
www.aging-us.com 1 AGING 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

Therapeutic effects of Huangqi formula (Eefooton) in chronic kidney 
disease: clinical research and narrative literature review 
 

Kuo-Cheng Lu1,2, San-Chiang Wu3,4, Tsuo-Cheng Lu5, I-Shang Tzeng6, Chun-En Kuo5,7, Yu-Chiang 
Hung8,9,10, Szu-Ying Wu5,7, Te-Chuan Chen11, Ming-Kai Tsai4, Chih-Kuang Chuang12, Wen-Long 
Hu5,13,14 
 
1Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 
New Taipei City 23142, Taiwan 
2Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen 
Catholic University, New Taipei City 24352, Taiwan 
3Wu San-Chiang Medical Clinic, Lingya District, Kaohsiung City 802014, Taiwan 
4Division of Nephrology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Lingya 
District, Kaohsiung City 80284, Taiwan 
5Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College 
of Medicine, Niaosong District, Kaohsiung 833, Taiwan 
6Department of Statistics, School of Business, National Taipei University, New Taipei, Taiwan 
7School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Dashu District, Kaohsiung 840, Taiwan 
8Department of Chinese Medicine, National Yang Ming Chiao Tung University, Beitou District, Taipei 112304, Taiwan  
9Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Beitou District, Taipei 112304, Taiwan 
10Department of Chinese Medicine, Taipei City Hospital, Linsen, Chinese Medicine, and Kunming Branch, Datong 
District, Taipei 103212, Taiwan 
11Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of 
Medicine, Kaohsiung, Taiwan, Niaosong District,Kaohsiung 833, Taiwan  
12Division of Nephrology, Chong Guang Hospital, Miaoli, Taiwan, Toufen City, Miaoli County 351, Taiwan 
13Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan, Shihcyuan, Sanmin District, Kaohsiung 
807, Taiwan 
14Fooyin University College of Nursing, Kaohsiung, Taiwan, Ta-liao District, Kaohsiung 831, Taiwan  
 
Correspondence to: Wen-Long Hu; email: oolonghu@cgmh.org.tw 
Keywords: chronic kidney disease, eefooton, Huangqi formula, herbal medicine, traditional chinese medicine 
Received: April 1, 2024 Accepted: October 19, 2024  Published: December 7, 2024 

 
Copyright: © 2024 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Objective: The study aimed to assess the clinical effects of employing the Huangqi formula (Eefooton; EFT) for 
chronic kidney disease (CKD) treatment. A narrative literature review was undertaken to elucidate the specific 
ingredients of EFT and their potential impact on renal health. 
Methods: A retrospective observational study investigated EFT treatment in outpatients with stable CKD 
(stages 3B to 5) from March 2019 to March 2021. Patients received 20 mL of EFT thrice daily for 6 months, along 
with standard treatment. Control groups were matched to the EFT cohort. Regular assessments of renal, liver 
functions, and lipid profiles were conducted.  
Results: Serum creatinine (Cr) and eGFR levels consistently improved in stage 3B CKD patients at each follow-up 
visit. At 6 months, improvement in Cr and eGFR was observed for stage 4 and 5 CKD. Stage 3B CKD patients  
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INTRODUCTION 
 

Chronic kidney disease (CKD), marked by persistent 

indicators of kidney damage or reduced glomerular 

filtration rate (GFR) lasting more than 3 months, is now a 

major global public health concern [1]. Kidney function 

is intricately linked to various health complications such 

as malnutrition, anemia, hypertension, and bone disease, 

contributing to an overall decline in quality of life [2]. 

Effectively managing CKD is intricate and may entail 

patient discomfort, including potential medication side 

effects, lifestyle modifications, self-care management, 

and associated medical expenses [3]. 

 

CKD arises from intricate interactions involving 

inflammation, oxidative stress, and fibrosis, influencing 

both its initiation and advancement. Inflammation, the 

immune system’s response to infections or injuries [4], 

plays a crucial role in driving CKD development. 

Imbalances in pro- and anti-inflammatory markers 

escalate low-grade inflammation, correlating with 

increased mortality and cardiovascular complications [4, 

5]. Factors like aging, diabetes, chronic inflammation, and 

uremic toxins contribute to heightened oxidative stress, 

significantly elevating CKD risk [6]. Kidney disease-

related oxidative damage results from diminished 

antioxidants and heightened reactive oxygen species 

(ROS) production. The kidney’s heightened metabolic 

activity, rich in mitochondrial oxidation reactions, makes 

it susceptible to oxidative stress [7]. The research 

underscores the impact of oxidative stress in accelerating 

CKD progression, linking it to complications like 

hypertension, atherosclerosis, inflammation, and anemia 

[6, 8]. In CKD, the reciprocal cycle between oxidative 

stress and inflammation creates a dynamic interplay, with 

each factor magnifying the influence of the other [9]. 

Inflammatory processes stimulate ROS production, 

perpetuating oxidative stress, and further intensifying 

inflammation [10]. Tubulointerstitial fibrosis, a persistent 

and advancing condition affecting kidneys in aging and 

CKD, currently lacks specific treatment options. Recent 
breakthroughs have unveiled the cellular and molecular 

mechanisms driving renal fibrosis [11]. A notable aspect 

of the progression of CKD involves the deposition of 

extracellular matrix, chronic inflammation, tubule 

atrophy, fibrogenesis, and vascular rarefaction [12]. 

Recognizing this intricate relationship is crucial for 

developing targeted therapeutic interventions to mitigate 

CKD advancement.  
 

Conventional interventions, including RAS blockers and 

SGLT2 inhibitors, aim to delay CKD progression [13–

15]. However, using ACEIs or ARBs in older individuals 

and severe CKD is restricted due to potential risks like 

hyperkalemia and acute kidney injury [16]. The efficacy 

of traditional medical treatments for CKD is presently 

constrained, prompting an increasing interest in 

investigating complementary and alternative medicine 

(CAM) for the management of CKD [17]. Traditional 

Chinese medicine (TCM) is an economical and widely 

adopted complementary and alternative medicine (CAM) 

with a long history, especially prevalent in Asia. 

Numerous clinical studies have shown that TCM 

effectively manages early-stage CKD, leading to a 

significant decrease in the risk of progressing to end-

stage renal disease (ESRD) [18–20]. Notably, the herbal 

formula Eefooton (EFT), part of TCM, has shown 

efficacy in slowing CKD progression. Comprising 

herbal extracts like Astragalus membranaceus (A. 
membranaceus) and Rhodiola sacra (R. sacra), EFT 

demonstrates varied biological effects, including 

immunomodulatory properties, anti-oxidative stress, anti-

inflammatory, and anti-fibrosis [21–23]. This study aims 

to clarify the clinical effects of EFT in individuals with 

CKD and includes a literature review on the potential 

positive effects of its components. 

 

RESULTS 
 

Table 1 outlines the baseline demographic data of 

patients in the EFT group, categorized by their CKD 

stage. During the treatment period, four patients 

reported adverse events associated with EFT 

administration. Among these, one patient experienced 

parosmia, perceiving the smell of wood, while the 

others reported mild itching, and one patient presented 

with a skin rash. Notably, these adverse events were 

resolved without the need for additional treatment or 

exhibited notable reductions in systolic blood pressure after 3 and 6 months of EFT treatment. Remarkably, a 
substantial decrease in HbA1C was noted in stage 4 CKD individuals after three months of therapy. Additionally, 
stage 4 CKD patients saw a significant reduction in LDL levels after both 3 and 6 months of EFT treatment. A 
literature review on EFT ingredients indicated that the positive effects of EFT might be associated with its anti-
inflammatory, antioxidant, and anti-fibrotic properties. 
Conclusions: This research demonstrated that incorporating EFT alongside standard treatment enhanced renal 
function in individuals with CKD. EFT is proposed as a feasible complementary treatment for CKD patients, 
emphasizing the importance of early intervention. 
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Table 1. Baseline demographic data of patients in the EFT group, organized according to 
their chronic kidney disease (CKD) stage. 

Characteristics Stage 3B CKD (n=43) Stage 4 CKD (n=29) Stage 5 CKD (n=16) 

Age, years 64.65 (9.57) 64.97 (13.96) 63.88 (7.90) 

Female, n (%) 14 (32.56%) 12 (41.38%) 7 (43.75%) 

BMI, kg/m2 24.54 (2.99) 24.13 (3.78) 24.85 (2.69) 

Systolic BP, mmHg 141.69 (12.73) 139.57 (14.86) 141.44 (16.33) 

Diastolic BP, mmHg 77.34 (9.63) 80.39 (11.83) 77.19 (7.17) 

eGFR, mL/min/1.73 m2 37.55 (4.54) 22.01 (4.19) 9.42 (2.74) 

HbA1c , % 7.21 (1.43) 7.37 (1.73) 6.25 (0.19) 

Hb, g/dL 12.37 (1.59) 10.71 (1.86) 9.91 (1.70) 

Potassium, mg/dL 4.38 (0.48) 4.51 (0.64) 4.85 (0.68) 

LDL, mg/dL 90.56 (32.39) 88.00 (35.06) 73.55 (36.38) 

Type 2 DM, n (%) 14 (32.56%) 8 (27.59%) 6 (37.50%) 

Hypertension, n (%) 39 (90.70%) 28 (96.55%) 13 (81.25%) 

Medication, n (%)    

  ACEi/ ARB 32 (74.42%) 19 (65.52%) 11 (68.75%) 

  CCB 29 (67.44%) 17 (58.62%) 11 (68.75%) 

  Sulfonylurea 9 (20.93%) 4 (13.79%) 6 (37.50%) 

  DPP-4i 6 (13.95%) 4 (13.79%) 6 (37.50%) 

  Insulin 3 (6.98%) 2 (6.90%) 4 (25.00%) 

  Statin 32 (74.42%) 18 (62.07%) 11 (68.75%) 

Note: All data is expressed as the mean (standard deviation). 
Abbreviations: ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BMI: 
body mass index; BP, blood pressure; CCB, calcium-channel blocker; CKD, chronic kidney disease; DM, 
diabetes mellitus; DPP-4i, dipeptidyl peptidase 4 inhibitors; eGFR, estimated glomerular filtration rate; 
Hb, hemoglobin.  

 

Table 2. The demographic information and sequential alterations in both eGFR and 
serum Cr levels within the control group. 

Characteristics Stage 3B CKD (n=44) Stage 4 CKD (n=29) Stage 5 CKD (n=16) 

Age, years 65.36(9.41) 66.41(14.93) 67.12(8.64) 

Female, n (%) 14(31.82%) 12(41.38%) 7(43.75%) 

BMI, kg/m2 26.17(5.76) 25.55(3.97) 24.36(4.83) 

Systolic BP, mmHg 127.45(14.05) 135.06(19.13) 142.62(17.23) 

Diastolic BP, mmHg 70.95(8.96) 71.82(10.48) 75.50(12.18) 

eGFR, mL/min/1.73 m2    

baseline 40.82(6.04) 23.27(4.59) 9.09(2.91) 

3 months 40.50(6.58) 24.54 (6.41) 9.52(3.41) 

6 months 41.80(8.67) 24.06(7.79) 9.06(3.31) 

Cr, mg/dL    

baseline 1.68(0.25) 2.73(0.62) 6.06(1.93) 

3 months 1.71(0.31) 2.73(0.82) 5.89(2.06) 

6 months 1.67(0.32) 2.78(0.80) 6.21(2.20) 

Note: All data is expressed as the mean (standard deviation). 
Abbreviations: BMI, body mass index; BP, blood pressure; Cr, Creatinine; eGFR, estimated 
glomerular filtration rate.  
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discontinuation of EFT. In Table 2, demographic 

information and sequential changes in both eGFR and 

serum Cr levels within the control group are presented. 

No notable changes in eGFR and serum Cr levels were 

noted in the control group across all stages of CKD 

during the follow-up period. 

 

Primary outcomes  

 

Change of eGFR and serum Cr levels 

The baseline, 3-month, and 6-month eGFR levels for the 

EFT study group were 27.31±11.70, 35.06±16.88, and 

36.62±16.07 mL/min/1.73 m2, respectively. Notably, in 

stage 3B, a significant increase in eGFR was observed at 

both the 3-month and 6-month marks during the EFT 

treatment, compared to controls (all p<0.001). 

Furthermore, there was a significant improvement in GFR 

at 6 months for both the Stage 4 CKD and Stage 5 CKD 

groups (P=0.02 and P=0.01, respectively; Table 3). The 

EFT study group displayed Cr levels of 2.96±1.86, 

2.48±1.59, and 2.22±1.33 mg/dL at baseline, 3-month, 

and 6-month treatment, respectively. However, a 

noteworthy decrease in Cr levels was observed in stage 

3B at both the 3-month and 6-month EFT treatment 

intervals compared to controls (P<0.01 and P<0.001, 

respectively). Similarly, the stage 4 CKD and stage 5 

CKD groups exhibited a significant decrease in Cr levels 

up to 6 months of EFT treatment (P=0.04 and P=0.03, 

respectively) (Table 3). 

 

While there were no notable variances in baseline eGFR 

and serum Cr levels between the EFT and control 

groups, significant differences emerged in CKD stage 

3b patients who were treated with EFT. Specifically, the 

EFT treatment group exhibited significantly higher 

eGFR (Figure 1) and lower Cr (Figure 2) levels after 

both 3 and 6 months of treatment (p<0.01, as indicated 

in Table 3). In contrast, for CKD stages 4 and 5, the 

EFT treatment group demonstrated elevated eGFR and 

reduced Cr levels only after 6 months of treatment, in 

comparison to the control group (p<0.05, as indicated in 

Table 3 and Figures 1, 2). 

 

Secondary outcomes in the EFT treatment group  

 

Significant reductions in systolic blood pressure (SBP) 

were observed within the stage 3B CKD cohort after 3 

and 6 months of EFT treatment (P=0.002, P=0.019, 

respectively). Notably, a decrease in diastolic blood 

pressure (DBP) was evident among stage 4 CKD patients 

following three months of EFT therapy (P=0.046). Serum 

potassium levels showed no significant differences 

between CKD groups during each follow-up visit. A 
considerable reduction in HbA1C was noted in 

individuals diagnosed with stage 4 CKD after a three-

month therapy period (P=0.040). Similarly, a slight 

decrease in Hb levels was observed among stage 4 CKD 

individuals after three months of EFT therapy (P=0.021). 

Furthermore, stage 4 CKD patients experienced a 

significant decrease in low-density lipoprotein (LDL) 

levels after both 3 and 6 months of EFT treatment 

(P=0.004 and P=0.001, respectively). Regarding liver 

enzyme levels, individuals with stage 3B CKD showed a 

significant decrease in alanine aminotransferase (GPT) 

levels after three and six months of EFT therapy (P=0.005 

and P=0.032, respectively). Additionally, patients with 

stage 5 CKD exhibited a notable decrease in GPT levels 

after 6 months of EFT treatment (P=0.036, Table 4). 

 

DISCUSSION 
 

In our retrospective observational study, EFT treatment 

led to significant improvements in eGFR and Cr levels for 

patients with stage 3B at each follow-up visit, and patients 

with stage 4 and 5 CKD showed improvement at 6 

months. Our findings align with prior research in animal 

and cell models, suggesting the potential of EFT to 

mitigate and potentially reverse progressive kidney 

function loss in CKD. Compared to traditional herbal 

formulas based on syndrome differentiation in TCM, EFT 

may serve as a more suitable adjunctive treatment for 

CKD in alignment with modern Western medicine. 

Utilizing GEE for eGFR comparisons across CKD stages 

in this study indicates that earlier EFT administration for 

CKD is recommended for optimal renal function 

protection.  

 

Numerous researchers have identified herbal 

medicines with anti-inflammatory, anti-oxidative, 

anti-fibrotic, free radical scavenging, and immune-

modulating properties that effectively improve kidney 

function, reduce the advancement to end-stage renal 

disease (ESRD), and decrease mortality rates [24]. 

Commonly used herbal medicines for CKD treatment 

include A. membranaceus [25], Salvia miltiorrhiza 

[26], Tripterygium wilfordii [27], Rheum palmatum 

[28], Panax ginseng [29], Coptis chinensis [30], 

Rehmannia glutinosa [31], Radix bupleuri [32], and 

Cordyceps sinensis [33]. According to TCM 

principles, single herbs are rarely used; instead, 

complex herbal formulations (comprising two or more 

herbs) are preferred due to the enhanced medicinal 

benefits achieved through synergistic interactions 

between numerous bioactive components [34]. A 

nationwide population-based study demonstrated that 

prescribed Chinese herbal medicines, including 

combination formulas and single Chinese herbal 

products, reduced the likelihood of ESRD occurrence 

in individuals diagnosed with CKD [20]. In our prior 

in vitro study, EFT demonstrated enhanced viability 

and clonogenicity in HK-2 cells (proximal renal 

tubular cells). Our analysis of apoptosis and fibrosis-  
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Table 3. The eGFR and Cr levels were compared at baseline, 3 months, and 6 months of treatment between the 
EFT treatment group and the control group. 

Characteristics Baseline 3 months of treatment 6 months of treatment 

CKD stage 3B 4 5 3B 4 5 3B 4 5 

EFT; eGFR, 

mL/min/1.73 m2  

37.55 

(4.54) 

22.01 

(4.19) 

9.42  

(2.74) 

47.93 *** 

(11.64) 

28.17 

(9.04) 

12.08  

(4.28) 

50.31*** 

(7.41) 

29.61* 

(10.85) 

13.64 * 

(5.75)* 

Control; eGFR, 

mL/min/1.73 m2  

40.82 

(6.04) 

23.27 

(4.59) 

9.09  

(2.91) 

40.50  

(6.58) 

24.54 

(6.41) 

9.52  

(3.41) 

41.80  

(8.67) 

24.06  

(7.79) 

9.06  

(3.31) 

EFT vs. Control    P<0.001 P= 0.08 P=0.07 P<0.001 P<0.05 P<0.05 

EFT;          

Cr, mg/dL  

1.80 

(0.26) 

2.91 

(0.64) 

6.20  

(2.01) 

1.50**  

(0.30) 

2.44  

(0.73) 

5.20  

(1.67) 

1.42*** 

(0.19) 

2.38*  

(0.71) 

4.52* 

(2.00) 

Control;       

Cr, mg/dL 

1.68 

(0.25) 

2.73 

(0.62) 

6.06  

(1.93) 

1.71  

(0.31) 

2.73  

(0.82) 

5.89  

(2.06) 

1.67  

(0.32) 

2.78  

(0.80) 

6.21  

(2.20) 

EFT vs. Control    P<0.001 P=0.16 P=0.31 P=3.10 P=0.06 P<0.05 

Note: *P<0.05; **P<0.01; ***P<0.001 when compared with the baseline data. 
 

related proteins revealed that EFT decreased the 

expression of indoxyl sulfate (IS)-induced fibrosis-

related proteins (α-smooth muscle actin) without 

impacting apoptosis-related proteins (Caspase 3) (not 

published). In early CKD, inflammation and kidney 

fibrosis start subtly, with inflammatory cells releasing 

cytokines and growth factors, leading to initial scarring. 

Anti-inflammatory, antioxidant, and anti-fibrosis 

treatments may preserve or partially reverse kidney 

function at this stage. In late CKD, inflammation 

becomes chronic and fibrosis worsens, causing 

extensive scarring and hardening of kidney tissues,  

 

 

 

Figure 1. The eGFR levels were evaluated across different CKD stages after 3 and 6 months of treatment. Specifically, the green, 

red, and blue lines depict the EFT-treated CKD stage 3b, 4, and 5 groups, respectively, while the black line corresponds to the control group at 
the respective CKD stage. * P<0.05, *** P<0.001. 
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ultimately leading to end-stage renal disease where 

these treatments have limited effects [12]. The 

progressive fibrosis further diminishes kidney function 

in a vicious cycle. The varied ingredients in EFT,  

with strong anti-inflammatory, antioxidant, and anti-

fibrosis properties, help mitigate renal function 

deterioration, especially in early CKD, as shown in our 

study.  

 

Hypertension often accompanies CKD, acting as a 

crucial modifiable risk factor that impacts both 

cardiovascular events and the progression of CKD 

[35]. Elevated blood pressure exacerbates CKD, 

regardless of its underlying cause, adversely affecting 

kidney health [36]. Notably, a significant correlation 

has been observed between hypertension in CKD and 

chronic inflammation, with studies highlighting the 

involvement of inflammatory markers in the 

progression of both conditions [37]. This inflammation 

consistently influences pathogenic mechanisms 

associated with blood pressure and proteinuria in CKD 

[38]. Our study revealed substantial reductions in 

systolic blood pressure (SBP) among stage 3B CKD 

patients after 3 and 6 months of EFT treatment. 

Furthermore, a decrease in diastolic blood pressure 

(DBP) was evident among stage 4 CKD patients 

following three months of EFT therapy. These 

findings suggest that C. pilosula may contribute to 

modulating blood pressure in EFT-treated CKD 3B 

patients, other EFT ingredients synergistically 

contribute to its anti-inflammatory and anti-oxidative 

effects, working together to collectively reduce blood 

pressure [39].  

 

Our study showed no notable variations in serum 

potassium levels among different CKD groups in each 

subsequent follow-up assessment. There exists a 

significant correlation between glycated hemoglobin 

(HbA1c) levels and inflammation [40]. Elevated HbA1c 

levels correlate with heightened inflammatory markers, 

particularly high-sensitivity C-reactive protein (hs-

CRP). Elevated HbA1c correlates with heightened 

 

 
 

Figure 2. The analysis involved assessing serum Cr levels in distinct CKD stages after 3 and 6 months of treatment. Notably, 

the green, red, and blue lines represent the EFT-treated CKD stage 3b, 4, and 5 groups, while the black line corresponds to the control group 
within their respective CKD stages. * P<0.05, *** P<0.001. 
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Table 4. Secondary outcome measurements were recorded at each visit based on the CKD stage within the EFT 
treatment group. 

Characteristics Baseline 3 months of treatment 6 months of treatment 

CKD stage 3B 4 5 3B 4 5 3B 4 5 

Systolic BP,  

mmHg 

141.69 

(12.73) 

139.57 

(14.86) 

141.44 

(16.33) 

134.71 

(13.38)** 

136.61 

(17.96) 

136.25 

(14.94) 

135.52 

(12.71)* 

139.21 

(15.17) 

139.71 

(6.264) 

Diastolic BP,  

mmHg 

77.34  

(9.63) 

80.39 

(11.83) 

77.19  

(7.17) 

75.39  

(9.33) 

76.00  

(8.70)* 

75.00  

(10.48) 

78.43  

(6.35) 

79.37  

(10.63) 

75.29  

(5.68) 

Potassium,  

mg/dL 

4.38  

(0.48) 

4.51  

(0.64) 

4.85  

(0.68) 

4.43  

(0.52) 

4.52  

(0.47) 

4.71  

(0.77) 

4.43  

(0.39) 

4.59  

(0.53) 

4.49  

(0.62) 

Hb, g/dL 
12.37  

(1.59) 

10.71  

(1.86) 

9.91  

(1.70) 

12.18  

(1.74) 

10.22  

(1.65)* 

10.41  

(1.27) 

12.82  

(1.94) 

10.22  

(1.79) 

9.68  

(1.18) 

HbA1c , % 
7.21  

(1.43) 

7.37  

(1.73) 

6.25  

(0.19) 

7.37  

(1.09) 

6.10  

(0.57)* 

- 6.95  

(1.50) 
- - 

LDL, mg/dL 
90.56 

(32.39) 

88.00 

(35.06) 

73.55 

(36.38) 

93.05  

(30.74) 

66.37 

(28.11)** 

67.43  

(18.51) 

80.85 

(29.19) 

60.60 

(15.50)** 

81.00 

(18.18) 

GOT, U/L 
22.33  

(6.97) 

23.88 

(19.37) 

20.50 

(12.99) 

21.80  

(9.44) 

21.09  

(7.54) 

16.80  

(6.66) 

20.73  

(8.37) 

19.86  

(6.44) 

15.20  

(4.32) 

GPT, U/L 22.81 

(11.86) 

28.16 

(49.29) 

21.75 

(22.12) 

18.54  

(7.21)** 

19.26 

(16.79) 

13.30  

(7.41) 

18.31  

(7.98)* 

11.71  

(4.79) 

10.40 

(1.14)* 

Note: All data is expressed as the mean (standard deviation).  
Abbreviations: BP, blood pressure; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; GOT, aspartate 
aminotransferase; GPT, alanine aminotransferase; Hb, hemoglobin; LDL, low-density lipoprotein. * p<0.05, ** p<0.01, *** p<0.001. 

 

systemic inflammation, with poorly controlled diabetes 

mellitus (DM) exacerbating inflammatory activity [40]. 

This intricate connection between glycemic control and 

inflammation extends beyond diabetes, impacting 

conditions like COVID-19, where elevated HbA1c 

levels are linked to inflammation, hypercoagulability, 

and adverse outcomes [41]. In our study, individuals 

with stage 4 CKD experienced a significant reduction in 

HbA1c without a noticeable change in blood glucose 

levels after a three-month therapy period. This suggests 

that EFT ingredients like A. membranaceus [42], C. 

pilosula [43], P. quinquefolius [44] may contribute to 

strong anti-inflammatory effects. Despite being 

composed of five traditional Chinese medicines, EFT 

demonstrated minimal adverse effects, no increased risk 

of hyperkalemia, and beneficial effects on hypertension, 

hyperglycemia, and lipid profile, underscoring its 

excellent safety profile. 

 

Studies suggest that inflammation can modify the 

association between LDL cholesterol and outcomes 

among CKD patients. In CKD, the traditional 

connection between LDL cholesterol levels and 

cardiovascular events is modified due to inflammation 

[45]. This alteration is attributed to the phenomenon of 

‘reverse causality,’ where malnutrition and chronic 

inflammatory conditions contribute to decreased total 

and LDL cholesterol levels [46]. Despite this, it remains 
crucial to lower LDL cholesterol to independently 

reduce cardiovascular risk, emphasizing the significance 

of managing lipid profiles in CKD patients [47]. In our 

study, stage 4 CKD patients experienced a substantial 

reduction in low-density lipoprotein (LDL) levels after 

3 and 6 months of EFT treatment. Previous studies 

indicate that A. membranaceus (Huangqi) effectively 

scavenges superoxide and hydroxyl radicals, with 

increased activity at higher concentrations. Animal 

experiments show it significantly reduces plasma total 

and LDL cholesterol levels while increasing HDL 

cholesterol levels. In vivo, it inhibits free radicals during 

ischemia-reperfusion, attributing its cardiovascular 

benefits to potent antioxidant activity [48]. Molecular 

mechanisms include upregulating HO-1 expression and 

promoting Akt and Nrf2 phosphorylation, facilitating 

Nrf2 nuclear translocation to protect vascular 

endothelial cells from oxidative stress in atherosclerosis 

treatment [49]. Research suggests that C. pilosula helps 

lower LDL cholesterol levels, likely due to its bioactive 

compounds regulating lipid metabolism [43]. It also 

influences disease development through mechanisms of 

inflammation regulation, oxidative stress, immuno-

modulation, and apoptosis [50]. However, additional 

clinical studies are necessary to fully understand  

and confirm its specific effects on LDL levels and  

its potential role in managing cholesterol-related 

disorders.  

 

This study has limitations. Firstly, EFT’s complex 

composition poses challenges in precisely explaining 
the therapeutic mechanism for CKD treatment for each 

ingredient. Additional animal and cellular studies are 

required to comprehend the molecular signaling 



www.aging-us.com 8 AGING 

pathway of EFT in treating CKD. Secondly, 

determining the effective timing, optimal dosage 

regimen, and pharmacokinetics of EFT is crucial for 

enhancing therapeutic effects and minimizing adverse 

effects. Thirdly, protein-bound uremic toxins like 

indoxyl sulfate [51] and increased PTH levels [52, 53] 

could contribute to sustained low-level inflammation 

and oxidative stress in CKD, emphasizing the 

usefulness of measuring IS and PTH levels. Fourthly, a 

retrospective observational study analyzes existing data 

to find correlations, while a randomized controlled trial 

(RCT) assigns participants to groups to establish 

causality. Retrospective studies generate hypotheses 

that RCTs can confirm. Thus, our study results should 

be validated by further RCTs. Future studies should 

incorporate randomization, placebo control, and follow-

up evaluations for a robust conclusion. Mechanism 

studies, including cellular and animal research, are 

warranted. 

 

A narrative literature review of the efficacy of EFT 

ingredients 

 

EFT is a liquid blend comprising extracts from five 

types of herbs, forming an herbal compound designed to 

address CKD [21, 54]. Table 5 displays the potential 

signaling pathways associated with each Ingredient 

included in the EFT formulation, which is used for the 

therapy of CKD. A summary of the anti-oxidative, anti-

inflammatory, and anti-fibrosis properties of EFT are 

shown in Figure 3.  

 

Huangqi or Astragalus are both common names for A. 

membranaceus, a perennial herb indigenous to northern 

and eastern China. This herb has been used in TCM for 

thousands of years and plays a crucial role. The immune 

system, energy levels, and overall vitality are all 

promoted through the widespread use of Astragalus in 

TCM [55]. As a potential therapeutic herb for diabetic 

nephropathy, A. membranaceus has been extensively 

studied and combined with standard medications can 

effectively reduce albuminuria, proteinuria, and serum Cr 

without any observed side effects [56]. Attenuating the 

induction of the nitric oxide synthase pathway is a 

potential way to prevent diabetic nephropathy [57]. It 

demonstrates efficacy in reducing fasting blood glucose, 

and protinuriaa, reversing glomerular hyperfiltration, and 

improving early diabetic nephropathy models [58]. A. 
membranaceus is effective against proteinuria in 

numerous reports [59, 60]. Examining Astragali Radix 

(the root of the A. membranaceus) aqueous extract on rats 

with Adriamycin (ADR) nephropathy suggests a possible 

decrease in proteinuria. This is achieved by suppressing 
the overexpression of endothelial nitric oxide synthase 

(eNOS) and inhibiting oxidative injury [61]. Clinical 

research suggests that A. membranaceus can stabilize 

eGFR levels and postpone the initiation of renal 

replacement therapy in individuals with progressing 

CKD stage 4. These benefits are linked to the decreased 

levels of NF-kB [62]. Astragaloside IV (AS-IV), derived 

from A. membranaceus, mitigates oxidative stress, 

providing renal protection in murine models [63]. It also 

shows therapeutic promise for cardiovascular disorders 

[64]. AS-IV has the potential to impede the progression 

of renal fibrosis by mitigating the TGF-β1/Smad and 

TLR4/NF-κB signaling pathways, thereby preventing 

fibrosis [22, 65, 66]. AS-IV also can alleviate 

endoplasmic reticulum (ER) stress, thereby reducing 

podocyte apoptosis by suppressing calcium-ATPase type 

2 in the sarco-/endoplasmic reticulum (SERCA2) [67, 68]. 

 

Animal trials demonstrated that the administration of 

total flavonoids from Astragalus markedly reduced 

plasma levels of total cholesterol and LDL while 

simultaneously increasing HDL levels [48]. Utilizing 

Astragalus polysaccharides led to a decrease in blood 

levels of fasting plasma glucose, HbA1c, and insulin, 

coupled with an elevation in superoxide dismutase 

levels [42]. The antihyperglycemic effect is achieved by 

increasing levels of glucose transporter protein-4 [69], 

enhancing PPAR-α activity [70], and inhibiting the 

NPY (neuropeptide-y) [71]. In a mouse model of iron-

deficiency anemia, the A. membranaceus poly-

saccharide-iron (III) complex showed a faster rise in 

hemoglobin, superoxide dismutase, and catalase levels, 

along with a quicker decrease in methane dicarboxylic 

aldehyde levels [72]. A. membranaceus also enhanced 

red blood cell, hemoglobin, and platelet counts in bone 

marrow cells of mouse models experiencing deficiencies 

due to myelosuppression induced by irradiation and 

cytotoxic chemotherapeutic compounds [73].  

 

Codonopsis pilosula (C. pilosula), also known as 

Dangshen or Codonopsis, is a perennial flowering plant 

classified within the Campanulaceae family. Codonopsis 

is widely utilized in TCM for its reputed capacity to 

nurture and strengthen the body, particularly focusing on 

the spleen and lungs [39]. C. pilosula contains assessable 

bioactive components, including polyacetylenes, 

phenylpropanoids, alkaloids, triter-penoids, and poly-

saccharides. These components offer therapeutic benefits 

similar to Panax ginseng, providing a cost-effective 

alternative for energy supplementation compared to the 

relatively pricier Panax ginseng [74]. Scientific evidence 

supports C. pilosula’s role in immune regulation, 

improved gastrointestinal function, enhanced appetite, 

lowered blood pressure, and preventive effects against 

conditions like tumors, diabetes, and aging [39]. C. 

pilosula’s hypoglycemic effects involve reducing 
oxidative stress, modulating lipid metabolism, enhancing 

glycolytic enzymes, and lowering liver transaminases. In 

a type 2 diabetes model, improvements were seen in 
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Table 5. Mechanisms of the active ingredients of Eefooton. 

Herbs 
Active 

compound 
Possible mechanisms 

Astragalus 

membranaceus 

 

Astragalus root 

extract 

Increase the effectiveness of conventional therapies by lowering albuminuria, 

proteinuria, and serum creatinine levels [56]. 

Regulation of iNOS activity of macrophages in different states [57]. 

Suppression of extracellular matrix deposition and upregulation of VEGF, may reduce 

capillary loss and improve microstructure dysfunction [75]. 

Reduce α-SMA and downregulate E-cadherin; inhibit the induction of EMT and the 

deposition of extracellular matrix; reduce TGF-β1-induced expression and Smad2/3 

phosphorylation [76]. 

Polysaccharide  

Astragaloside Ⅳ 

Decrease ECM accumulation and inflammatory cell infiltration by inhibiting 

inflammation via the TLR4/NF-кB signaling pathway [22]. 

 Inhibit ROS generation and apoptotic protein expression [23]. 

Reduce the BUN level and significantly decrease renal oxidative stress [63]. 

Decrease albuminuria, s-creat, BUN, ECM expansion, phosphorylation of eukaryotic 

initiation factor 2α, protein kinase R-like ER kinase and JNK; decrease glucose-

regulated protein 78 and 150 kDa oxygen-regulated protein, apoptosis of podocytes, 

C/EBP homologous protein, and cleaved caspase-3 [67]. 

↓ albuminuria, BUN, s-creat; ↓ KiHPCh; ↓ RAS (↓ renin); ↓ MCP-1, TNF-α; ↓ 

apoptosis; ↑ podocin and nephrin; ↓ ER stress (↓ GRP78, cleaved ATF6, p-PERK, p-

IRE1, and CHOP); ↓ ER stress-induced apoptosis (↓ ATF6 and PERK, p-eIF2α, CHOP, 

p-IRE1α, p-JNK, ↓spliced X-box binding protein 1; ↓ cleaved caspase-12 and caspase-

3); ↓ p-mTOR and p70S6 kinase; ↑ p-AMPKα (↑ AMPKα activation); ↑ autophagy; ↑ 

SERCA2 [68]. 

Inhibit the Wnt/β-catenin pathway and reduce the production of EMT-related proteins; 

lessen oxidative stress injury and the release of inflammatory factors through the 

interaction of Wnt, PI3K/Akt, NF-κB, Ras, and JAK/STAT signaling pathways [77]. 

Decrease the mRNA level of NF-kB and raise the expression of IkB mRNA [78]. 

Decrease levels of MDA and 8-OHdG; increase the level of SOD; inhibit oxidative stress 

and IL-1β and TNF-α overproduction; downregulate ERK1/2 activation and upregulate 

TRPC6 expression [79]. 

Attenuate complement membrane attack complex-induced podocyte injury via the 

MAPK pathway [80]. 

↑SIRT1 → ↓p65 acetylation → ↓NF-κB → ↑ autophagy (↑ Beclin 1 and LC3 II) →↓ MC 

proliferation and activation; ↓ albuminuria, KiHPCh; ↓α-SMA, FN, and collagen 4 [81]. 

Codonopsis 

pilosula 

 

Polysaccharides Inhibit proinflammatory cytokine TNF-α release to decrease renal ischemia–reperfusion 

injury-induced elevation in serum LDH, AST, BUN, and creatinine levels [82]. 

Increase glucose uptake and insulin sensitivity in the differentiated adipocytes [83]. 

Elevate hepatic glycogen and plasma insulin levels [84]. 

Oligosaccharides Improve anti-hypoxia activity by preventing lipid peroxidation and enhancing 

antioxidant activity [85]. 

Selenizing 

polysaccharide 

Promote the phagocytic uptake and NO, TNF-α and IL-6 production; increase IκB-α 

degradation in the cytosol and the translocation of NF-κB p65 subunit into the nucleus 

[86]. 

Pectic 

polysaccharide 

Promote lymphocyte proliferation; modulate the percentage of CD4+, CD8+, CD28+, 

and CD152+ T cells; enhance the production of IL-2, TNF-α, and IFN-γ; and increase 

the expressions of CD28, PI3K, and p38MAPK mRNA [87]. 

Ligustrum 

lucidum 

 

Oleanolic acid Modulate glucose levels and regulate lipid metabolism through its hypoglycemic and 

hypolipidemic properties [88]. 

Inhibit cellular inflammatory processes induced by IFN-α of iNOS and of 

cyclooxygenase 2 in mouse macrophages [89]. 
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Enhance the proliferative activity of piglet blood lymphocytes and upregulate the CD4 

and CD8 cell populations; regulate the expression of Th1- and Th2-related cytokines; 

elevate the levels of IL-2, IFN-γ, and TNF-α; decrease the levels of IL-4 and IL-10; and 

stimulate the NO secretion of lymphocytes [90]. 

Ligustri lucidi 

fructus extract 

Protective effects against H2O2 toxicity via its free radical scavenging activity and 

ability to elevate levels of antioxidant enzymes [91]. 

Panax 

quinquefolius 

 

Polysaccharides Induce IL-6, IL-1, TNF-α, and IL-10 production in human peripheral blood mononuclear 

cells [92]. 

↑ BW (decreased in T1DM model); ↓ BW, plasma insulin levels, insulin resistance 

(increased in T2DM model) and ↓ s-glu, HbA1c, albuminuria, s-creat, oxidative stress, 

HO-1, NF-κB, mesangial expansion, ECM, fibronectin, collagen 4-α1, VEGF, 

endothelin-1, and TGF-β1 [93]. 

Inhibit AGE accumulation in diabetic rat kidneys via their hypoglycemic and renal 

function ameliorating effects [94]. 

Rhodiola sacra 

 

Salidroside Decrease the release of inflammatory cytokines and inhibit the TLR4/NF-κB and MAPK 

signaling pathways [95]. 

Reduce MDA levels and elevate glutathione peroxidase activity in a model of kidney 

damage, induced by unilateral ureter obstruction, through its antioxidant effects [96]. 

Reduce cytotoxicity, attenuate ROS accumulation, and decrease intracellular MDA 

through activation of antioxidant enzymes [97]. 

8-OHdG, 8-hydroxy-2’-deoxyguanosine; AGE, advanced glycation end-product; AST, aspartate aminotransferase; BUN, 
blood urea nitrogen; ERK, extracellular signal-regulated protein kinase; HK-2, human kidney 2; ICAM-1, intercellular cell 
adhesion molecule-1; IFN, interferon; IL, interleukin; iNOS, inducible nitric oxide synthase; LDH, lactate dehydrogenase; 
MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemoattractant protein-1; MDA, malondialdehyde; mRNA, 
messenger ribonucleic acid; NF-κB, nuclear factor kappa B; NO, nitric oxide; ROS, reactive oxygen species; SOD, superoxide 
dismutase; TGF-β1, transforming growth factor beta 1; Th, T helper cells; TLR4, toll-like receptor 4; TNF, tumor necrosis 
factor; TRPC6, transient receptor potential cation channel, subfamily C, member 6; VEGF, vascular endothelial growth 
factor. 

 

markers like blood glucose, insulin sensitivity, 

triglycerides, total cholesterol, LDL/HDL ratio, and 

malondialdehyde, alongside increased antioxidants such 

as SOD (superoxide dismutase), TAC (total antioxidant 

capacity), catalase, and GPX (glutathione peroxidase) 

[43]. Extracts from the upper parts of C. pilosula exhibit 

stronger antioxidants than their roots. The stems and 

leaves, rich in active components, hold substantial 

potential for further research and development [98]. S-

CPPA1, a uniform polysaccharide from the stem, offers 

renoprotective effects against I/R-induced renal injury, 

possibly by suppressing the release of the pro-

inflammatory cytokine TNF-α [82]. 

 

Ligustrum lucidum (L. lucidum), commonly known as 

Chinese privet or glossy privet, is an evergreen shrub 

native to East Asia, particularly China. It has been 

cultivated for traditional medicine and ornamental 

horticulture. Often combined with other botanicals, it is 

used to address health issues related to the liver, 

kidneys, and immune system [99]. L. lucidum contains a 

variety of chemical elements, including triterpenes, 

secoiridoids, and flavonoids. The main bioactive 

constituents are oleanolic acid and ursolic acid [100]. 

These compounds exhibit various pharmacological 

effects, providing the plant with hepatoprotective, 

anticancer, antioxidant, antiviral, anti-osteoporosis, and 

immunomodulating properties [101]. Moreover, L. 

lucidum demonstrates anti-aging effects, highlighting its 

versatile therapeutic potential [102].  

 

The ethanol extract of L. lucidum fruits (ELL) exhibits 

mild antioxidant properties. ELL demonstrates a 

significant reduction in levels of BUN, sGPT, sGOT, 

alkaline phosphatase, LDH, TG, and Cr at various 

doses. These findings suggest that ELL, by activating 

antioxidant enzymes, may protect rats from oxidative 

damage induced by acute dibutyl hydroxy toluene 

(BHT) exposure [103]. Fructus Ligustri Lucidi (FLL), 

extracted from L. lucidum Ait. fruit is known for its 

enduring kidney and liver tonifying properties. Poly 

pretreatment in UUO mice mitigated glomerulosclerosis 

and tubulointerstitial fibrosis, reducing key factors (FN, 

VEGF, MCP-1, Rantes), showcasing FLL’s potential in 

kidney fibrosis protection [104]. 

 

Panax quinquefolius (P. quinquefolius), also known 

as American ginseng, is a perennial herb belonging to 

the Araliaceae family. Historically used by Native 

American communities, it holds significance in 
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traditional medicine systems [105]. Acknowledged for 

its perceived capacity to enhance energy and alleviate 

fatigue, P. quinquefolius is believed to exert a 

harmonizing influence on the body’s energy, aligning 

with the TCM concept of Qi [106, 107]. With its 

primary bioactive components being diverse plant 

polysaccharides, P. quinquefolius contributes to a 

spectrum of pharmacological activities. These include 

immunomodulatory effects [108], antioxidant 

properties [109, 110], anticancer potential [111], 

antimicrobial benefits [112], and neuroprotective 

properties [77]. P. quinquefolius exhibits potential to 

address renal impairment [113]. The main active 

components in P. quinquefolius are dammarane-type 

ginsenosides, also referred to as saponins. Notably, 

two distinct variants hold significance: 20(S)-

Protopanaxadiol (PPD) and 20(S)-Protopanaxatriol 

(PPT) [15]. Orally consumed, PPD-type ginsenosides 

undergo metabolism by gut anaerobes, resulting in the 

formation of PPD monoglucoside, namely, 20-O-beta-

D-glucopyranosyl-20(S)-protopanaxadiol [114]. The 

key active component in P. quinquefolius, P. 
quinquefolius saponin (PQS), effectively inhibits 

vascular smooth muscle cells (VSMCs) calcification. 

Its inhibitory effect is associated with decreasing 

oxidative stress and controlling osteogenic gene 

expression through promoting Nrf2 upregulation 

[115]. The AGC1 polysaccharide from P. 

quinquefolius boosts immunostimulatory effects in 

primary murine splenocytes, leading to increased 

cellular proliferation, elevated nitric oxide (NO) 

production, and enhanced tumor necrosis factor-alpha 

(TNF-α) release [116]. Moreover, extracts of P. 

quinquefolius polysaccharides exhibit the capacity to 

stimulate the production of IL-6, IL-1, TNF-α, and IL-

10 in a controlled laboratory environment [92]. The P. 

quinquefolius root extract effectively lowers blood 

sugar and HbA1c levels. Additionally, it significantly 

increases plasma insulin and C-peptide levels in STZ 

diabetic mouse models [44]. P. quinquefolius root 

extract efficiently reduces blood sugar and HbA1c 

levels while significantly boosting plasma insulin and 

C-peptide levels in STZ diabetic mouse models [117]. 

 

Ginsenoside Rg1 mitigates sepsis-induced acute kidney 

injury (AKI) by hindering ferroptosis in renal tubular 

 

 
 

Figure 3. Summary of antioxidant, anti-inflammatory and anti-fibrotic properties of Eefooton ingredients in CKD. 
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epithelial cells through the FSP1-CoQ10-NADPH 

pathway, a ferroptosis suppressor protein 1 (FSP1) 

mechanism [118, 119]. It also helps prevent the 

excessive buildup of the extracellular matrix (ECM) in 

renal tubular cells. Ginsenosides additionally inhibit 

apoptosis in glomerular mesangial cells and reduce 

damage to podocytes [120]. Together, these actions 

suggest ginsenosides as a potential therapeutic strategy 

for kidney protection, emphasizing their role as a pre-

ventive measure rather than a primary medication [121]. 

 

Rhodiola rosea (R. rosea) is a perennial plant native to 

mountainous regions in North America, Europe, and Asia. 

With significant historical importance, it has been widely 

used in various cultures, especially in the traditional 

medicine of Siberian and Scandinavian communities 

[122]. R. rosea’s underground components encompass 

numerous chemical compounds, such as phenols, 

flavonoids, alkaloids, salidroside, etc. [123, 124]. R. rosea 

is believed to positively affect physical performance and 

endurance [125]. Previous research indicates cognitive-

enhancing properties, potentially improving mental 

alertness, concentration, and memory [122, 126]. 

 

In diabetic kidney disease, salidroside, a bioactive 

compound in R. rosea’s, demonstrates nephron-

protective effects by inhibiting apoptosis in proximal 

renal tubular cells [127]. Modern pharmacological 

studies show diverse bioactivities in Rhodiola plants, 

including antioxidant, immunomodulatory, anti-

inflammatory, antidiabetic, antihypertensive, neuro-

protective, anti-stress, antidepressant, and anticancer 

properties [128].  

 

Salidroside boosts the expression of erythroid markers, 

including glycophorin A, transferrin receptor (CD71), 

and hemoglobin, potentially expediting erythropoiesis in 

cells treated with erythropoietin [129]. Treating with 

salidroside improves kidney function, decreases 

extracellular matrix (ECM) deposition, and mitigates 

protein levels associated with epithelial-mesenchymal 

transition (EMT) markers in mouse kidneys and HK-2 

cells. Additionally, it markedly reduces the release of 

inflammatory cytokines and hinders the TLR4/NF-κB 

and MAPK signaling pathways, indicating Salidroside’s 

potential as a promising therapeutic approach for renal 

fibrosis [95]. Salidroside elevates SOD levels in LPS-

treated mice by enhancing the expression of Sirtuin 1 

(SIRT1) and nuclear factor erythroid 2-related factor 2 

(Nrf2) proteins, guarding against LPS-induced kidney 

injury [130]. 

 

CONCLUSIONS 
 

In this retrospective observational study, EFT improved 

renal function by increasing eGFR levels and reducing 

Cr levels alongside conventional CKD treatment. No 

adverse impact on liver function was noted with EFT 

treatment. Our analysis of the molecular mechanisms of 

each EFT ingredient reveals that all five have distinct 

anti-inflammatory and antioxidant effects. However, A. 

membranaceus, L. lucidum, R. rosea are particularly 

likely to provide notable antifibrotic effects. The 

potential improvement in HbA1c levels may be linked 

to the hypoglycemic effects of A. membranaceus and C. 
pilosula. EFT could serve as an adjuvant therapy for 

CKD due to its potential anti-oxidative, anti-

inflammatory, and anti-fibrotic properties. Early 

administration of EFT in CKD may expedite its 

protective effects on renal function. However, this 

observation requires further confirmation. 

 

MATERIALS AND METHODS 
 

Patients 

 

This study included patients diagnosed with stable CKD 

who underwent EFT treatment from March 2019 to 

March 2021. The 88 participants, ranging from CKD 

stage 3B to stage 5, comprised 33 women and 55 men 

aged 30 to 89. Their body mass index (BMI) ranged 

from 17.35 to 34.41 kg/m2. Over 6 months, participants 

received both conventional medicine and supplementary 

EFT treatment. The control groups mirrored the EFT 

cohort in terms of patient count, age (±5%), sex, and 

eGFR (±5%) for individuals with stable CKD. All 

patients in the study cohort received conventional 

medical treatment for CKD. Among the EFT group, 28 

patients had diabetes mellitus (DM), and 80 had 

hypertension. Individuals engaging in self-medication 

and complementary alternative treatments were 

excluded from the study. 

 

Intervention 

 

The Huangqi formula (Eefooton; EFT) utilized in this 

study comprised Astragalus membranaceus (A. 
membranaceus; 3 g), Codonopsis pilosula (C. pilosula; 

3 g), Ligustrum lucidum (L. lucidum; 3 g), Panax 

quinquefolius (P. quinquefolius; 1.3 g), and Rhodiola 

sacra (R. sacra; 1.3 g), diluted in 20 mL of water. 

Patients were orally administered a 20-mL dose of EFT 

thrice a day for 6 months, in conjunction with 

conventional treatment. Conventional treatment en-

compassed ACE inhibitors, ARBs, or calcium-channel 

blockers for hypertension; sulfonylureas, dipeptidyl 

peptidase 4 inhibitors, or insulin for diabetes mellitus 

(DM); erythropoietin for anemia in the stage 5 CKD 

group; and statins for dyslipidemia. Notably, EFT holds 

approval from the United Kingdom Accreditation 

Service, boasting certifications such as ISO22000 and 

hazard analysis and critical control points.  
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Outcome measurements 
 

The main outcomes assessed in this study were the 

alterations in eGFR and serum Cr levels. Secondary 

outcomes encompassed variations in blood pressure, 

serum potassium, hemoglobin (Hb), glycated 

hemoglobin (HbA1c), serum aspartate aminotransferase 

(GOT), and alanine aminotransferase (GPT), and low-

density lipoprotein (LDL) cholesterol. These parameters 

were monitored at three-month intervals throughout the 

treatment period. 
 

Statistical analyses 
 

Patient characteristics, encompassing clinic-

pathological features, treatment duration, response, age, 

and sex, were presented as either mean (standard 

deviation) or count (percentage) based on the variable 

type. Alterations in laboratory data, such as renal 

function, liver function, lipid profile, and relevant 

indicators over the follow-up period, were assessed 

through generalized estimating equations (GEE). GEE 

was also employed to compare these changes between 

EFT-treated patients and controls across distinct CKD 

stages. The threshold for statistical significance was 

established at P<0.05. All statistical analyses were 

conducted using SPSS for Windows, version 22 

(Statistics 22, SPSS IBM Corp., Chicago, IL, USA). 
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