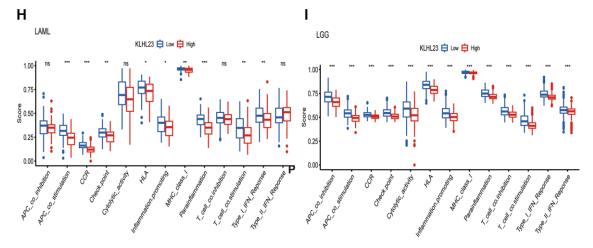
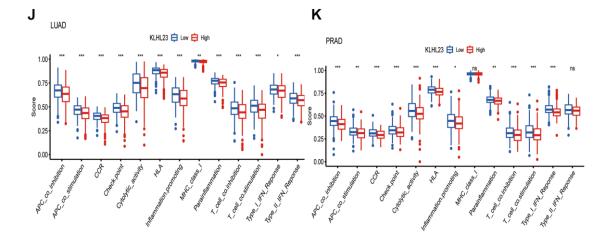
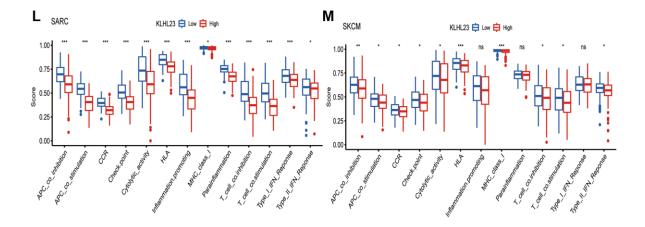
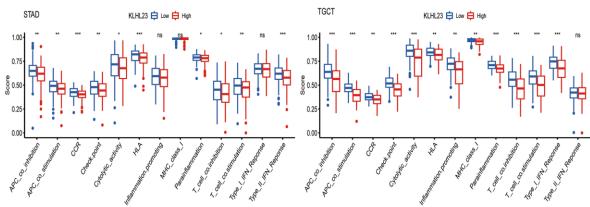
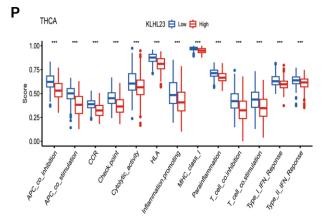

SUPPLEMENTARY FIGURES




Supplementary Figure 1. The role of KLHL23 in the tumor microenvironment of LIHC. Immune cell distribution in KLHL23 lower expression LIHC patients.







0

Supplementary Figure 2. The effect of KLHL23 on immunological status across cancers. (A) Association between KLHL23 and 13 tumor-associated immune cells, as calculated using the ssGSEA algorithm. (B–P) Differences in the various immune cell proportions between groups with high and low KLHL23 expression in representative cancers. (Abbreviation: ns: no significant difference. *P < 0.05; **P < 0.01; ***P < 0.001; ***P < 0.001).

Ν

X			X		X			X	Х	X	X	T	X			x		X		X				(X	X	X	X		
Â	x		XX		Ŷ	Х		^	Â		x	+	<u>^</u>		Х	Â	>	1^	X	x	Х		хŃ					Â		c
<u> </u>	^	_	^ ^	`	^	X			^		Â	1		Х		^)	_	^	^	^			`			Х	^	MITOTIC SPINDLE	.6
X	+		Х		X	x	Y				X		Х		Х)	_	X	X		Х						Х	MALT DETA CATEMINI CICNIALINIC	4
Ĥ	+	-		X		Â	^		Х		^	+	1^				XX	_	^	ŕ	Х	_	X	X			Â	^	TGF BETA SIGNALING	.4
X	+		X	_	-	x			Â				X				_	X			^		^	<u>^</u>	Х			Х		~
	х	V	X	_	_	X			^ X		хx	/	^			х	ť	X	-	-		Х	V		Â			Â	DNA REPAIR	.2
	^	^		·	^	Â			Â		<u>^ ^</u>	_				-	>	-				^		/	<u>^</u>		Â	^		
	-	_	X		V	^		_	Â	V	V	X	_			x	-	_	-	V			-		V	V		\mathbf{v}	G2M_CHECKPOINT 0	
X	+	_		·	X				^		X	V	X			^	-	X	_	Х		V	V			X		X	NOTOLI CIONALINO	
	+		X	-	Х			X	X		X		X			~)		X		X	Х	_	_	X	Х			NOTCH_SIGNALING _	0.2
X	-		XX	_	Х			X			X	+	-			X	>	_	Х	V	Х		>		Х			Х	ADIPOGENESIS	
X	+	_	XX	-		X					X	+	V			X	>	_		X	-			_	Х		Х		ESTROGEN_RESPONSE_EARLY	0.4
X			X			X		Х	X		X		X			Х	>			Х				_			Х	X	ESTROGEN_RESPONSE_LATE	
X	Х		X	_		Х		Х	X		X		Х			<u></u>		X		V	Х	_	X	Х			Х		ANDROGEN_RESPONSE	0.6
X	_		Х		Х			X	Х		X			V	-	X		X	-	Х	-		X				Х		MYOGENESIS	
X	-		X			X		Х	V	Х	X			X	Х	X		X			Х		X	Х	-	-	Х	V	PROTEIN_SECRETION	
X			- 34			Х				Х	X)	_		X	_			-	_	Х		Х	INTERFERON_ALPHA_RESPONSE	
X					Х				Х								>			Х					Х			Х	INTERFERON_GAMMA_RESPONSE	
Х			Х		Х				Х		ХХ		Х			Х				Х	Х		Х					Х	APICAL_JUNCTION	
Х			Х	1.00					Х							Х		Х					X	(Х		Х		APICAL_SURFACE	
Х	Х	Х	Х			Х					Х		Х		Х		Х			_	_	Х	Х			Х	Х			
Х			Х			Х				Х			Х					X		Х								Х	COMPLEMENT	
	Х	Х	Х			Х		Х	Х			X						X				2	Х	Х			Х		UNFOLDED_PROTEIN_RESPONSE	
Х				X				Х		Х	ΧХ					Х		X			Х	Х		(X			Х		PI3K_AKT_MTOR_SIGNALING	
Х	Х	Х	ХХ	X		1			Х		Х	(Х		Х	XX	X					Х				Х		MTORC1_SIGNALING	
			X	(Х			Х			X					X						X				Х		E2F_TARGETS	
						Х								Х		Х	X	X			Х		X	(Х		MYC TARGETS V1	
	Х		ХХ	(Х			Х				X			Х	X		Х				Х		Х		Х			
X			ХХ	(Х				Х		X		Х			Х		X		Х		Х	Х		Х	X	Х	Х	EPITHELIAL MESENCHYMAL TRANSITIO	N
X			X	(Х				Х	Х			Х					X		X					Х			Х	INFLAMMATORY RESPONSE	
X	Х		ХХ		Х				Х		Х						X			Х)	(Х	Х	XENOBIOTIC METABOLISM	
X			Х	(Х				Х	Х	Х					Х	>			Х	Х)	(Х				FATTY ACID METABOLISM	
	Х		X	X	X	Х	Х		Х								X	(Х				Х		X	X	Х		OXIDATIVE PHOSPHORYLATION	
X	Х		Х			Х			Х		Х					Х	>	X	Х	Х		Х	XX			X		Х	GLYCOLYSIS	
X			ХХ			X			Х						Х					-								Х	REACTIVE OXYGEN SPECIES PATHWAY	
X			X		Х				Х				X				>	X		Х					Х		Х		P53 PATHWAY	
X			ХХ			Х			Х	Х	Х					Х		X		Х		Х	ΧУ	(Х			Х		
X			X			X		Х			X		X				>			2	Х		X	X	_		Х		UV RESPONSE DN	
X			X	_	X			_	Х		XX	_	X			Х		X	Х	Х			X		Х	X	Х	Х		
X	1		XX	-	X	Х		Х			XX		1			X)	-	-		Х			X		_	Х			
X			X	_	X						X		Х			X	_	X		X	-		X		1	_	X			
X			X	_	X	-			_	X			X			X	Í	X	_	X					Х			X	IL2 STAT5 SIGNALING	
	-		X	100	X	Ê		S	_		x	T	1 A			x	>			X			X	Х	_			X		
	-		X	_	X		Х	~	X	_	x	t				_	XX	_	Х	Ê	Х	_	x	X				X	PEROXISOME	
X			X	_		Х			Â				X		~			1	Ê	X	_		~	1 A	X		~	x	ALLOGRAFT REJECTION	
Â			X			X			Â		ХХ		_	Х				-			Х			Y	Ŷ		Х	^	SPERMATOGENESIS	
$\widehat{\mathbf{v}}$	-		X	_	X				Â		<u>^</u>	1	Х	^		X	1	X		Â	_	Х)		X		^ X	y		
Ŕ	-		X	_	Â	^	V	Х	^	Х	X	+	Â			_	x	X		l^		^	-		^		Â	^	KRAS_SIGNALING_OF	
Ŕ	-	Х	X	_	Â		^	^	Х		$\frac{2}{x}$			Х			^				V	Х	Y			Х	^ X	Y		
\cap	-	^	X		X				^ X	^ X	^	+	X	^		-	-	-		V	^	^	^		V	Â				
				_																Х										
A	0	뀌	CESC	20	2P	5	B	F	S	 	₹Ş	2	s≒	5	5	≦?	53		R T		SA	8		37	구	UC	S	5		
õ	2	õ	S	5×	B	õ	M	ŝ	Ŷ	2	₽₹	G	うち	N	S	ŝ	12	ζŤ	Ň	\geq	J	0	Ρč	50	K	m	ò	Ś		
	P	⋗	OF	- C	,0	Þ		C	-	.,		-		U	0	0	C	۲G,	0	0	0	\leq	<u> </u>	٦Þ	\leq	0				

Supplementary Figure 3. KLHL23 signaling pathway analysis. Single cell analysis of KLHL23 expression in different cell types.