicly available datasets and newly 

collected original data. The Down syndrome and 

Alzheimer’s Disease cohorts represent the original data 

collected specifically for this study. Details regarding 

the sample collection, processing, and DNA extraction 

for these cohorts are provided below. 

 

Demographic characteristics of the study sample 

cohorts Down syndrome study 

The study protocol was approved by the Institutional 

Review Board (IRB) of the Oasi Research Institute—

IRCCS, Troina, Italy (Protocol Number: 

2016/1.0/122/CE-IRCCS-OASI). Participants or their 

legal representatives gave written informed consent, as 

approved by the Ethics Committee of the Oasi Research 

Institute-IRCCS. This study included 22 control 

participants (9 males and 13 females) and 22 individuals 

with Down syndrome (9 males and 13 females). The 

mean age for the control group was 40.95 years (SD = 

9.276), and for the Down syndrome group, it was 40.65 

years (SD = 8.969). An unpaired parametric t-test 

showed no significant age difference between the two 

groups (p-value = 0.9146). 

 

Alzheimer’s disease study 

This research was approved by the IRB of Oasi Research 

Institute—IRCCS, Troina, Italy, under Protocol Number: 

2019/03/18/CE-IRCCS-OASI/18. Participants or their 

legal representatives gave written informed consent, as 

approved by the Ethics Committee of the Oasi Research 

Institute-IRCCSS. The study involved 55 participants, 

with a demographic composition of 10 males and 17 

females in the control group and 7 males and 21 females 

in the Alzheimer’s disease (AD) group. The mean age 

was 72.25 years (SD = 9.26) for the controls and 73.01 

years (SD = 8.91) for the AD group. Due to technical 

difficulties, methylation analysis was performed on 54 

participants, excluding one from the original cohort. An 

unpaired parametric t-test revealed that the age difference 

between the two groups was not statistically significant 

(p-value = 0.0585), although this value approaches the 

conventional threshold for significance. 

 

Plasma sample processing and white blood cell 

isolation 

 

Plasma samples were collected according to standard 

procedures. Briefly, fasting venous blood was collected in 
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lavender EDTA-K2 BD vacutainer tubes and centrifuged 

at 1900 rpm for 10 minutes for the separation of the 

plasma component from the cellular constituents. After a 

second centrifugation (3900 rpm for 10 min) to purify 

from biological debris, plasma samples were separated in 

aliquots and stored at –80° C until use. The blood was 

used for peripheral blood mononuclear cells (PBMCs) 

isolation by using the Lympholyte®-H density gradient 

separation medium (Cedarlane, Burlington, NC, USA) 

according to the manufacturer’s instructions, with slight 

modifications. Briefly, the blood was diluted with an 

equal volume of 1X PBS, mixed gently and added to one 

part of Lympholyte®-H. After a centrifugation step (400 

rcf for 30 min), a well-defined lymphocyte layer appeared 

at the interface, which was removed and transferred by 

using a serological pipette to a new sterile centrifuge tube. 

After a washing step by using 5 ml of 1X Red Blood Cell 

Lysis Buffer (Abcam, ab204733) for optimal lysis of 

erythrocytes in a single-cell suspension and after two 

additional washing steps (1X sterile PBS, 1600 rpm for 10 

min), the isolated PBMCs fraction was counted by using 

LUNA-II Automated Cell Counter (Logos Biosystems). 

 

DNA extraction from isolated lymphocytes 

 

DNA was isolated from lymphocytes using the AllPrep 

DNA/RNA Mini Kit (Qiagen, Cat: 80204) according to 

the manufacturer’s protocol. To enhance DNA 

concentration, it was eluted twice with 50 μl of Buffer 

EB following a 1-minute incubation at room 

temperature. The amount and purity of the extracted 

DNA were assessed using spectrophotometry and by 

measuring the A260/280 ratio, which ranged between 

1.9 and 2.1, indicating high-quality DNA suitable for 

subsequent analyses. 

 

Targeted DNA methylation sequencing with illumina 

NGS 

 

DNA was bisulfite-converted using the EZ-96 DNA 

Methylation MagPrep kit (D5041, Zymo Research), 

followed by two stages of polymerase chain reaction 

(PCR). In the first round of PCR, primers, including an 

anchoring sequence targeted at a specific region of the 

ELOVL2 gene, were used (Bio-Rad C1000 Touch 

Thermal Cycler, Bio-Rad Laboratories, CA, USA). 

Primer sequences are available upon request. Five 

microliters from the first PCR reaction were then used in a 

second round of PCR to amplify and barcode the samples 

using indexing primers. The PCR products were pooled, 

purified twice using AMPure XP Beads (Beckman 

Coulter Life Sciences, CA, USA), and quantified via real-

time PCR (NEBNext® Library Quant Kit for Illumina, 

New England Biolabs, MA, USA). The barcoded libraries 

were sequenced on the Illumina platform using a MiSeq 

Reagent Nano Kit V2 with a 250 × 2 paired-end 

sequencing protocol (Illumina, CA, USA). 

 

For data processing, raw paired-end reads were trimmed 

of sequencing adapters and low-quality sequences using 

Trim-galore (parameters: trim_galore –illumina –paired –

fastqc; available at https://zenodo.org/record/ 

5127899#.Y7RxfOzMJqs). Cleaned data were aligned to 

the ELOVL2 reference genome using Bismark [19], and 

reads deduplicated using UMIs in the forward primers to 

minimize PCR amplification bias (deduplicate_bismark --

paired --barcode –bam). Methylation levels at each CpG 

site were determined using the Bismark methylation 

extractor (bismark_methylation_extractor --p --bedGraph 

--counts --scaffolds --no_overlap), with a minimum 

threshold of 100 reads per gene for inclusion in the 

analysis. 

 

DNA methylation data processing and epigenetic age 

calculation 

 

IDAT files were processed using the champ.load function 

from the ChAMP R package [20, 21]. Initial beta values 

were computed directly from the loaded data to represent 

methylation levels before normalization. 

 

Following initial data processing, we applied BMIQ 

(Beta Mixture Quantile dilation) normalization to adjust 

the beta values. This normalization technique 

specifically corrects for the technical variation between 

type I and type II probes by aligning the distribution of 

type II probe beta values to match those of type I 

probes. This step ensures that the methylation data are 

more statistically reliable and comparable across 

different probe types [22]. Epigenetic age (EpiAge) was 

calculated for each individual both before and after 

normalization using the EpiAgePublic algorithm. 

 

Statistical analysis 

 

For multilinear regression analysis, we utilized Python’s 

statsmodels library to fit an Ordinary Least Squares 

(OLS) model. This model was employed to examine the 

relationship between epigenetic age and several 

predictors, including cell composition and sex. Our 

analysis encompassed data preparation, model fitting, 

and the extraction of key statistics, such as coefficients 

and p-values.  

 

In addition to multilinear regression, our study also 

involved other statistical techniques to address specific 

research questions: 

 

T-tests and Mann-Whitney U tests were used to 

compare epigenetic ages across different conditions and 

https://zenodo.org/record/5127899#.Y7RxfOzMJqs
https://zenodo.org/record/5127899#.Y7RxfOzMJqs
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cohorts, ensuring that we appropriately addressed the 

distribution characteristics of the data. 

 

Receiver Operating Characteristic (ROC) analysis was 

conducted to assess the discriminatory power of various 

epigenetic clocks in distinguishing between different 

clinical conditions. 

 

ANOVA was utilized to analyze the impact of clinical 

interventions on epigenetic age across different 

treatment groups. Statistical tests applied in each figure 

are described in the figure legend. 

 

RESULTS 
 

Development of the EpiAgePublic model across 

Blood and saliva samples 

 

The ELOVL2 gene has been consistently linked to 

chronological age across various studies [2]. Analysis of 

20 public datasets derived from whole blood using the 

Illumina BeadChip technology identified ELOVL2 and 

FHL2 as showing the highest correlation between age 

and DNA methylation [23]. 

 

Our research focused on three CpG sites within the 

ELOVL2 gene: cg16867657, cg21572722, and 

cg24724428. Notably, cg16867657 has been recognized 

as a key age-associated marker with a robust pattern of 

age-related methylation changes [24]. This was 

supported by a study examining 421 individuals, which 

found cg16867657 showing a strong positive correlation 

with age among 137993 sites (R = 0.957, P-value = 

1.20e-228) [25]. The proximity of cg21572722 and 

cg24724428 to cg16867657, coupled with their known 

associations with aging (Bell et al., 2012; Christiansen 

et al., 2016; Hao et al., 2021; Horvath & Raj, 2018; Li 

et al., 2022; Marioni et al., 2015), justified their 

inclusion in our EpiAgePublic model. The development 

of the EpiAgePublic model utilized data from four 

specific datasets: GSE55763, GSE157131, GSE40279, 

and GSE30870 (Table 1). The detailed methodology 

and analysis for model development are outlined in the 

Methods section of our study. 

 

Comparative analysis of epiAgePublic with 

established epigenetic clocks 

 

We conducted comparative analyses to evaluate the 

EpiAgePublic model’s performance relative to 

established epigenetic clocks. This analysis utilized the 

same datasets originally employed for the development 

of the EpiAgePublic model: GSE55763, GSE157131, 

GSE40279, and GSE30870, all derived from blood 

samples. This included comparisons of cg16867657, 

cg21572722, and cg24724428, as well as the 

EpiAgePublic model, against established epigenetic age 

models such as DNAmAge (Horvath’s Clock) [26], 

DNAmAgeHannum [27], DNAmPhenoAge [28], 

DNAmAgeSkinBloodClock [29], as well as DNA 

methylation GrimAge versions 1 (DNAGrimAge v1) 

[30] and 2 (DNAGrimAge v2) [31] (Figure 1A). 

 

The analysis revealed high correlation coefficients for 

all models. The EpiAgePublic model, which integrates 

the three CpG sites, exhibited a correlation of  

0.87, surpassing individual CpGs (cg16867657, 

cg21572722, and cg24724428) and closely following 

DNAmAgeSkinBloodClock, which scored the highest 

with 0.93. Other clocks displayed slightly lower 

correlations, with DNAmAgeHannum showing the 

lowest at 0.65 (Figure 1A). 

 

Assessing the impact of cell composition and sex on 

epigenetic age predictions 

 

Our next objective was to determine whether epigenetic 

age predictions could be affected by blood cell 

composition and the individual’s sex. To precisely 

assess the potential confounding effects and correct for 

variations related to blood cell composition (CD8T 

cells, CD4T cells, NK cells, B cells, monocytes (Mono), 

and granulocytes (Gran)), which are inferred from DNA 

methylation patterns indicative of these cells’ presence 

[32], we executed multilinear regression analyses 

adding these confounders as covariates. This detailed 

examination focused individually on the cg16867657, 

cg21572722, and cg24724428 CpG sites within the 

ELOVL2 gene, as well as collectively within the  

context of the EpiAgePublic model, comparing  

these values against DNAmAge (Horvath’s  

Clock), DNAmAgeHannum, DNAmPhenoAge, 

DNAmAgeSkinBloodClock, DNAGrimAge v1, and 

DNAGrimAge v2. These analyses validated the 

significant and consistent predictive value of 

chronological age across all individual CpG sites and 

the EpiAge, even when these confounders are included 

in the regression (Supplementary Table 1).  

 

Intriguingly, a distinct feature of EpiAgePublic 

emerged during our analysis: both the individual CpG 

site assessments and the aggregated EpiAgePublic 

model demonstrated no significant correlation with 

sex, exhibiting a P-value of 0.182. This finding 

contrasts with other epigenetic clocks, where sex 

showed a significant influence with a P-value of less 

than 0.05. Specifically, the regression analysis for 

EpiAgePublic indicated a sex coefficient of 0.388 (std 

err: 0.291), which was not statistically significant 

(P>|t|: 0.182), diverging from the trends observed in 

other epigenetic clocks where the P-value for sex was 

effectively 0, signifying a highly statistically 
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significant correlation. This distinctive attribute of 

EpiAgePublic underscores its robustness by 

highlighting its ability to provide age predictions that 

are unbiased by sex differences. 

 

Validating epiAgePublic on saliva samples 

 

Following the development of the EpiAgePublic 

model, we aimed to validate its applicability to saliva, 

a noninvasive biological matrix different from blood. 

The rationale was based on the distinct cellular 

compositions of saliva, which differ significantly 

between children and adults in terms of epithelial and 

immune cells. 

 

Using datasets from GSE78874, GSE150643, GSE92767, 

and GSE99029, we processed samples from 609 healthy 

individuals ranging from 9 to 91 years, including 310 

males and 294 females from diverse ethnic backgrounds 

such as Hispanic, Caucasian, African, and Asian using 

Illumina 450K and Epic array platforms (Table 1).  

 

The comparative analysis of EpiAgePublic and other 

clocks demonstrated EpiAge’s strong predictive 

 

 
 

Figure 1. Comprehensive analysis of epigenetic aging across diverse datasets and demographics. (A) This figure illustrates the 

correlation between chronological age (y-axis) and measures of epigenetic age including EpiAge, DNAmAge, DNAmAgeHannum, 
DNAmPhenoAge, DNAmAgeSkinBloodClock, DNAGrimAge v1, and DNAGrimAge v2 (x-axis), as well as individual CpG sites cg16867657, 
cg21572722, and cg24724428. Data were aggregated from the datasets GSE55763, GSE157131, GSE40279, and GSE30870 (refer to Table 1), 
encompassing 4625 individuals with ages ranging from 0 to 103 years. The cohort exhibits a rich demographic diversity, including Caucasian-
European, Hispanic Mexican, and African American ethnicities, comprising 2506 males, 2079 females, and 40 individuals with unspecified gender. 
The correlations were assessed using the Pearson r correlation coefficient, denoted by ‘R’ on each plot, highlighting the linear relationship 
between chronological and epigenetic age across the datasets. All plots achieved a significant p-value of < 0.0001, indicating a strong and 
statistically significant correlation. Visualization includes a solid black line representing the mean correlation and flanking red lines depicting the 
95% confidence interval, illustrating the precision of the correlation estimates and the degree of agreement between chronological and 
epigenetic age measures across the studied population. (B) This figure presents the correlation between chronological age (y-axis) and various 
measures of epigenetic age (x-axis), including EpiAge, DNAmAge, DNAmAgeHannum, DNAmPhenoAge, DNAmAgeSkinBloodClock, DNAGrimAge 
v1, and DNAGrimAge v2, alongside individual CpG sites cg16867657, cg21572722, and cg24724428. The data are derived from saliva samples 
collected from 609 healthy individuals aged 9 to 91 years, detailed in datasets GSE78874, GSE150643, GSE92767, and GSE99029 (referenced in 
Table 1). The study population includes 310 males and 294 females from diverse ethnic backgrounds—Hispanic, Caucasian, African, and Asian. 
Correlations are quantified using the Pearson r coefficient, denoted by ‘R’ on each plot, signifying the linear relationship between the two age 
measures. All correlations are marked by a significance level of p < 0.0001. Visuals include a solid black line indicating the average correlation and 
red lines showing the 95% confidence interval, emphasizing the reliability and consistency of epigenetic age measures with chronological age 
across the cohorts. (C) This figure presents scatter plots comparing Epigenetic Age Acceleration (EAA) across various age groups. Each dot 
represents an individual’s EAA value, plotted against their chronological age group. The age groups are categorized as 0 years, 19-30, 31-40, 41-
50, 51-60, 61-70, and 71+ years. The vertical axis indicates the EAA, while the horizontal axis delineates the age groups. A horizontal line at zero 
on the plot marks the threshold between age acceleration and deceleration; points above this line indicate epigenetic age acceleration, while 
points below indicate deceleration. This visualization highlights trends and patterns in EAA across the lifespan, offering insights into how 
biological aging progresses relative to chronological aging across different stages of life. 
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relationship with chronological age, achieving  

a correlation coefficient of 0.93. 

DNAmAgeSkinBloodClock exhibited the highest 

correlation at 0.99 (Figure 1B). These findings validate 

the utility of EpiAgePublic for non-invasive biological 

age estimation across different tissues, including saliva, 

which has obvious advantages as far as accessibility and 

compliance over blood. 

 

Age-related epigenetic deceleration across the 

human lifespan 

 

Our comprehensive dataset encompassed a diverse 

range of 4,625 individuals, spanning the entire human 

lifespan from birth to 103 years. The study of 

Epigenetic Age Acceleration (EAA) traditionally 

focuses on its clinical significance, often in relation to 

the acceleration or deceleration of aging and its 

associated health impacts. Considering that age 

acceleration may be influenced by various factors such 

as lifestyle, stress, and socioeconomic conditions, which 

vary across different age groups, we categorized the 

dataset into specific age brackets: Newborns, Young 

Adults (19-30 years), Thirties (31-40 years), Forties 

(41-50 years), Fifties (51-60 years), Sixties (61-70 

years), and Seventies and Beyond (Figure 1C). 

 

To analyze aging acceleration/deceleration patterns within 

each category, we examined all the epigenetic clocks, 

consistently observing a trend of epigenetic age 

deceleration with increasing chronological age among the 

majority of participants (Figure 1C). Further exploring 

this phenomenon, we calculated the Pearson r correlation 

between chronological age and EAA for each clock, 

assessing the strength and direction of their relationships. 

 

The analysis revealed negative correlations across all 

clocks, indicating that the rate of epigenetic aging 

decreases as chronological age increases. Specifically, 

DNA GrimAge v1 and DNA GrimAge v2 displayed the 

most significant negative correlations with 

chronological age (r=-0.6389 and r=-0.6697, 

respectively), with tight 95% confidence intervals of -

0.6556 to -0.6215 and -0.6853 to -0.6535, respectively, 

underscoring a strong inverse relationship. Other clocks 

also showed significant negative correlations, as 

follows: DNAmAge r=-0.5943 (CI: -0.6126 to -0.5753), 

EpiAgePublic r=-0.4988 (CI: -0.5201 to -0.4768), 

DNAmAgeHannum r=-0.4424 (CI: -0.4653 to -0.4189), 

DNAmAgeSkinBloodClock r=-0.4420 (CI: -0.4649 to -

0.4185), and DNAmPhenoAge r=-0.3220 (CI: -0.3476 

to -0.2959). These highly significant Pearson r 

correlations (P<0.0001 for all clocks) confirm a 

consistent inverse relationship between chronological 

age and EAA, reinforced by a substantial sample size 

(N=4625 for each clock). 

These findings not only corroborate the anticipated 

pattern of biological aging but also highlight the 

effectiveness of EpiAgePublic, based on the single gene 

ELOVL2, compared to other clocks that incorporate 

hundreds or even thousands of CpG sites, as biomarkers 

for the aging process. The observed age-related trends 

across the lifespan provide insights into the complex 

interplay between biological and chronological aging. 

 

Comparing EpiAgePublic to other epigenetic clocks 

across cohorts in the context of HIV-related 

accelerated aging 

 

Early research has indicated a link between HIV and 

accelerated epigenetic aging, suggesting that HIV-

positive individuals may exhibit an advanced biological 

age [33]. Inspired by findings that demonstrated 

accelerated aging due to CMV infection using the 

EpiAge model based on Elovl2 regions in healthy older 

adults [18], we aimed to explore whether similar 

patterns could be observed with HIV. We examined the 

impact of HIV on epigenetic aging using four distinct 

cohorts: GSE53840, GSE67751, GSE117859, and 

GSE185391. Our objective was to assess whether the 

EpiAge model shows accelerated aging in HIV-positive 

individuals and to compare its performance with other 

established epigenetic clocks. 

 

We compared EpiAge alongside other  

epigenetic clocks, including DNAmAge (Horvath’s 

Clock), DNAmAgeHannum, DNAmPhenoAge, 

DNAmAgeSkinBloodClock, DNAGrimAge v1, and 

DNAGrimAge v2. Our analysis employed an unpaired 

parametric t-test, which passed the normality test, as 

most data points are normally distributed. Specifically, 

we compared HIV-positive individuals from the cohorts 

GSE53840, GSE67751, GSE117859, and GSE185391 

against HIV-negative controls from GSE67751. Within 

the GSE185391 cohort, our focus was on one-time point 

w0, marking the week immediately preceding the 

commencement of HIV treatment. 

 

Our comprehensive analysis across a spectrum of 

epigenetic clocks revealed a significant impact of HIV 

infection on epigenetic aging. Each clock offers a 

distinctive view of the aging acceleration that 

accompanies HIV. Notably, EpiAge displayed 

pronounced acceleration in epigenetic age among HIV-

positive individuals compared to HIV-negative controls, 

with an average age advancement of 12.04 years 

(P<0.0001), strongly suggesting a link between HIV 

and expedited epigenetic aging. Similarly, DNAmAge 

(Horvath’s Clock) and DNAmAgeHannum showed 

significant age acceleration in HIV-positive subjects, 

with increases of 6.612 years (P<0.0001) and 6.230 

years (P<0.0001), respectively. The DNAmPhenoAge 
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clock indicated a significant acceleration of 12.79 years 

(P<0.0001). 

 

Further analysis highlighted that the 

DNAmAgeSkinBloodClock and DNAGrimAge v1 also 

demonstrated significant aging acceleration, with 

observed differences of 7.664 years (P<0.0001) and an 

exceptional 19.97 years (P<0.0001), respectively. These 

findings are consistent with the hypothesis that HIV 

infection accelerates biological aging. The consistency 

of epigenetic clocks, including EpiAge, in revealing 

accelerated aging in HIV-positive individuals further 

supports this hypothesis (Figure 2A). 

 

Assessing the discriminatory power of EpiAge and 

other epigenetic clocks for HIV status using ROC 

analysis 

 

To further assess the discriminatory power of EpiAge 

and other epigenetic clocks in distinguishing between 

HIV-negative and HIV-positive individuals, we 

conducted a Receiver Operating Characteristic (ROC) 

analysis. This method provides a nuanced 

understanding of each clock’s ability to accurately 

classify individuals based on their HIV status beyond 

the significance revealed by t-tests. 

 

In our ROC analysis, EpiAge demonstrated an 

impressive Area Under the Curve (AUC) of 0.9109, 

with a sensitivity of 56.37% and specificity of 100% 

(P<0.0001), indicating appreciable discriminatory 

power. This suggests that EpiAge is highly capable of 

differentiating between the two groups based on 

epigenetic aging patterns. 

 

By comparison, DNAmAge showed an AUC of 0.7835, 

with a sensitivity of 14.57%, but maintained the same 

specificity of 100% (P<0.0001), indicating moderate 

discriminatory ability. DNAmAgeHannum improved 

upon DNAmAge’s performance, achieving an AUC of 

 

 
 

Figure 2. Impact of HIV on epigenetic age acceleration across multiple cohorts and treatment Phases. (A) Scatter plots 

comparing epigenetic age acceleration (EAA) across multiple epigenetic clocks: EpiAge, DNAmAge, DNAmAgeHannum, DNAmPhenoAge, 
DNAmAgeSkinBloodClock, DNAGrimAge v1, and DNAGrimAge v2, between HIV-negative individuals from the GSE67751 cohort (n=69) and 
HIV-positive individuals from cohorts GSE67751 (n=23), GSE117859 (n=609), GSE53840 (n=120), and GSE185391 (n=86). The plots display 
median EAA values, with error bars denoting 95% Confidence Intervals (CI). The significance of differences in EAA was tested using unpaired, 
two-tailed t-tests. A horizontal line at zero on the plot marks the threshold between age acceleration and deceleration; points above this line 
indicate epigenetic age acceleration, while points below indicate deceleration. (B) These scatter plots track changes in EAA from baseline 
(week 0) through weeks 1, 6, 10, and 24 of a combined HIV treatment strategy, which includes therapeutic vaccination and a latency-
reversing agent using multiple epigenetic clocks. We employed repeated measures ANOVA for the analysis. To address potential deviations 
from the assumption of sphericity, we applied the Geisser-Greenhouse correction as determined by Mauchly’s test. This correction ensures 
accurate and reliable results in repeated measures analysis, particularly when the equality of variances across the differences between all 
pairs of groups is not met. (C) These scatter plots focus on comparing epigenetic age acceleration (EAA) from baseline (week 0) to the 
monitored antiretroviral pause (MAP) phase of the BCN02 clinical trial, using various epigenetic clocks: EpiAge, DNAmAge, 
DNAmAgeHannum, DNAmPhenoAge, DNAmAgeSkinBloodClock, DNAGrimAge v1, and DNAGrimAge v2. Differences were assessed using 
paired two-tailed t-tests, chosen for their appropriateness given the normal distribution of data. 
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0.8275 with a sensitivity of 14.44% and maintaining 

100% specificity (P<0.0001). 

 

DNAmPhenoAge demonstrated strong performance 

with an AUC of 0.9041, sensitivity of 40.40%,  

and specificity of 100% (P<0.0001), nearly  

matching EpiAge’s discriminatory capacity. 

DNAmAgeSkinBloodClock exhibited a slightly higher 

AUC of 0.9168, with a sensitivity of 54.30% and 

perfect specificity (P<0.0001). 

 

Remarkably, DNAGrimAge v1 displayed the highest 

AUC among the clocks at 0.9795, with an impressive 

sensitivity of 82.39% and specificity of 100% 

(P<0.0001), indicating exceptional performance in 

discriminating between HIV-negative and HIV-

positive statuses. DNAGrimAge v2 also showed 

strong results with an AUC of 0.9595, sensitivity of 

72.54%, and unchanged specificity (P<0.0001) 

(Figure 2A). 

 

Influence of an HIV treatment strategy on epigenetic 

aging 

 

Building on these findings, we explored the dynamics 

of epigenetic aging among HIV-positive individuals to 

assess how a specific treatment strategy influenced 

these patterns. 

 

We evaluated the impact of a combined HIV  

treatment strategy—comprising therapeutic HIV-1 

vaccination and the latency-reversing agent romidepsin 

—using EpiAge, DNAmAge (Horvath’s 

 Clock), DNAmAgeHannum, DNAmPhenoAge, 

DNAmAgeSkinBloodClock, DNAGrimAge v1, and 

DNAGrimAge v2. This regimen also incorporated a 

monitored pause in antiretroviral therapy (MAP), as 

outlined by Oriol-Tordera et al. [34]. We tracked 

epigenetic aging from baseline (week 0, before 

treatment initiation) through several key intervals: 

weeks 1, 6, 10, and 24, as shown in Figure 2B. 

 

EpiAge uniquely responded to the treatment, showing a 

significant deceleration in epigenetic aging by week 24, 

with an adjusted P-value of 0.0061, corresponding to an 

epigenetic age reduction of approximately 3.93 years 

from baseline. 

 

DNAmAgeHannum also demonstrated a notable 

response by week 24, revealing a significant reduction 

in epigenetic age of 12.96 years (adjusted P-value < 

0.0001). DNAmAgeSkinBloodClock displayed a 

moderate but significant deceleration of 1.88 years over 

the same period (adjusted P-value = 0.0215). The 

responses of other clocks did not reach statistical 

significance (Figure 2B). 

Further, we specifically assessed changes from baseline 

to the Monitored Antiretroviral Pause (MAP) phase, 

employing paired t-tests to determine if the observed 

changes in epigenetic age were directly induced by the 

treatment regimen. This analysis, illustrated in Figure 

2C, focused on the unique impacts of the therapeutic 

vaccination and latency-reversing agent during the 

pause in antiretroviral therapy. Unlike the continuous 

treatment period captured in Figure 2B, the MAP phase 

analysis aimed to isolate the effects of the intervention 

components without the confounding influence of 

ongoing antiretroviral therapy (ART). 

 

Among the clocks evaluated, EpiAge and 

DNAmAgeHannum showed marked responses to the 

combined therapy despite the MAP. EpiAge 

demonstrated a significant deceleration in epigenetic 

aging with a mean difference of -4.811 years (P < 

0.0001), while DNAmAgeHannum also indicated 

substantial deceleration with a mean difference of -

12.23 years (P < 0.0001). DNAmAgeSkinBloodClock 

responded more modestly, showing a deceleration with 

a mean difference of -2.036 years (P = 0.0129). 

Surprisingly, DNAGrimAge v1 indicated an unexpected 

significant acceleration of aging, with a mean difference 

of +2.628 years (P < 0.0001). 

 

These results underscore the distinct responses of 

epigenetic clocks to the HIV treatment regimen. EpiAge 

and DNAmAgeHannum, in particular, stood out for 

their sensitivity to treatment-induced changes, offering 

potential as reliable markers for assessing the impact of 

HIV therapies on biological aging. 

 

Impact of COVID-19 on epigenetic aging: 

comparative analysis across multiple epigenetic 

clocks 

 

Our findings indicated that the EpiAge clock showed an 

age acceleration that varied as a function of the 

COVID-19 severity score. As such, in our analysis of 

DNA methylation data from the GSE167202 dataset 

[35], we found that the EpiAge clock demonstrated a 

significant age acceleration in COVID-19 severity score 

1 compared to negative controls (P=0.0002), with an 

acceleration of 5.766 years (Figure 3A). Lesser or no 

significant differences were observed in higher severity 

scores or in response to an infection by other viruses.  

 

Similarly, DNAmAge indicated significant age 

acceleration in patients with other infections and mild 

COVID-19 cases, with age accelerations of 2.514 years 

(P=0.0166) and 3.935 years (P=0.0035), respectively. 

DNAmAgeSkinBloodClock mirrored this pattern, 

showing significant age accelerations for other 

infections (2.312 years, P=0.0010) and mild COVID-19 
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severity (2.268 years, P=0.0225), while no significant 

changes were observed for higher severity levels. 

 

Hannum’s clock only found COVID-19 severity to be 

significantly associated with age acceleration (3.506 

years, P=0.0064), with other severity levels and 

infections showing no significant differences. 

PhenoAge displayed significant acceleration for other 

infections (3.535 years, P=0.0031) and remarkably for 

COVID-19 severity levels 3 (4.284 years, P=0.0059) 

and 4 (6.249 years, P=0.0205), but not for level 1. 

 

GrimAge v1 did not show significant differences across 

groups. GrimAge v2 revealed that COVID-3 severity 

had a significant age acceleration (3.892 years, 

P=0.0402) compared to negative control, indicating 

nuanced responses across different epigenetic clocks to 

COVID-19 severity and other infections (Figure 3A). 

 

In conjunction with our investigation, we analyzed 

dataset GSE168739, which was also utilized in a study 

by Cao et al. [36] This previous study examined the 

influence of COVID-19 on epigenetic aging in blood 

samples using a range of established epigenetic clocks, 

such as Horvath’s DNAmAge, Hannum’s DNAmAge, 

PhenoAge, SkinBloodClock, and GrimAge. The 

findings indicated that individuals with COVID-19 

experienced a notable increase in DNAm age across all 

clocks compared to healthy individuals. Extending these 

observations, our application of the EpiAge clock to 

these samples demonstrated a significant acceleration in 

epigenetic aging among COVID-19 patients, with an 

average advancement of nearly four years (p < 0.0001) 

(Figure 3B). Similarly, DNAmAge revealed a moderate 

yet significant age acceleration (p = 0.0114, difference 

= 1.457 years). The SkinBloodClock also showed 

significant acceleration (p < 0.0001, difference = 2.648 

years), while other clocks displayed no significant 

changes or, surprisingly, opposite effects such as those 

seen with GrimAge v1 and PhenoAge. 

 

Based on our analyses, the EpiAge clock demonstrated 

the most pronounced acceleration in epigenetic aging in 

response to COVID-19 infection (COVID-19), markedly 

exceeding the age advancements detected by other clocks. 

This stark contrast highlights the EpiAge clock’s 

sensitivity and effectiveness in capturing the impact of 

COVID-19 on biological aging processes, thus affirming 

its utility in clinical and epidemiological settings focused 

on the implications of infectious diseases on aging. 

 

Current stress, not cumulative stress, is associated 

with epigenetic age acceleration  

 

To investigate the link between stress and epigenetic 

age acceleration (EAA), we analyzed whole blood 

samples from African American individuals using the 

GSE72680 dataset [37–39]. 

 

The original study employed a DNA methylation-based 

age prediction method, utilizing DNAmAge developed 

by Horvath [26]. They found that cumulative lifetime 

stress, as opposed to childhood maltreatment or current 

stress alone, predicted accelerated epigenetic aging in 

an urban African American cohort [39].  

 

In our study, we expanded the analysis by using EpiAge, 

DNAmAge (Horvath’s Clock), DNAmAgeHannum, 

DNAmPhenoAge, DNAmAgeSkinBloodClock, 

DNAGrimAge v1, and DNAGrimAge v2. Contrary to the 

original findings, we did not detect any significant 

correlation between epigenetic age acceleration and 

cumulative life stress after correction for blood cell-type 

composition and lifestyle parameters, such as age, sex, 

body mass index (BMI), alcohol use, tobacco use, 

childhood sexual or physical abuse, childhood trauma, 

cocaine use, heroin use, marijuana use, posttraumatic 

stress disorder symptom scale, Beck Depression Inventory 

total score, and treatment for anxiety disorder, bipolar 

disorder, depression, and posttraumatic stress disorder. 

 

Our investigation into the impact of stress on epigenetic 

age acceleration (EAA) across different epigenetic 

clocks reveals a complex relationship (Figure 4A). 

Initially, simple correlations between current stress and 

various clocks were established, with notable results as 

follows: 

 

For Horvath’s DNAmAge, a correlation coefficient (r) 

of 0.1517 and a p-value of 0.0064 were observed. After 

adjusting for confounders, a significant regression 

coefficient (β) of 0.5171 was noted, highlighting an 

association between higher current stress levels and 

increased EAA (p = 0.030). Cumulative life stress, 

however, did not exhibit a significant association (p = 

0.425). 

 

Hannum’s clock displayed an initial r of 0.1556 and a p-

value of 0.0051. Post-correction analysis revealed a β of 

0.4831 (p = 0.030), reaffirming the significance of 

current stress, while cumulative life stress again showed 

no significant effect (p = 0.399). 

 

PhenoAge presented an r of 0.117 and a p-value of 

0.0347 between current stress and EAA. However, the 

relationship did not remain significant after 

correction. 

 

DNAmAgeSkinBloodClock demonstrated an initial r of 

0.1204 and a p-value of 0.0308 of the association 

between current stress and EAA, but this significance 

was not maintained post-correction. 
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The EpiAge clock showed a stronger initial correlation 

with current stress (r = 0.1975, p-value of 0.0004), 

which remained significant after correction (p ≤ 0.037). 

 

For Grimage v1, we found an initial r of 0.2367 with a 

p-value of <0.0001 association with current stress, 

which persisted as significant after correction (p = 

0.011). 

Grimage v2 revealed an r of 0.235 and a p-value of 

<0.0001, with the association remaining significant 

post-correction (p = 0.005). 

 

Cumulative life stress did not demonstrate a significant 

association with EAA across any of the clocks, both 

before and after applying corrections for confounding 

factors. This analysis underscores the specific impact of 

 

 
 

Figure 3. (A) Scatter plot analysis of epigenetic age acceleration (EAA) across individuals without COVID-19 (Neg, n=296) from GSE167202 
and COVID-19 patients (Pos, n=407) from GSE168739. EAA is calculated by subtracting chronological age from EpiAge estimates. Median EAA 
values for each group are plotted. Non-parametric two-tailed Mann-Whitney U test reveals significant EAA in COVID-19 patients compared to 
non-COVID-19 individuals (P < 0.0001), with a median difference of 3.974 years, indicating accelerated biological aging in infected patients. 
(B) Scatter plot analysis comparing epigenetic age between healthy controls (GSE167202, n=296) and COVID-19 patients (GSE168739, n=407), 
utilizing clocks including EpiAge, DNAmAge, DNAmAgeHannum, DNAmPhenoAge, DNAmAgeSkinBloodClock, DNAGrimAge v1, and 
DNAGrimAge v2. Due to the non-normal distribution of data, a Mann-Whitney U test was employed. Significance levels are denoted as ns 
(not significant), * (p < 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001). 
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current stress on epigenetic aging, which remained after 

corrections for blood cell-type composition and lifestyle 

parameters. These findings highlight the importance of 

current stress as a significant factor in epigenetic age 

acceleration across multiple epigenetic clocks. 

 

We further categorized individuals from the GSE72680 

dataset [37] into five groups based on the intensity or 

severity of stress: No Stress (Level 0), Low Stress 

(Levels 1-4) for mild stress experiences, Moderate 

Stress (Levels 5-7), High Stress (Levels 8-10), and 

Severe Stress (Levels 11-15). We examined the 

association of these stress levels with Epigenetic Age 

Acceleration (EAA) using the EpiAge clock (Figure 

4B). The analysis revealed a gradual increase in EAA 

from the No Stress Group to the Severe Stress Group. 

Specifically, we noted a borderline significant 

difference between the Low Slow-stress and No Stress 

groups (P = 0.1811) and the Moderate Stress Group (P 

= 0.0604), a significant difference between the High 

Stress and No Stress groups (P = 0.0268), and the most 

pronounced difference was observed between the 

Severe Stress and No Stress groups (P = 0.0143). 

 

A similar trend was observed across various clocks: For 

DNAmAge, the comparisons yielded P-values of 0.4334 

(Low vs. No Stress), 0.2114 (Moderate vs. No Stress), 

0.195 (High vs. No Stress), and 0.0443 (Severe vs. No 

Stress). Hannum’s clock followed suit with P-values of 

0.3713, 0.2711, 0.1466, and 0.0476, respectively. The 

trend persisted with PhenoAge and 

DNAmAgeSkinBloodClock, with PhenoAge showing a 

borderline significant difference at high-stress levels 

(P=0.0428) compared to no stress and 

DNAmAgeSkinBloodClock revealing a significant 

difference at severe stress levels (P=0.0352). 

 

 
 

Figure 4. (A) Relationship between current stress levels (Axe X) and epigenetic age acceleration (EAA) (axe Y) across various epigenetic clocks 
(EpiAge, DNAmAge, DNAmAgeHannum, DNAmPhenoAge, DNAmAgeSkinBloodClock, DNAGrimAge v1, and DNAGrimAge v2) from the study 
GSE72680, analyzed using Pearson’s r. Stress level severity is represented by increasing numbers where a score of 0 means No Stress, and 15 
is the most severe stress. Each plot in this figure represents a different clock, highlighting the strength and significance of their relationships 
with current stress. The central line in each plot represents the regression line, accompanied by two red lines which delineate the 95% 
confidence intervals, underlining the precision of the correlation estimates. (B) Scatter plots illustrate the relationship between varying stress 
levels and epigenetic age acceleration across different epigenetic clocks. The plot compares five groups categorized by stress intensity: No 
Stress (Level 0, n=9), Low Stress (Levels 1-4, n=149), Moderate Stress (Levels 5-7, n=106), High Stress (Levels 8-10, n=48), and Severe Stress 
(Levels 11-15, n=13). Each point represents an individual’s epigenetic age acceleration, with group comparisons analyzed using ordinary one-
way ANOVA and Dunnett’s multiple comparisons test to assess statistical differences between the No Stress group and each of the stress 
intensity groups. (C) Scatter plots depicting the relationship between stress levels and epigenetic age acceleration (EAA) across various 
epigenetic clocks, incorporating control groups for a comprehensive analysis. This plot includes six groups: No Stress (Level 0, n=9), Low Stress 
(Levels 1-4, n=149), Moderate Stress (Levels 5-7, n=106), High Stress (Levels 8-10, n=48), Severe Stress (Levels 11-15, n=13), and an added 
Control group (n=419, combining subjects from datasets GSE128235 and GSE125105). Each point illustrates an individual’s EAA. Group 
differences were statistically evaluated using ordinary one-way ANOVA with Dunnett’s multiple comparisons test, comparing each stress level 
group as well as the Control group against the No Stress group to identify significant variations in EAA. 
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DNA_GrimAge_v1 and v2 showed increasingly 

significant differences with rising stress levels, 

underscoring a clear association between stress  

and epigenetic age acceleration. Specifically, 

DNA_GrimAge_v1 and v2 displayed significant 

differences at even low-stress levels (P=0.0110 and 

P=0.0009, respectively), becoming more pronounced at 

moderate to severe stress levels, culminating in P<0.0001 

for severe stress. 

 

These analyses, conducted using one-way ANOVA 

with Dunnett’s multiple comparisons test, highlight a 

consistent trend across all clocks, indicating a 

significant relationship between stress levels and 

epigenetic age acceleration. 

 

The GSE72680 dataset had a limited number of 9 

samples in the no stress group, which might explain the 

loss of power to detect EAA differences in the lower 

stress groups. We therefore included additional control 

(normal stress) subjects from a different data set 

GSE128235 (209 subjects) and GSE125105 (210 

subjects) datasets in the analysis, as illustrated in Figure 

4C. Importantly, there was no significant difference in 

EpiAge between these newly added control samples and 

the no-stress group included in the GSE72680 data 

(Adjusted P-value >0.9999), which suggested that these 

control groups could be combined in our analysis. 

When the analysis included a larger sample of “normal” 

controls, a marked increase in Epigenetic Age 

Acceleration (EAA) was associated with stress from 

low to severe stress levels, which was significant even 

in the low stress group (Adjusted P-value < 0.0001). 

 

For DNAmAge, the no-stress group exhibited 

significantly higher EAA than the control group (p = 

0.0197), with a more pronounced EAA observed across 

all stress levels in comparison to the control group. 

 

The DNAmAgeHannum analysis indicated a borderline 

acceleration in EAA within the no-stress group 

compared to the added control group (Adjusted P-value 

=0.0720). However, EAA was notably higher in the 

control group than in both the low and moderate stress 

groups, with no significant differences noted when 

compared to the high and severe stress levels. 

 

The PhenoAge analysis aligned with that of EpiAge, 

showing no distinction between the control and no-

stress groups. Yet, there were significant escalations in 

EAA from low to high-stress levels in comparison to 

the control group. Intriguingly, PhenoAge suggested an 

overall deceleration of EAA across all  

groups, regardless of stress level. Similarly, 

DNAmAgeSkinBloodClock analysis showed no 

variance between the control and no-stress groups but 

revealed significant increases in EAA from low to 

severe stress levels. 

 

Notably, DNA GrimAge v1 indicated a significantly 

higher EAA across all groups except for the severe 

stress group when compared to the control group. DNA 

GrimAge v2 exhibited significantly higher EAA in the 

control group than in the no-stress group but did not 

show marked differences from other stress levels. 

 

Altogether, these findings indicate that EpiAge showed 

the clearest sensitivity in detecting the stress-induced 

epigenetic age acceleration, whereby the differences in 

EAA were only observed between stressed and both 

controls and non-stressed controls. Furthermore, 

although all clocks were sensitive to stress, there was 

observed variability across different epigenetic clocks. 

These may be attributed to the varied number of CpGs 

analyzed in the different clocks and the absence of 

CpGs included in some clocks in the datasets that used 

different array designs. For example, there was a 

consistent issue with missing probes in the GSE72680 

dataset for DNAmGrimAge2 (ranging typically from 57 

to 64 out of 1331 probes) and DNAmFitAge 

(consistently 48 out of 789 probes). Furthermore, the 

unexpected results seen with GrimAge v1 and v2 in 

control groups, derived from diverse studies, may 

reflect batch effects. It is advised against attempting to 

correct or process the array data in ways that might lead 

to the exclusion of CpGs. These observations emphasize 

the consistency and reliability offered by utilizing fewer 

CpGs in the EpiAge analysis, which appears to yield 

more stable results across different conditions. 

 

Epigenetic age acceleration in Down syndrome 

 

To further assess the value of the EpiAge clock in 

detecting epigenetic age acceleration in disease states, in 

this study, we analyzed 22 healthy individuals and 20 

individuals with Down syndrome (DS) using the Epic 

array. Down syndrome is the most common chromosomal 

anomaly in humans that causes mild to significant 

developmental, physical, and intellectual disabilities. Due 

to the trisomy of chromosome 21, which harbours the 

gene encoding for the amyloid precursor protein (APP), 

people with Down syndrome progressively develop 

Alzheimer’s disease neuropathology starting early in life. 

 

The two groups showed no significant chronological 

age difference, with the mean age for the healthy group 

at 40.95 and for the Down syndrome group at 40.65, 

and a p-value of 0.9146 as revealed using an unpaired 

parametric T-test (applied due to normal distribution). 

We then calculated epigenetic age using the 

EpiAgePublic model, among others and assessed 

epigenetic age acceleration (EAA) (Figure 5A). 
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Significant age acceleration in the Down syndrome 

group was observed across all clocks using T-tests and 

Receiver Operating Characteristic (ROC) analysis to 

examine the differences. Specifically, for EpiAgePublic, 

the p-value was 0.0002, with a mean difference ± SEM 

of 10.26 ± 2.539 and an ROC of 0.8205. DNAmAge 

showed a p-value of 0.0004, with a mean difference of 

9.613 ± 2.481 and an ROC of 0.8341. 

 

 
 

Figure 5. Scatter plot of epigenetic age acceleration (EAA) in healthy individuals and those with Down syndrome. This scatter 

plot illustrates the Epigenetic Age Acceleration (EAA) for each participant in our study, contrasting healthy controls (n=22) with individuals 
diagnosed with Down syndrome (DS, n=20). EAA, determined by the discrepancy between epigenetic age and chronological age, is plotted for 
each individual, utilizing various epigenetic clocks: EpiAgePublic, DNAmAge, DNAmAgeHannum, PhenoAge, DNAmAgeSkinBloodClock, 
GrimAge v1, and GrimAge v2. Each point represents one individual’s EAA, with separate color codes for healthy controls and DS individuals. 
Unpaired t-tests were conducted to examine the differences in EAA between the groups, showing significant increase in EAA in DS: 
EpiAgePublic (p=0.0002), DNAmAge (p=0.0004), DNAmAgeHannum (p=0.002), PhenoAge (p=0.0002), DNAmAgeSkinBloodClock (p=0.0013), 
GrimAge v1 (p=0.0081), and GrimAge v2 (p=0.0016). ROC analysis, discussed in the results section, was performed to further assess the 
discriminative capability of each clock between the healthy and DS groups. This plot highlights the significant epigenetic age acceleration 
observed in individuals with Down syndrome in comparison to healthy controls. 
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DNAmAgeHannum had a p-value of 0.002, with a 

mean difference of 9.177 ± 2.771 and an ROC of 

0.7932. PhenoAge’s p-value was 0.0002, with a mean 

difference of 13.16 ± 3.272 and an ROC of 0.8318. The 

DNAmAgeSkinBloodClock had a p-value of 0.0013, 

with a mean difference of 8.439 ± 2.446 and an ROC of 

0.8523. GrimAge v1 had a p-value of 0.0081, with a 

mean difference of 7.799 ± 2.798 and an ROC of 

0.7818, while GrimAge v2 showed a p-value of 0.0016, 

with a mean difference of 9.404 ± 2.779 and an ROC of 

0.8227. (The mean difference ± SEM represents the 

difference in the mean epigenetic age acceleration 

(EAA) between the Down syndrome and healthy 

control groups, along with the standard error of that 

difference.) 

 

Overall, the EpiAgePublic clock performs comparably 

to other established epigenetic clocks in detecting age 

acceleration in individuals with Down syndrome. 

 

Epigenetic age and Alzheimer’s disease 

 

In all previous analyses, we utilized array technology, 

which is known for its limitations. This technology 

requires normalization methods such as BMIQ and 

others to adjust for variability in methylation data. 

However, a major concern with array technologies, such 

as the Illumina Infinium Methylation BeadChip often 

used in epigenome-wide association studies (EWAS), is 

the presence of batch effects. These effects can reduce 

experimental power and potentially lead to false 

positive results due to variations in the day of 

processing, the individual glass slide, and the array’s 

position on the slide. Despite employing batch-effect 

removal tools like ComBat and Harman, residual batch 

effects persist and require significant correction [40]. 

 

In contrast, targeted next-generation sequencing offers 

advantages over array technologies, including higher 

resolution and greater specificity for detecting 

methylation changes across diverse biological samples. 

This method is less susceptible to batch effects and does 

not rely on pre-designed probes, allowing for a more 

comprehensive analysis of the methylome. 

 

To validate the EpiAge model using targeted NGS, we 

conducted an observational longitudinal clinical study 

where we analyzed DNA extracted from the 

lymphocytes of peripheral blood mononuclear cells 

(PBMCs) from 55 individuals, categorized into 

Alzheimer’s disease patients and control participants. 

One participant was excluded from the analysis due to 

technical issues, leaving a total of 54 participants. 

Among these, there were 10 males and 16 females in 

the control group and 7 males and 21 females in the 

Alzheimer’s disease (AD) group. The mean age of the 

control group was 71.53 years (SD = 9.36), while the 

AD group had a mean age of 72.57 years (SD = 8.89). 

A parametric t-test showed no significant difference in 

age between the control and AD groups (p = 0.6793). 

 

For this study, we expanded the region analyzed in the 

ELOVL2 gene to include not only the well-established 

CpG sites—cg16867657, cg21572722, and 

cg24724428—from the Illumina array but also an 

additional ten CpG sites, totaling 13 sites. This broader 

scope was intended to enhance the technical robustness 

of the EpiAge model. 

 

First, we examined the replication consistency across 

our samples. Due to limitations in the amount of DNA 

obtained, only 41 out of the total 54 individuals had 

sufficient DNA to perform analyses in four replicates. 

 

In our analysis, the coefficient of variation (CV) was 

calculated for each of the 13 CpG sites to evaluate the 

consistency of methylation measurements obtained via 

next-generation sequencing. The CV was determined by 

dividing the standard deviation by the mean methylation 

level for each site and expressed as a percentage. The 

results, depicted in box plots (Figure 6A), indicate that 

the CVs for the first nine CpG sites were relatively low, 

ranging from 0.28% to 6.7%, as these CpGs exhibited 

high percentages of methylation. In contrast, the CVs for 

sites 10 through 13, which are characterized by lower 

methylation levels (around 10% or less), showed greater 

variability, ranging from 1% to 25% across individuals. 

This increased variability at lower methylation levels 

aligns with statistical expectations, where measurements 

near the extremes tend to have lower relative variability, 

while those closer to the midpoint or at lower levels tend 

to fluctuate more [41, 42]. 

 

In our study, we assessed the technical accuracy of 

EpiAge in a cohort of 41 participants (Figure 6B), each 

tested four times using targeted next-generation 

sequencing (NGS). We first evaluated the Confidence 

Interval (CI) Range as a measure of variability in the 

epigenetic age estimation across repeated 

measurements: 

 

CI Range <1: Observed in 14 individuals, suggesting a 

high precision in epigenetic age estimation for 

approximately 34% of the participants. 

 

CI Range >1 and <1.5: Found in 15 individuals, 

indicating moderate variability in epigenetic age 

estimates, affecting about 37% of the study population. 

 

CI Range >1.5 and <2: Present in 7 individuals, 

reflecting a greater variability in measurements, 

impacting around 17% of the participants. 
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CI Range >2 and <3: Noted in 4 individuals, 

demonstrating significant variability, which was evident 

in approximately 10% of the cohort. 

 

CI Range >3: This highest variability was observed in 1 

individual, accounting for about 2% of the participants. 

Additionally, we summarized key descriptive statistics, 

including mean, standard deviation (SD), and 

coefficient of variation (CV) for each participant in 

Supplementary Table 2. The results showed that the 

CVs ranged from 0.57% to 6.10%, demonstrating 

varying levels of technical accuracy. 

 

 
 

Figure 6. (A) Box plots of coefficient of variation (CV) for methylation levels across 13 CpG sites. This figure illustrates the distribution of the 
coefficient of variation (CV) for each of the 13 CpG sites within the ELOVL2 gene, analyzed using next-generation sequencing. The CV was 
calculated by dividing the standard deviation of methylation measurements by the mean for each site, expressed as a percentage. The box 
plots show the interquartile range (25th to 75th percentile) with whiskers extending to the 5th and 95th percentiles. Sites 1-9 exhibit lower 
CVs, ranging from 0.28% to 6.7%, indicative of high methylation consistency. Sites 10-13 display higher CVs, ranging from 1% to 25%, 
reflecting increased variability in regions of lower methylation. This variability highlights the influence of methylation levels on the precision 
of epigenetic age assessments. (B) The figure displays a scatter plot of epigenetic age measurements using our newly developed EpiAge next-
generation sequencing assay for 41 study participants, using the linear regression model developed for EpiAgePublic in samples that had four 
technical replicates. Each point on the x-axis corresponds to the average EpiAge calculated for a blood sample (buffy coat) of an individual 
participant. The y-axis indicates the epigenetic age calculated for each replicate. Error bars represent the 95% confidence intervals for the 
mean epigenetic age of each individual. (C) Comparison analysis between EpiAgePublic (red dots) and EpiAge calculated using the HKG 
epiTherapeutics proprietary model (blue dots) relative to chronological age (Axe X). Correlation analysis was performed using Pearson’s R. 
The table provides a comparison of the correlation coefficient (r), 95% confidence interval, and R-squared values. (D) Epigenetic Age 
Acceleration (EAA) Comparison between control and AD patients calculated using EpiAge next-generation sequencing assay. This scatter plot 
compares the EAA between control participants (n=26) and Alzheimer’s Disease (AD) patients (n=28). Each dot represents an individual, and 
the plot shows the mean with SEM. The epigenetic age was calculated using the HKG epiTherapeutics proprietary model. Differences in EAA 
between the groups were analyzed using a two-tailed parametric t-test to assess statistical significance. (E) The left panel displays the 
Pearson correlation between Epigenetic Age Acceleration (EAA) and Mini-Mental State Examination MMSE in 7 male Alzheimer’s patients, 
while the right panel displays the correlation in 21 female Alzheimer’s patients. The middle line in each plot represents the linear regression 
fit, while the two lines surrounding it represent the 95% confidence bands, which indicate the variability of the correlation. (F) Comparative 
Analysis of Epigenetic Age Acceleration Across Alzheimer’s Disease, Mild Cognitive Impairment, and Control Groups Using Multiple Epigenetic 
Clocks. This figure presents the comparison of Epigenetic Age Acceleration (EAA) using multiple clocks: EpiAge, DNAmAge, 
DNAmAgeHannum, DNAmPhenoAge, DNAmAgeSkinBloodClock, DNAGrimAge v1, and DNAGrimAge v2. The data were derived from 96 
control individuals, 111 with mild cognitive impairment (MCI), and 93 with Alzheimer’s Disease from dataset GSE144858, using DNA from 
human blood. The plot shows means with Standard Error of the Mean (SEM). For statistical analysis, we employed an ordinary one-way 
ANOVA to compare AD (Alzheimer’s) to controls and MCI to controls. Parametric ANOVA was used due to the normal distribution of the data. 
‘Ns’ stands for not significant; * for p < 0.05; **’ for p < 0.01; *** for p < 0.001; and **** for p < 0.0001. 
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• These results show that the targeted NGS-based 

EpiAge exhibited high reliability, with most 

participants displaying low CI ranges and low 

coefficients of variation. 

 

• The CVs indicate that the method’s precision varies 

across individuals but generally falls within 

acceptable limits for biological measurements. 

 

• NGS offers improved accuracy compared to 

traditional array-based methods, but some 

variability remains, potentially due to noise in the 

replicates. 

 

• The findings highlight the accuracy of EpiAge by 

NGS, although further optimization could improve 

consistency and reduce noise in repeated 

measurements. 

 

These findings demonstrate that while most study 

participants exhibited relatively low to moderate 

variability in epigenetic age estimates, a smaller group 

showed significant variability. This distribution 

underscores the importance of considering technical 

variability in such analyses. While targeted next-

generation sequencing provides high-resolution and 

specific detection of methylation changes, there is 

inherent variability that must be accounted for in 

clinical and research settings. The analysis of CI 

Ranges provides important insights into the reliability 

of epigenetic age measurements and their potential 

application in longitudinal studies and interventions 

aimed at aging and related neurodegenerative 

disorders. 

 

Furthermore, these results highlight the importance of 

evaluating confidence intervals when interpreting 

epigenetic age to ensure robust conclusions. This is 

particularly vital in clinical or research contexts where 

precision is paramount. Relying solely on single 

measurements without technical replicates, which is 

common with less accurate array technologies, 

overlooks the importance of accuracy and the 

limitations of the study design. Without this 

consideration, it becomes challenging to discern 

whether observed changes in epigenetic age across 

multiple time points are due to actual biological effects, 

batch effects, or merely technical noise. 

 

We subsequently calculated the epigenetic age using 

the bisulfite-targeted next-generation sequencing data 

and the EpiAgePublic model (including 3 CpGs: 

cg16867657, cg21572722, and cg24724428), which 

was trained on GSE55763, GSE157131, GSE40279, 

and GSE30870 (Table 1), as discussed above. We also 

calculated EpiAge using a proprietary model 

developed by HKG epiTherapeutics, as discussed in 

the Methods section, which was originally developed 

using saliva samples (Figure 6C). A comparison 

analysis between the two models revealed a slightly 

better performance for the proprietary model (r = 

0.5349) compared to EpiAgePublic (r = 0.5143). The 

Epigenetic Age Acceleration (EAA) was determined 

by subtracting the EpiAge value from the proprietary 

model from the chronological age for 26 control 

participants and 28 patients with Alzheimer’s Disease 

(AD). Our analysis revealed no significant difference 

between the two groups (parametric t-test, p = 0.8188) 

(Figure 6D). 

 

We further analyzed whether Mini-Mental State 

Examination (MMSE) is associated with EAA 

separately in females and males. Interestingly, a strong 

negative correlation between MMSE T0 and epigenetic 

age acceleration was observed in males (r = -0.8883, p = 

0.0075) (Figure 6D), while no significant correlation 

was observed in females (Figure 6E). 

 

To examine EAA in AD patients in other studies, we 

analyzed the Epic Array dataset GSE144858 [43], 

derived from the EU-funded AddNeuroMed Cohort, a 

large cross-European AD biomarker study using human 

blood DNA [44, 45]. This dataset included 96 control 

individuals, 111 with mild cognitive impairment (MCI), 

and 93 with Alzheimer’s Disease (AD).  

 

We applied the EpiAgePublic model and other 

epigenetic clocks (Figure 6E). Consistent with the 

bisulfite next-generation sequencing EpiAge assay, we 

did not observe any significant EAA differences 

between AD and controls, based on the Kruskal-Wallis 

test, since the data did not pass the normality test. 

Notably, EpiAgePublic was the only model showing 

significant age deceleration in MCI compared to 

controls (adjusted p-value = 0.0339). 

 

DISCUSSION 
 

This study introduces epiAgePublic, a novel epigenetic 

aging model utilizing only three CpG sites within the 

ELOVL2 gene, traditionally known for its strong 

association with aging [24, 25]. 

 

The simplicity and precision of epiAgePublic, designed 

for compatibility with next-generation sequencing 

(NGS) technologies, mark a significant step forward in 

the field of epigenetic research. Our findings 

demonstrate that epiAgePublic can effectively estimate 

biological age with an accuracy comparable to more 

complex, established epigenetic clocks. This could 

potentially streamline and reduce the cost of biological 

age assessments in clinical settings. 



www.aging-us.com 19 AGING 

In developing the epiAgePublic model, we focused on 

three CpG sites within the ELOVL2 gene—cg16867657, 

cg21572722, and cg24724428—known for their links to 

aging, supported by a body of research (Bell et al., 

2012; Christiansen et al., 2016; Hao et al., 2021; 

Horvath & Raj, 2018; Li et al., 2022; Marioni et al., 

2015). Employing linear regression, we trained a model 

utilizing a training cohort compiled from four public 

databases (GSE55763, GSE157131, GSE40279, and 

GSE30870), capturing a wide demographic range 

(Table 1). The diversity of this training cohort was 

crucial for developing an inclusive EpiAgePublic 

model, which achieved an R-squared value of 0.7512. 

 
The model was validated on several cohorts (Table 1 and 

Figure 1) and was highly correlated with chronological 

age. Furthermore, our comparative analysis with 

established epigenetic clocks revealed EpiAgePublic’s 

robustness and its ability to assess biological aging. 

epiAgePublic remains significantly correlated with 

chronological age even when potential confounding 

factors like blood cell composition and sex are included in 

the model. Age consistently emerged as a significant 

predictor across all models, underscoring its fundamental 

role in epigenetic aging, while sex exhibited a nuanced 

influence, revealing subtle but significant associations 

with all models except epiAgePublic. 

 

The deceleration of epigenetic aging relative to 

chronological age, as individuals grow older suggests a 

nuanced interaction between genetics, environment, and 

aging processes. This phenomenon (Figure 1C) might 

reflect adaptive mechanisms or biological resilience in 

response to environmental stressors and lifestyle factors 

across the lifespan. This deceleration of epigenetic 

aging in long-livers also aligns with findings from other 

studies [46]. 

 

After developing the EpiAgePublic model, a crucial 

validation step was undertaken to confirm its utility not 

just for blood samples but also for saliva, thereby 

expanding its application range. This validation is pivotal, 

serving both as an independent test on fresh datasets and 

as an extension of the model’s utility beyond its initial 

scope, moreover increasing the feasibility and availability 

of the test as a tool for monitoring public health without 

requiring invasive blood draw. 

 

The cellular composition of saliva, as well as blood, 

could vary across individuals, reflecting varied 

proportions of epithelial and immune cells. Specifically, 

saliva in children comprises approximately 35% 

epithelial cells and 65% immune cells [47], whereas 

adult saliva contains around 80% epithelial cells and 

20% immune cells [48, 49]. Nevertheless, our data 

show a high correlation across ages between the EpiAge 

predicted in blood and saliva. This is consistent with 

previous studies. The ELOVL2 gene has been 

consistently identified as a predictive marker of age in 

saliva samples [50, 51]. The EpiAgePublic model, 

originally developed for blood, could be effectively 

applied to saliva, enabling a highly accessible biological 

tool for measuring biological age. 

 

Sex confounding effects; EpiAge versus other clocks 

 

Unlike other epigenetic clocks that exhibit a significant 

correlation with sex, EpiAge’s lack of association with 

sex may indicate a more refined capacity to isolate the 

biological essence of aging from sex-based epigenetic 

variation. This positions EpiAge as a more universally 

applicable tool for assessing biological age. Therefore, 

EpiAge could offer a clearer, more focused lens through 

which to study the aging process, unencumbered by the 

variation introduced by sex. This advantage underscores 

the importance of developing and utilizing epigenetic 

clocks that can accurately reflect the aging process in a 

manner that is as inclusive and representative as 

possible of the general population. 

 

Thus, EpiAgePublic, despite being nimble, relying on a 

single small genomic region is nevertheless an effective 

measure of the aging process comparable or even 

superior to other clocks that incorporate hundreds or 

even thousands of CpG sites. 

 

Understanding HIV-related accelerated epigenetic 

aging 

 

The investigation into HIV-related accelerated 

epigenetic aging represents a critical aspect of our 

study, shedding light on the intricate relationship 

between HIV infection and biological aging. Building 

upon previous research linking HIV to expedited 

epigenetic aging processes, our study delved into the 

specific impacts of HIV infection on epigenetic aging 

using multiple cohorts and compared the performance 

of various epigenetic clocks, including EpiAge, in 

elucidating these patterns. 

 

Our findings corroborate earlier observations [52] 

suggesting a significant association between HIV 

infection and accelerated epigenetic aging. Notably, 

EpiAge demonstrated remarkable sensitivity in 

detecting age acceleration among HIV-positive 

individuals, with a substantial average advancement of 

12.04 years compared to HIV-negative controls. This 

aligns with previous studies highlighting the accelerated 

aging phenomenon in HIV-infected populations and 

underscores the utility of EpiAge as a reliable marker 

for assessing epigenetic changes associated with HIV 

infection. 
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Furthermore, our comparative analysis across multiple 

epigenetic clocks revealed consistent evidence of aging 

acceleration in HIV-positive individuals, as indicated by 

DNAmAge, DNAmAgeHannum, DNAmPhenoAge, 

DNAmAgeSkinBloodClock, and DNAGrimAge v1. 

This acceleration is possibly due to inflammatory 

processes associated with HIV infection and, therefore, 

might be related to other inflammatory diseases as well. 

These findings underscore the robustness of epigenetic 

clocks in capturing the biological consequences of HIV 

infection on aging processes, thereby providing 

valuable insights into the pathophysiology of HIV-

related accelerated aging. 

 

In addition to identifying accelerated epigenetic aging 

patterns, our study evaluated the discriminatory power 

of epigenetic clocks in distinguishing between HIV-

negative and HIV-positive individuals. ROC analysis 

highlighted the superior performance of EpiAge in 

accurately classifying individuals based on their HIV 

status, further underscoring its potential as a sensitive 

biomarker for HIV-related accelerated aging. 

 

Moreover, our investigation into the influence of HIV 

treatment strategies on epigenetic aging dynamics 

yielded intriguing results. The observed deceleration in 

epigenetic aging following specific pharmacological 

treatment interventions underscores the potential 

reversibility of age-related epigenetic changes in HIV-

positive individuals. Notably, EpiAge and 

DNAmAgeHannum exhibited significant responses to 

treatment, suggesting their utility as sensitive indicators 

of treatment-induced changes in biological aging. An 

open question remains in future studies to establish the 

specific effects of the different drug classes used in 

current antiretroviral therapy on epigenetic aging 

[33]and their correlation with changes in CD4+ cell 

counts and the CD4/CD8 ratio as well as with long-term 

clinical outcomes in individuals with HIV. 

 

Overall, our study provides comprehensive insights into 

the complex interplay between HIV infection, 

epigenetic aging, and treatment interventions. By 

elucidating the underlying mechanisms driving HIV-

related accelerated aging and evaluating the efficacy of 

epigenetic clocks in capturing these dynamics, our 

findings contribute to the growing body of knowledge 

aimed at improving clinical outcomes and therapeutic 

strategies for HIV-infected individuals. 

 

Impact of COVID-19 on biological aging as 

measured by the different epigenetic clocks 

 

The relationship between COVID-19 infection and 

epigenetic age acceleration (EAA) is complex and 

continues to be a subject of significant scientific debate. 

While some studies have found no notable epigenetic 

acceleration in COVID-19 patients [53], others have 

reported marked changes [36, 54]. Our study shows the 

effects of COVID-19 on biological aging, with 

variations in response depending on the severity of the 

disease and the specific epigenetic clock used. 

 

Different epigenetic clocks, including the EpiAge 

metric described here, show different sensitivity to 

changes induced by the virus. This variability can be 

attributed to the clocks’ distinct molecular foundations 

and their differential responsiveness to the biological 

pathways affected by COVID-19. 

 

For instance, the EpiAge metric, designed to capture 

age-related changes through specific CpG sites within 

the ELOVL2 gene, detects accelerated aging in less 

severe COVID-19 cases. This suggests that EpiAge may 

be particularly sensitive to early biological changes that 

other clocks might miss. Surprisingly, as COVID-19 

severity increased, the EAA did not show significant 

differences. This could be attributed to severe cases 

overwhelming the immune system, thereby masking 

such changes. 

 

Conversely, clocks like DNAmAgeSkinBloodClock and 

DNAGrimAge, which incorporate a broader array of 

CpG sites, showed significant changes primarily in 

cases with higher disease severity, reflecting their 

potential to capture larger biological disturbances. 

 

Our analysis using multiple epigenetic clocks 

underscores the complex landscape in which COVID-19 

infection and its severity levels affect biological aging. 

Notably, our findings are in line with other recent 

studies reporting accelerated epigenetic aging in 

COVID-19 patients [36], as further evidenced by our 

analysis of the GSE168739 dataset. These results 

support the utility of EpiAge and similar metrics in 

shedding light on the biological consequences of 

COVID-19, underscoring the importance of epigenetic 

clocks in understanding the broader implications of this 

and other infectious diseases on human health and 

aging. In future long-term observational studies, it 

would also be interesting to evaluate the potential 

relationship between Epigenetic Age Acceleration and 

cognitive dysfunction in individuals with post-COVID-

19 syndrome. 

 

Stress and epigenetic age acceleration 

 

Existing research on the association between stress and 

epigenetic age acceleration has shown conflicting or 

inconclusive results [55]. This inconsistency may stem 

from the selection of different genes in various 

epigenetic models, which might not be responsive to 
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stress factors. The EpiAge model, which incorporates 

the ELOVL2 gene, demonstrates, however, a clear 

association between current stress and epigenetic age 

acceleration. This suggests that the choice of stress-

responsive genes, like ELOVL2, is crucial for accurately 

assessing the impact of stress on biological aging. 

 

In our analysis of the EpiAge model, we’ve uncovered a 

noteworthy link between current stress and epigenetic 

age acceleration. Current stress, arising from immediate 

and ongoing challenges in an individual’s daily life and 

reflects the current state of an individual’s personal, 

professional, and social life, encompassing recent 

events or situations that are directly impacting their 

well-being now, shows a unique association with 

accelerated epigenetic aging. This contrasts with the 

lack of similar associations with other stress types, like 

cumulative life stress, which represents the lifelong 

accumulation of stressors [56], network life stress 

arising from social network events [57], and personal 

life stress, which focuses on individual-specific life 

circumstances [58]. These findings, although 

counterintuitive, highlight the distinct impact of current, 

day-to-day stressors on biological aging, as opposed to 

the more chronic or relational stresses captured by other 

categories. This indicates a unique impact of current 

stressors, possibly related to their immediate biological 

effects and to the possibility that the effect of stress on 

aging is potentially reversible once the burden of 

current stress is relieved.  

 

This distinct association between current stress and 

accelerated epigenetic aging opens new avenues for 

understanding the biological underpinnings of stress 

responses. It also raises questions about the reversibility 

of such epigenetic changes with stress management or 

resolution. Future research might explore the 

mechanisms behind this phenomenon and investigate 

whether interventions targeting current stress can 

effectively decelerate epigenetic aging. This could have 

profound implications for stress management strategies 

and their role in healthy aging and stress-related 

disorders. Zannas et al. have demonstrated that aging 

and stress can epigenetically synergize in stress-related 

disorders such as Major Depressive Disorder (MDD) 

[37]. However, it is currently unknown whether 

Epigenetic Age Acceleration occurs in severe 

depressive phenotypes. 

 

Interestingly, our observation that no significant 

correlation was found between epigenetic age 

acceleration and cumulative life stress after adjusting 

for blood cell-type composition and lifestyle 

parameters, as previously reported by Zannas et al., [39] 

is partially supported by the recent research conducted 

by Poganic et al. [59]. They suggest that the effects of 

acute stress are more pronounced and directly 

associated with measures of epigenetic age acceleration. 

This finding is in line with our results, highlighting the 

predominant influence of current stress over cumulative 

stress on epigenetic age acceleration, even after 

controlling for blood cell-type composition and lifestyle 

parameters. 

 

Epigenetic age acceleration in Down syndrome: 

insights, implications, and clinical applications 

 

Epigenetic age acceleration in Down syndrome has 

been a subject of interest in various studies. Down 

syndrome, characterized by the presence of all or part of 

a third copy of chromosome 21, has been associated 

with accelerated epigenetic aging. Studies demonstrated 

that trisomy 21 significantly increased the biological 

age of blood and brain tissue by an average of 6.6 years 

[60]. Furthermore, it has been noted that age 

acceleration can be observed in both blood and brain 

tissue in Down syndrome (Milicic et al., 2022). These 

findings collectively suggest that Down syndrome is 

associated with accelerated epigenetic aging, as 

evidenced by various studies focusing on epigenetic age 

acceleration in individuals with this condition. 

Additionally, moderate acceleration of epigenetic aging 

has been described in Down syndrome in another study 

(Cypris et al., 2020). Other studies have also found 

evidence of epigenetic age acceleration in newborns 

with Down syndrome (Xu et al., 2022). The research 

highlights the importance of understanding the 

epigenetic mechanisms underlying aging in Down 

syndrome and its implications for health outcomes in 

affected individuals. Research has shown that the use of 

pan-tissue DNA methylation clocks revealed epigenetic 

age acceleration in segmental progeroid syndromes like 

Down syndrome (Ashapkin et al., 2019). Furthermore, 

recent studies have indicated that epigenetic age 

acceleration can occur in segmental progeria conditions 

such as Down syndrome (Lee, 2023). 

 

In our study, we further explored epigenetic age 

acceleration in individuals with Down syndrome using 

various epigenetic clocks, including the EpiAgePublic 

model. Our findings corroborate earlier research 

indicating that Down syndrome, characterized by an 

extra copy of chromosome 21, is associated with 

accelerated biological aging. This acceleration was 

consistently observed across multiple epigenetic clocks, 

affirming the robustness of these tools in capturing 

biological age differences. 

 

The comparable performance of the EpiAgePublic clock 

with other established models suggests its utility as a 

simpler, potentially more accessible tool for assessing 

biological aging in clinical settings. The significant 
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differences in epigenetic age between the Down 

syndrome and healthy control groups highlight the 

profound impact of trisomy 21 on aging processes. 

These insights could inform better management 

strategies for age-related conditions in individuals with 

Down syndrome, such as cognitive deficits and the 

early onset of Alzheimer’s disease. 

 

Our results underscore the relevance of using epigenetic 

clocks to understand aging in Down syndrome. 

Continued research into the specific epigenetic changes 

associated with Down syndrome could lead to targeted 

interventions that might help mitigate the accelerated 

aging process, ultimately improving health outcomes. 

This study supports the growing recognition of 

epigenetic clocks as valuable tools in aging research and 

their potential application in improving clinical care for 

populations with unique aging trajectories like those 

seen in individuals with Down syndrome. 

 

Epigenetic age in Alzheimer’s disease: insights from 

EpiAgePublic and other epigenetic clocks 

 

Differences in DNA methylation have been reported both 

in blood and brain tissue [44, 45] of Alzheimer’s disease 

cases compared to healthy controls, especially in gene 

regions associated with AD pathology, including 

apolipoprotein E (ApoE) and the amyloid precursor 

protein (APP) but also in other genes [61–68]. However, 

the direction of the changes is not consistent across 

studies [44, 45, 69, 70]. Accordingly, the limited reports 

on epigenetic age in AD have also yielded inconsistent 

findings [69], and their utility in detecting AD pathology 

and cognitive status remains a matter of debate.  

 

In the present study, we calculated the epigenetic age 

using bisulfite-targeted next-generation sequencing data 

and the EpiAgePublic model (including 3 CpGs: 

cg16867657, cg21572722, and cg24724428), which was 

trained on GSE55763, GSE157131, GSE40279, and 

GSE30870 (Table 1). The Epigenetic Age Acceleration 

(EAA) was determined for 26 control participants and 

28 patients with AD. Our analysis revealed no 

significant difference between the two groups 

(parametric t-test, p = 0.9875) (Figure 6C). 

 

We further analyzed whether the Mini-Mental State 

Examination (MMSE) score is associated with EAA 

separately in females and males. Interestingly, a strong 

negative correlation between MMSE T0 and epigenetic 

age acceleration was observed in males (r = -0.8883, p = 

0.0075) (Figure 6D), while no significant correlation 

was observed in females (Figure 6D). 

 

To examine EAA in AD patients in other studies, we 

analyzed the Epic Array dataset GSE144858 

(Roubroeks et al., 2020), derived from the EU-funded 

AddNeuroMed Cohort, a large cross-European AD 

biomarker study using human blood DNA (Fransquet et 

al., 2021; Levine et al., 2015). This dataset included 96 

control individuals, 111 with mild cognitive impairment 

(MCI), and 93 with Alzheimer’s Disease (AD). 

 

We applied the EpiAgePublic model and other 

epigenetic clocks (Figure 6E). Consistent with the 

bisulfite next-generation sequencing EpiAge assay, we 

did not observe any significant EAA differences 

between AD and controls, based on the Kruskal-Wallis 

test, since the data did not pass the normality test. 

Notably, EpiAgePublic was the only model showing 

significant age deceleration in MCI compared to 

controls (adjusted p-value = 0.0339). 

 

These findings highlight the complexity of epigenetic 

changes in AD, as well as the need for further research 

to clarify the relationship between epigenetic age 

acceleration and cognitive dysfunction. The observed 

deceleration of epigenetic aging in AD patients may be 

explained in part by the older age of the cohort [71],  

but future research is necessary to support this 

hypothesis. 

 

Limitations of array-based clocks; batch effects 

 

The choice of analytical platform is critical for 

epigenetic studies, as highlighted by recent  

comparative analyses between the Illumina Infinium 

HumanMethylation450K and MethylationEPIC 

BeadChip arrays. These studies have shown substantial 

variability in methylation measurements, particularly at 

sites with low methylation variance, underscoring a 

fundamental limitation of array technologies that can be 

exacerbated by batch effects and dependency on pre-

designed probes (Cheung, Burgers, Young, Cockell, & 

Reynard, 2020). 

 

Batch effects are a significant concern in genomic 

technologies, especially in epigenome-wide association 

studies using Illumina Infinium Methylation BeadChips, 

where they can diminish experimental power and lead 

to false positives. Despite employing batch-effect 

removal tools like ComBat and Harman on various 

datasets, residual batch effects persist, particularly 

related to the processing day, glass slide, and array 

position, affecting thousands of probes and 

complicating the interpretation of epigenetic studies 

(Ross et al., 2022). Additionally, there is a growing 

recommendation in the field of epigenetic age 

calculation using array technologies that data should not 

be normalized nor corrected for batch effects. This 

advice stems from the need to preserve the integrity of 

longitudinal studies where epigenetic age is monitored 
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over time, a major application of this metric beyond 

single-timepoint clinical studies. The capability to 

consistently measure epigenetic age across multiple 

time points is crucial for assessing the effects of 

lifestyle changes and other interventions. However, the 

persistent batch effects and the necessity for 

normalization challenge the utility of array-based 

platforms for such longitudinal monitoring, 

underscoring the advantages of using targeted NGS for 

ongoing epigenetic age analysis. 

 

In contrast, targeted next-generation sequencing (NGS) 

provides a more robust alternative. It offers higher 

resolution by sequencing individual DNA molecules, 

which allows for the detection of methylation profiles of 

the DNA molecules rather than just averages. NGS 

platforms are typically less prone to batch effects due in 

part to the sequencing process itself, which does not 

rely on the hybridization conditions that can vary in 

array-based platforms.  

 

However, since next-generation sequencing captures 

profiles of each DNA molecule independently and takes 

into consideration the heterogeneity of DNA 

methylation profiles of single DNA molecules even in 

the same tissue, deep reads are required to have 

sufficient statistical power to accurately represent the 

diversity of DNA methylation profiles. Clinical tests 

need to be cost-effective and robust. Targeted 

amplification and Next-generation sequencing of 

thousands or even hundreds of regions with high depth 

and accuracy is highly technical, demanding and 

extremely costly and makes it unfeasible as a 

widespread robust clinical test. It is, therefore, 

imperative that a clinically widely used next-generation 

sequencing-based test be parsimonious and nimble and 

utilize the lowest number of regions amplified and 

sequenced. We, therefore, performed in this study a 

thorough analysis to determine whether it is possible to 

develop a clock that is based on the smallest number of 

DNA regions without compromising its correlation with 

age and its sensitivity to clinical states that affect aging. 

Our analysis revealed that the ELOVL2 region on its 

own performs as well or even superior to other clocks 

that use hundreds or even thousands of sites. We then 

developed a robust next-generation sequencing assay of 

a region that contains the CpGs included in the 

EpiAgePublic model as well as the other 10 CpGs.  

 

We observed remarkably low coefficients of variation 

(CVs) across the first nine CpG sites, with CVs ranging 

from 0.28% to 6.7%, demonstrating NGS’s robustness 

in accurate methylation profiling. Even for CpG sites 

with higher CVs, which ranged from 1% to 25% at sites 

of lower methylation levels, NGS shows a more 

consistent performance compared to arrays. Illustrated 

in Figure 6A, these results highlight that NGS not only 

offers higher resolution and greater specificity but also 

exhibits reduced susceptibility to batch effects. This 

independence from hybridization conditions and pre-

designed probes allows for a more comprehensive and 

flexible analysis, making NGS particularly valuable for 

precise and reproducible methylation profiling across 

diverse biological samples and time points. This 

technological superiority enhances our ability to 

monitor epigenetic changes with greater accuracy and 

reliability, which is crucial for longitudinal studies and 

the assessment of lifestyle or other interventions over 

time. 

 

Advantages and limitations of simplifying epigenetic 

clocks with EpiAgePublic 

 

While traditional epigenetic clocks rely on analyzing 

hundreds to thousands of CpG sites, EpiAgePublic 

achieves comparable predictive accuracy with 

significantly fewer sites. This reduction in complexity 

could lead to fewer errors associated with probe 

variability and hybridization inefficiencies inherent in 

array platforms. However, it is essential to acknowledge 

that the broader genomic coverage of traditional clocks 

may capture a more comprehensive epigenetic signature 

of aging. Therefore, while EpiAgePublic offers an 

efficient alternative, it should be seen as complementary 

to existing methods rather than a replacement. 

 

The primary limitation of this study is the potential 

oversimplification of the aging process using only three 

CpG sites. Aging is a multifactorial process influenced 

by numerous genetic, environmental, and lifestyle 

factors. Therefore, further studies are needed to validate 

the effectiveness of EpiAgePublic across larger and 

more varied populations. Additionally, longitudinal 

studies would help in understanding how EpiAgePublic 

responds to changes over time and under different 

physiological or pathological conditions. 

 

Moreover, the integration of EpiAgePublic with other 

biological markers of aging, such as telomere length, 

oxidative stress markers, and inflammatory cytokines, 

could provide a more holistic view of the aging process. 

This integrative approach could lead to the development 

of a multi-dimensional aging model that combines 

genetic, epigenetic, and biochemical indicators of age. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Tables 
 

Supplementary Table 1. Regression analysis results for chronological age across various epigenetic clocks and 
CpG sites including confounder adjustments. 

Model description R² Adj. R² F-Stat p(F-stat) Age Coef Std Err t-Value p-Value 
95% CI 

Lower 

95% CI 

Upper 
AIC BIC Observations 

cg16867657 

(ELOVL2 site) 0.757 0.757 1801 <0.0001 0.0047 4.50E-05 105.465 <0.0001 0.005 0.005 -17790 -17730 4625 

cg21572722 

(ELOVL2 site) 0.702 0.702 1362 <0.0001 0.0025 3.04E-05 82.951 <0.0001 0.002 0.003 -21430 -21370 4625 

cg24724428 

(ELOVL2 site) 0.626 0.625 965.1 <0.0001 0.0039 4.87E-05 79.2 <0.0001 0.004 0.004 -17060 -17010 4625 

EpiAgePublicBlood 0.779 0.778 2030 <0.0001 0.7612 0.007 111.887 <0.0001 0.748 0.775 28630 28690 4625 

DNAmAge 

(Horvath) 0.842 0.841 3067 <0.0001 0.78 0.005 145.819 <0.0001 0.77 0.791 26410 26470 4625 

DNAmAge Hannum 0.883 0.883 4357 <0.0001 0.8554 0.006 153.678 <0.0001 0.845 0.866 26780 26830 4625 

DNAmPhenoAge 0.787 0.786 2127 <0.0001 0.8966 0.008 116.929 <0.0001 0.882 0.912 29740 29800 4625 

DNAmAgeSkinBloo

dClock 0.898 0.898 5078 <0.0001 0.8855 0.005 184.542 <0.0001 0.876 0.895 25400 25460 4625 

DNA GrimAge v1 0.806 0.806 2395 <0.0001 0.689 0.006 121.39 <0.0001 0.678 0.7 26960 27010 4625 

DNA GrimAge v2 0.765 0.765 1882 <0.0001 0.6501 0.006 108.32 <0.0001 0.638 0.662 27470 27530 4625 

 

Supplementary Table 2. Summary table for replicates. 

ID Mean SD CV (%) 95% CI Minimum Maximum Median 25th Percentile 75th Percentile 

1 67.3 1.34 1.99% [65.17, 69.43] 66.09 68.72 67.2 66.13 68.58 

2 90.67 0.99 1.09% [89.10, 92.24] 89.38 91.77 90.77 89.7 91.55 

3 63.47 1.56 2.46% [60.99, 65.95] 61.65 65.33 63.44 61.97 64.99 

4 80.19 1.04 1.29% [78.54, 81.84] 79.51 81.72 79.76 79.54 81.26 

5 72.89 1.6 2.19% [70.35, 75.43] 71.5 74.44 72.8 71.5 74.35 

6 72.61 4.43 6.10% [65.56, 79.67] 66.57 76.47 73.71 67.96 76.18 

7 83.37 1.25 1.50% [81.38, 85.36] 82.04 84.84 83.3 82.2 84.61 

8 86.78 2.04 2.35% [83.54, 90.03] 84.93 89.21 86.49 85.02 88.83 

9 66.6 0.98 1.48% [65.03, 68.16] 65.58 67.73 66.54 65.68 67.57 

10 74.35 2.6 3.49% [70.22, 78.48] 71.28 77.41 74.36 71.84 76.85 

11 78 1.01 1.29% [76.40, 79.60] 76.91 79.11 78 77.04 78.97 

12 79.25 1.65 2.08% [76.62, 81.87] 77.56 81.29 79.07 77.75 80.92 

13 87.51 0.85 0.98% [86.15, 88.87] 86.59 88.64 87.41 86.76 88.37 

14 62.81 1.24 1.98% [60.83, 64.79] 61.1 63.94 63.1 61.51 63.82 

15 81.45 1.52 1.86% [79.03, 83.86] 79.65 83.28 81.43 80 82.91 

16 82.22 1.88 2.29% [79.23, 85.21] 79.59 84.02 82.62 80.29 83.74 

17 82.62 1.47 1.78% [80.28, 84.96] 81.62 84.81 82.03 81.72 84.11 

18 70.94 1.8 2.54% [68.07, 73.81] 69.39 73.07 70.64 69.42 72.75 

19 77.23 1.14 1.48% [75.41, 79.05] 75.67 78.25 77.5 76.03 78.16 

20 87.44 2.78 3.18% [83.02, 91.86] 84.12 90.63 87.5 84.72 90.09 

21 72.08 0.79 1.09% [70.83, 73.33] 71.4 73.21 71.85 71.51 72.87 

22 77.4 0.67 0.87% [76.33, 78.47] 76.86 78.35 77.19 76.9 78.11 

23 88.47 2.45 2.77% [84.57, 92.37] 86.01 91.31 88.28 86.23 90.9 

24 66.71 1.58 2.37% [64.19, 69.22] 65.26 68.7 66.44 65.36 68.34 

25 70.23 2.79 3.98% [65.78, 74.67] 67.92 73.78 69.61 67.96 73.12 

26 68.85 1.19 1.73% [66.95, 70.74] 67.78 70.23 68.69 67.82 70.03 
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27 78.66 2.4 3.05% [74.85, 82.48] 75.61 81.41 78.81 76.31 80.86 

28 80.28 0.76 0.94% [79.08, 81.49] 79.59 81.14 80.2 79.62 81.03 

29 64.02 1.97 3.08% [60.88, 67.15] 62.06 66.69 63.66 62.35 66.05 

30 76.23 1.19 1.56% [74.35, 78.12] 75.15 77.8 75.99 75.24 77.47 

31 65.66 1.76 2.68% [62.86, 68.46] 64.11 67.2 65.66 64.12 67.19 

32 70.15 1.95 2.78% [67.05, 73.25] 68.06 72.41 70.07 68.32 72.07 

33 69.16 0.82 1.19% [67.85, 70.47] 67.97 69.79 69.44 68.29 69.75 

34 66.46 2.03 3.05% [63.24, 69.69] 64.71 69.29 65.93 64.87 68.59 

35 68.06 0.72 1.06% [66.92, 69.20] 67.25 68.72 68.13 67.36 68.69 

36 81.62 1.52 1.86% [79.20, 84.03] 80.2 83.75 81.26 80.42 83.18 

37 74.34 1.66 2.24% [71.69, 76.98] 72.53 75.93 74.44 72.73 75.84 

38 66.67 1.71 2.57% [63.95, 69.39] 64.57 68.56 66.77 64.96 68.27 

39 72.9 0.42 0.57% [72.24, 73.56] 72.47 73.41 72.85 72.52 73.32 

40 68.86 2.32 3.37% [65.16, 72.55] 66.68 72.11 68.32 67 71.26 

41 67.18 1.25 1.86% [65.19, 69.17] 65.78 68.63 67.15 65.98 68.4 

 


