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INTRODUCTION 
 

The mechanism of tumorigenesis is complex, and the 

same gene has different mechanisms of action in 

different tumors [1, 2]. Pan-cancer expression analysis 

can effectively evaluate the mechanism of action of the 

same gene in different tumors, the predictive value of 

prognosis and survival of cancer patients and the effect 

of gene action from the molecular mechanism. 

Meanwhile, it can better help researchers in different 

specialties to clarify the overall role of genes in 

tumorigenesis. GEO and TCGA databases have a large 

number of functional genome data settings, and mainly 

focus on the role of these genes in different tumors, 

which is helpful for our relevant pan-cancer analysis 

[3–5]. 
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ABSTRACT 
 

Objective: To investigate expression, prognosis, immune cell infiltration of Cyclin E1 (CCNE1) in cancer. 
Methods: We used TIMER and GEPIA datasets to analyze the differential expression of CCNE1 in multiple 
tumors. GEPIA and Kaplan-Meier plotter databases were utilized to observe the prognostic significance of 
CCNE1 in cancer. TIMER and cBioPortal databases were adopted for the analysis regarding immune infiltration 
and mutation respectively. 
Results: The results showed that CCNE1 was highly expressed in multiple cancers including BLCA, BRCA, CHOL, 
COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, READ, STAD, THCA, UCEC (P < 0.001) and CESC (P < 
0.01). High CCNE1 expression was associated with a poor overall survival prognosis in several cancers, including 
ACC, BRCA, KIRC, KIRP, LGG, LIHC, LUAD and MESO. Additionally, CCNE1 expression was correlated with the 
cancer-associated immune infiltration level in BRCA, COAD, LUSC, STAD and THYM. 
Conclusions: CCNE1 is expected to be a potential biomarker for tumor prognosis and immune infiltration in 
various cancers. 
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One of the primary goals of cancer research is not  

only to understand tumor biology but also to improve 

patient outcomes through therapeutic interventions. 

Immunotherapies, including neoadjuvant and adjuvant 

treatments, represent a significant advancement in 

cancer therapy [6, 7]. However, the efficacy of these 

treatments often depends on the specific molecular and 

genetic landscape of the tumor. Understanding the 

expression of key genes, such as those involved in 

immune response or cell cycle regulation, across 

different cancers could help identify patients who would 

benefit most from immunotherapy. Pan-cancer analysis, 

by revealing gene expression patterns and immune 

infiltration across cancer types, plays a crucial role in 

informing the use of these therapies [8]. 

 

The CCNE1 gene undergoes a series of processes such 

as replication, transcription, and translation to form 

CCNE1 protein in vivo. The protein can act as a 

regulatory sub-unit of cyclin-dependent kinases and is 

important for maintaining genome integrity and the 

coordination of cell cycle processes [9]. Since the over-

expression of the gene was found to be associated with 

cancer in 1990, a series of studies have shown that the 

protein encoded by the transcription of the gene can 

play different roles in multiple phases of the cell cycle 

[10–13]. Given its importance, CCNE1 was selected as 

the focus of this study to better understand its function 

in cancer biology. In subsequent studies, various cancer 

types have been confirmed to be closely related to 

CCNE1 over-expression, and the possible mechanism of 

action has also been analyzed [14–17]. 

 

In this study, we performed a pan-cancer analysis  

for the association of CCNE1 expression with 

clinicopathological features of cancer. Moreover, 

several databases including TCGA, GEPIA, HPA, 

TIMER and STRING databases were applied to explore 

the association of CCNE1 with prognosis, immune 

infiltration, and genetic mutation of tumor. This study’s 

innovative approach of integrating multiple datasets 

provides new insights into the potential clinical 

applications of CCNE1 as a prognostic biomarker and 

its role in immune modulation across different cancers. 

 

MATERIALS AND METHODS 
 

Expression of CCNE1 in pan-cancer 

 

TIMER2 (tumor immune estimation resource) is an 

integrated gene data platform that can consistently 

analyze gene expression differences. Additionally, 

TIMER2 is widely used in cancer immunology research 
for its ability to estimate the abundance of six major 

immune cell types (such as CD4+ T cells, CD8+ T cells, 

and macrophages) using RNA-seq expression data from 

The Cancer Genome Atlas (TCGA). Its versatility and 

ease of use make it a powerful platform for studying  

the tumor immune microenvironment and its role in 

cancer progression and therapy responses [18]. TIMER2 

was selected because of its wide application in gene 

expression differences and tumor immunology research, 

particularly for its reliability in estimating the gene 

expression differences and immune microenvironment, 

which was critical for our analysis. CCNE1 was input 

into “GENE_DE” section that can evaluate the expression 

of CCNE1 in different types, in the TCGA project. 

Statistical analysis of the association was performed via 

the test of purity-adjusted partial Spearman’s correlation. 

Results are shown via heat-maps and scatter plots. 

GEPIA2 (gene expression profiling interactive analysis) 

is an interactive web server to analyze expression of 

RNA which is derived from the Genotype Tissue 

Expression (GTEx) program and TCGA [19]. 

 

In our research, we obtained CCNE1 expression by 

using this dataset and analyzed them via GEPIA2’s 

“Expression Analysis-Box Plots” section, with the 

DESeq2 package used for normalization and differential 

expression analysis. Specifically, the parameters were 

set with a log2FC cutoff of 1 and an adjusted p-value 

threshold of 0.01. In addition, the limma package  

was used for differential gene expression analysis in 

paired tumor and normal tissue comparisons. The 

limma package is applied to log-transformed data, 

where it uses empirical Bayes moderation to calculate 

moderated t-statistics for differential expression. We 

followed the platform’s default settings for the linear 

model fitting and moderated t-statistic computation. 

 

Association of CCNE1 with overall survival and 

disease-free survival in cancer 

 

Overall survival (OS) and disease-free survival (DFS) 

for all tumors in TCGA were obtained using the 

“Survival Map” module of GEPIA2. We set high (50%) 

and low (50%) cut-off to divide high and low cohorts of 

gene expression. Survival data were visualized with log-

rank P-values, 95% confidence intervals, and hazard 

ratios. The expression of CCNE1 in TCGA was 

obtained using the GEPIA2 “Pathological Stage Plot” 

program. Using “similarity for gene detection” module 

of GEPIA2, the top 100 targeted genes which are 

associated with CCNE1 can be identified. 

 

CCNE1 expression levels were stratified into high and 

low expression groups. The stratification was based on 

the median expression value of CCNE1 across the entire 

dataset. Samples with CCNE1 expression above the 
median were classified as the high expression group, 

while those below the median were classified as the low 

expression group. GEPIA performs survival analysis 
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based on gene expression levels. GEPIA uses log-rank 

test, sometimes called the Mantel-Cox test, for the 

hypothesis evaluation. The cox proportional hazard 

ratio and the 95% confidence interval information can 

also be included in the survival plot. 

 

Association of CCNE1 with relapse-free survival in 

cancer 

 

The Kaplan-Meier plotter that can evaluate genetic 

impact on prognosis of different cancers was used in 

our study. The relationship between the CCNE1 gene 

and progression-free survival (PFS), OS, and first 

progression in different cancers from TCGA and GEO 

databases was analyzed using the Kaplan-Meier plotter. 

Setting “autoselect best cut-off”, the breast, ovary, lung, 

stomach and liver of the five tumors were divided into 

two groups. A log p-value of < 0.05 was considered 

statistically significant. 

 

Expression of CCNE1 protein in cancer 

 

UALCAN provided the protein analysis option through 

the TCGA and CPTAC datasets [20]. The CPTAC 

program of UALCAN can be used to obtain the CCNE1 

protein expression in different cancers. 

 

Analysis of CCNE1 gene alteration and mutation 

 

C-BioPortal is a complex site, which can visualize, and 

analyze the cancer genomic [21]. The frequency of 

CCNE1 gene alteration, mutation type and alteration of 

copy number in tumors can be seen through “Cancer 

Types Summary” section of the cBioPortal in TCGA. 

Setting “TCGA Pan Cancer Atlas Study”, we can query 

the genetic alteration signature of the CCNE 1 gene via 

the “Quick select” section. Additionally, we used the 

“Comparison” section, analyzed data on the relationship 

among CCNE1 genetic alterations, OS, PFS, and DFS. 

The results are shown as log-rank P-values. 

 

Immune infiltration analysis of CCNE1 in cancer 

 

Connection between CCNE1 and immune infiltration  

of cancer was explored using TIMER database. 

“GENE_CORR” section can be used to analyze the 

association between gene expression and immune 

infiltration. Statistical analysis of the association was 

performed via the test of purity-adjusted partial 

Spearman’s correlation. Results are shown via heat-

maps and scatter plots. 

 

Enrichment analysis of CCNE1 associated genes 

 

STRING can predict protein-protein interactions [22]. 

The top 50 lists of CCNE1 binding-proteins, which set 

the required minimum interaction score to “low 

confidence”, the meaning of the network edge to 

“evidence”, and display as “no more than 50 

interactors”, via STRING site. DAVID (database for 

annotation, visualization, and integrated discovery) is a 

functional annotation tool that investigates to clarify 

gene function [23]. The intersection analysis assesses 

CCNE1 binding and interacting genes. The genes 

functional annotation chart was analyzed by the DAVID 

tool. 

 

Availability of data and materials 

 

All data generated or analyzed during this study are 

included in this published article. 

 

RESULTS 
 

CCNE1 gene expression 

 

By comparing the expression of CCNE1, we 

investigated expression of CCNE1 among cancer types 

in TCGA by TIMER2. CCNE1 expression in the tumor 

tissues including BLCA, BRCA, CHOL, COAD, 

ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, 

LUSC, READ, STAD, THCA, UCEC (P < 0.001) and 

CESC (P < 0.01) was higher than the corresponding 

normal tissues (Figure 1A). Analyzing the differences in 

our target gene expression, we used the GTEx dataset 

and used normal tissues as controls. CCNE1 expression 

level was upregulated in ACC, BLCA, BRCA, CESC, 

CHOL, COAD, DLBC, ESCA, HNSC, LIHC, LUAD, 

LUSC, OV, PAAD, READ, SARC, STAD, THYM, 

UCEC and UCS, (P < 0.01, Figure 1B). We observed an 

association between CCNE1 expression and tumor 

pathological stages (Figure 1C). 

 

CCNE1 survival analysis 

 

According to the expression level of CCNE1, the tumor 

cases were divided into high and low groups. To 

investigate the correlation between CCNE1 expression 

and tumor prognosis in different types of tumors, we 

used TCGA and GEPIA databases for analysis. High 

CCNE1 gene expression was associated with poor 

prognosis of OS in cancers, including ACC, BRCA, 

KIRC, KIRP, LGG, LIHC, LUAD, MESO (Figure 2A). 

In addition, high gene performance of CCNE1 showed  

a strong correlation with poor DFS in cancer types, such 

as BRCA, KIRP, LIHC, LGG, PRAD, MESO, SKCM, 

THCA and UCEC (Figure 2B). To explore the 

association between CCNE1 and tumor prognosis, we 

performed further analysis via Kaplan-Meier plotters 
tool. High CCNE1 gene expression was linked with 

poor OS in BRCA, KIRC, KIRP, LIHC, LUAD, OV, 

PAAD, SARC and UCEC (P < 0.01) (Figure 3A). 
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The results of DFS were shown that a strong correlation 

between h highly expressed CCNE1 and poor prognosis 

in BRCA, KIRP, LIHC, LUAD, PAAD, SARC, TGCT, 

THCA and UCEC (P < 0.01) (Figure 3B). 

CCNE1 genetic change 

 

In this study, to analyze the genetic pattern of CCNE1, 

we used different tumor datasets from the TCGA cohort 

 

 
 

Figure 1. Expression of CCNE1 in different tumors and pathological stages. (A) The expression of CCNE1 in pan-cancer. The 

expression of CCNE1 in tumor tissue is indicated in red, while the expression of CCNE1 in normal tissue is shown in blue. (B) The expression 
status of CCNE1 in normal tissue and cancer tissue. The expression of CCNE1 in tumor tissue is indicated in red, while the expression of 
CCNE1 in normal tissue is shown in grey. (C) Correlation of CCNE1 with pathological stages in multiple cancers. 
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for our study. CCNE1 has the highest genetic  

change frequency in uterine carcinoma patients (40%) 

(Figure 4A). And the main type is “amplification”.  

In UCEC, we found that the prominent types are the 

“amplification” and “mutation”, accounting for about 

5% of the frequency of occurrence. As shown in the 

results, an interesting phenomenon is that most of the 

tumors listed in the figure are formed under the 

influence of CCNE1, and the “amplification”, is the 

predominant type. In Figure 4B, the analysis of the 

type, location and number of cases of CCNE1 genetic 

changes is shown, including missense, truncating, and 

 

 
 

Figure 2. Connection of CCNE1 with (A) overall survival and (B) disease-free survival in cancer. Tumors with higher CCNE1 expression are 

indicated in red, while those with lower expression are shown in blue. 
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fusion mutations. Based on the analysis of our data, 

missense mutations were found to be the predominant 

type of genetic change in CCNE1, with M336I/T/V 

changes detected in 1 case of COAD, 1 case of LUAD, 

and 1 case of STAD (Figure 4B). The 3D structure  

of CCNE1 protein is shown in Figure 4C. Potential 

 

 
 

Figure 3. The Kaplan-Meier plotter reflecting CCNE1 expression and (A) overall survival and (B) relapse-free survival. Tumors with higher 

CCNE1 expression are indicated in red, while those with lower expression are shown in black. 
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association in different types of cancer was analyzed 

between CCNE1 changes and prognosis by crude 

analysis of the change pattern. The clinical survival 

prognosis value of CCNE1 alterations reflected 

prognosis in COAD patients with regard to OS (P < 

0.05), DSS (P < 0.001), DFS (P < 0.001), but not  

PFS (P = 0.140) (Figure 4D). 

 

CCNE1 protein expression 

 

Through CPTAC, the expression of CCNE1 protein in 

five types of tumors including BRCA, HNSC, HCC, 

LUAD, and OV were analyzed. We observed that the 

expression level of CCNE1 protein was higher in BRCA, 

HNSC, HCC, LUAD and OV (P < 0.001) (Figure 5). 

 

Patients’ immune cell infiltration of CCNE1 

 

To explore the involvement of CCNE1 in immune 

infiltration and the role of this process in the initiation, 

progression and metastasis of tumor development, we 

used TIMER2, EPIC, MCPCOUNTER, CIBERSORT, 

CIBERSORT-ABS, QUANTISEQ, XCELL, 

naive_XCELL, central memory_XCELL, and effector 

memory_XCELL algorithms to analyze the correlation 

between immune cell infiltration and CCNE1 

differential expression in TCGA. CCNE1 expression 

positively correlated with the cancer-associated immune 

infiltration level in BRCA, COAD, LUSC, STAD and 

THYM (Figure 6). 

 

CCNE1 enrichment data analysis 

 

In this study, the CCNE1 gene molecule was 

investigated to screen for gene segments related to 

CCNE1 binding protein and CCNE1 performance, and a 

series of pathway enrichment studies were performed 

for this purpose, using the STRING online database. In 

our study, the network had 51 nodes which means genes 

and 397 edges that represent the links between binding 

genes (Figure 7A). We identified the top 100 genes  

that correlated with CCNE1 expression, via GEPIA 

online databases. Additionally, the heatmap indicated a 

positive correlation between CCNE1 top five related

 

 
 

Figure 4. Mutation features of CCNE1 in cancer. (A) Bar chart representing the distribution of different CCNE1 mutation types across 

various cancers. (B) Lollipop plot highlighting the mutation sites of CCNE1, with higher frequency mutations displayed prominently. (C) 3D 
structural model of CCNE1, focusing on regions with the highest mutation frequency. (D) Kaplan-Meier curves linking CCNE1 mutation 
status with survival outcomes (overall survival, disease-specific survival, disease-free survival, and progression-free survival) in COAD. 
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genes in cancer (Figure 7B) and the relationship 

between CCNE1 and these five genes was also shown 

(Figure 7C). In Venn diagram, we analyzed the 

interaction and showed five common members 

including CDK1, CKS1B, E2F1, CKS2, and FOXM1 

(Figure 7D). Investigating functional and pathway 

enrichment analyses of CCNE1, we performed GO and 

KEGG enrichment analyses via the DAVID 6.8 online 

tool. GO enrichment analysis data suggested that most 

of genes are linked to regulation of cell division in BP 

category, nucleus in CC category, and protein binding 

in MF category (Figure 7E). KEGG analysis indicated 

 

 
 

Figure 5. Expression of CCNE1 protein in multiple cancers. The expression of CCNE1 in tumor tissue is indicated in red, while the 
expression of CCNE1 in normal tissue is shown in blue. 
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that the CCNE1 and correlated genes and interacted 

genes were mainly enriched in cell cycle and cellular 

senescence pathway (Figure 7F). 
 

DISCUSSION 
 

The main role of CCNE 1 encoding cyclin E1 is to 

promote the transition of the cell cycle from G1 to  

S phase, thereby facilitating the initiation of DNA 

synthesis [24]. More and more studies on the role  

of CCNE1 in tumor tissues have been reported, for 

example, CCNE1 over-expression in BRCA [25], 

BLCA [26] and OV [27] tissues are associated with 

poor tumor survival, although there are also some 

opposite results [28–30]. Previous studies have reported 

that 19q12 amplification mutations in CCNE1 are 

associated with tumor types, especially in uterine tumors, 

high-grade serous ovarian cancer, and gastroesophageal 

cancer [31–35]. Moreover, the findings from relevant 

scholars suggest that such changes enhance genomic 

instability, genome-wide proliferation, and resistance  

to cytotoxicity [31–35]. However, whether there is  

a corresponding common pathway of CCNE1 in  

its translation, transcription, expression and other 

processes to produce effects in different tumor 

pathogenesis is still not clear. After an extensive 

literature review, there is no unified conclusion on the 

results of our pan-cancer analysis of CCNE1 [36, 37]. 

But interestingly, we found that the conserved structure 

of CCNE1 protein exists in different types of tumor 

tissues [25, 38, 39], which also implies that CCNE1 

may have a similar mechanism in the action of CCNE1 

in tumor tissues. Therefore, the CPTAC, GEO, TCGA 

databases were analyzed in our study to examine the 

role of CCNE1 in 33 tumors in terms of gene mutation, 

gene expression and molecular characterization of 

CCNE1. 

 

Our results suggested that the abnormal expression of 

CCNE1 occurs frequently in multiple types of tumors.

 

 
 

Figure 6. Correlation between CCNE1 expression and immune infiltration of cancer-associated fibroblasts in TCGA. Scatter 

plot displaying the correlation between CCNE1 mRNA levels and the infiltration levels of cancer-associated fibroblasts across TCGA cancer 
types. The strength of the correlation is represented by the Pearson correlation coefficient (r), and the p-values indicate the statistical 
significance of these associations. 

13400



www.aging-us.com 10 AGING 

We found that CCNE1 expression level in the tumor 

tissues of BLCA, BRCA, CHOL, COAD, ESCA, 

HNSC, KICH, KIRC, KIRP, LIHC, LUAD, READ, 

STAD, THCA, UCEC, and CESC was higher than the 

corresponding normal tissues. Functionally, CCNE1 

plays a crucial role in driving the transition from G1  

to S phase in the cell cycle by forming a complex  

with CDK2, thereby promoting DNA replication and 

cell division. This process is critical in maintaining 

normal cellular homeostasis. However, in cancer, 

aberrant CCNE1 expression can lead to uncontrolled 

proliferation [40]. For instance, the overexpression of 

CCNE1 in ovarian cancer has been shown to promote 

genomic instability through its interaction with CDK2, 

which accelerates the cell cycle and impairs DNA repair 

mechanisms. CCNE1 has been implicated in epithelial-

mesenchymal transition (EMT), further promoting 

cancer cell dissemination [41]. These findings underline 

the multifaceted role of CCNE1 not only in cell  

cycle regulation but also in driving aggressive cancer 

phenotypes through various molecular pathways. From 

the above results, it is not difficult to conclude that the 

down-regulation of CCNE1 expression will become the 

next direction to focus on. Our study found that the 

abnormal expression of CCNE1 occurred not only in 

one tumor, but also in a variety of tumor types. For 

example, in the tumor tissues of BLCA, CESC, and 

ESCA, CCNE1 expression levels are higher than normal 

tissues. Furthermore, in the tumor tissue of HNSC, 

KIRP, and THCA, the results were the same as above. 

The elevated expression of CCNE1 in various cancers 

indicates its significant role in tumorigenesis and cancer 

progression [42]. Clinically, high CCNE1 expression 

has been correlated with several critical aspects of 

cancer behavior and patient outcomes. Elevated CCNE1 

levels are often associated with increased tumor 

aggressiveness and invasiveness. This is likely due to its 

role in driving the cell cycle progression from G1 to S 

phase, promoting rapid cell division and proliferation. 

Studies have shown that higher CCNE1 expression  

can lead to enhanced metastatic potential, making it  

a marker for aggressive cancer phenotypes. CCNE1 

 

 
 

Figure 7. Enrichment analysis for CCNE1 interacted or related genes. (A) Determining interacted genes of CCNE1. (B) Top 5 CCNE1 

associated genes in TCGA projects. (C) The corresponding heatmap map for correlation between CCNE1 and top 5 related genes in various 
cancers. (D) An intersection analysis of CCNE1 interacted and associated genes. (E) GO and (F) KEGG pathway analysis of CCNE1 interacted 
or related genes. 

13401



www.aging-us.com 11 AGING 

overexpression may influence the response to  

various cancer treatments. For instance, cancers with 

high CCNE1 expression may exhibit resistance to 

certain chemotherapeutic agents that target cell cycle 

pathways. This resistance can be attributed to the  

rapid cell cycle progression driven by CCNE1, which 

might reduce the efficacy of treatments designed to 

halt cell division. On the other hand, targeting CCNE1 

directly or its associated pathways could offer a novel 

therapeutic approach, potentially improving treatment 

outcomes for patients with CCNE1-overexpressing 

tumors. As demonstrated in our study, high CCNE1 

expression is associated with poor overall survival  

in several cancers, including ACC, BRCA, KIRC, 

KIRP, LGG, LIHC, LUAD, and MESO. This 

highlights its potential as a prognostic biomarker. 

Patients with elevated CCNE1 levels may require more 

aggressive and tailored therapeutic strategies to improve 

their prognosis. Furthermore, innovative therapeutic 

approaches focusing on the downregulation of CCNE1 

have shown promise in mitigating tumor growth and 

enhancing treatment efficacy [43]. 

 

Among these, RNA interference (RNAi) technologies 

and small molecule inhibitors specifically targeting 

CCNE1 activity have emerged as effective strategies 

[44]. For instance, RNAi approaches, such as siRNA 

and shRNA, have been shown to successfully silence 

CCNE1 expression, reducing tumor growth in breast 

cancer [45]. In addition to RNAi, small molecule 

inhibitors like Adavosertib, a WEE1 inhibitor, have 

been explored for their ability to inhibit cyclin E/CDK2 

complexes, slowing down cell cycle progression  

in cancers with CCNE1 amplification [46]. These 

advancements indicate that targeting CCNE1 pathways 

can offer substantial therapeutic benefits, particularly 

for patients with CCNE1-overexpressing tumors where 

traditional treatments have failed [47]. 

 

Despite the high level of CCNE 1 expression in many 

tumors, different conclusions from previous studies.  

To explore the association of CCNE 1 with different 

tumor outcomes, a meta-analysis study found that  

over expression of CCNE 1 was associated with poor 

survival in cancer patients [30]. In this research, in this 

study, there was a statistically significant relationship 

between a high expression of CCNE 1 and a poor 

survival prognosis (P < 0.01). The reason may be 

different data processing methods and new survival 

information. At the same time, we explored the 

relationship between OV pathological stage and CCNE1 

expression level through the “Pathological Stage Map” 

module of GEPIA2 (P < 0.01). In addition, we 
performed a survival analysis of OV by the Kaplan-

Meier plotter approach. The results suggested that 

CCNE1 expression was not statistically significant with 

the clinical prognosis of DFS and OS. Therefore, the 

current evidence based on clinical big data can only 

prove that the over expression of CCNE1 is correlated 

with OV, and cannot support the clinical prognosis role 

of OV. Our study also found that the poor prognosis of 

different tumors was closely associated with the high 

expression level of CCNE 1, suggesting that the high 

expression status of CCNE 1 may be a biomarker of 

clinical prognosis in cancer patients. Meanwhile, it also 

means that down-regulation of CCNE1 expression may 

be one of the methods to improve the prognosis of 

patients. Recent studies have confirmed that PKMYT1 

inhibitors may be an effective approach for the treatment 

of CCNE1-amplified cancers [34]. 

 

Tumor microenvironment (TME) is a setting that 

promotes tumor progression, and tumor cells often use 

this setting to escape the surveillance of immune 

function. In addition, TME also plays an important  

role in reflecting the therapeutic effect and predicting 

the clinical outcome of tumors. The research results  

of relevant scholars showed that TME components 

include tumor-associated mesenchymal stem cells, 

extracellular matrix, lymphocytes, fibroblasts [48–51]. 

Tumor immune-infiltrating cells play an important role 

in immune regulation by transferring from blood to 

tumor tissue [52]. CCNE1, as a major component of 

focal adhesions, plays a vital role in the extracellular 

matrix [53]. Importantly, CCNE 1 may also have 

significant effects on the immune response and  

TME. In our research, we analyzed the relationship 

between immune cell infiltration and differential 

expression of CCNE1 using CIBERSORT-ABS, XCELL, 

MCPCOUNTER, QUANTISEQ, EPIC, CIBERSORT 

central memory_XCELL, effector memory_XCELL 

algorithms, and TIMER2. In different tumors, high 

expression of CCNE1 is associated with cancer-

associated fibroblasts, especially in BRCA, COAD, 

LUSC, STAD, THYM. It has been reported that cancer-

associated fibroblasts and endothelial cells have been 

able to exert tumorigenic effects in the TME by secreted 

various growth factors, cytokines and chemokines and 

promoting the degradation of the extracellular matrix 

[54, 55]. However, in our study, there was no obvious 

association between CCNE1 expression and MSCs, 

monocytes, or bone marrow-derived suppressor cells, 

but the link between CCNE1 and TME through cancer-

associated fibroblasts may explain the prognostic 

impact of CCNE1 in different cancers. At the same time, 

we found no significant correlation between CCNE 1 

expression and MSCs, monocytes, or bone marrow-

derived suppressor cells. MSCs are regulators of the 

tumor niche and are involved in tumorigenesis and 
metastasis. CCNE1 was previously reported to be 

important in the proliferation and colony formation  

of MSCs [56, 57]. Our study reveals a significant 
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correlation between CCNE1 expression and increased 

immune cell infiltration in multiple cancers, including 

breast, colon, lung, stomach, and thymic cancers. By 

employing various algorithms, we’ve confirmed that 

elevated CCNE1 levels enhance immune presence, 

aligning with its known roles in cell cycle regulation 

and tumorigenesis. Notably, this correlation suggests 

CCNE1’s involvement in modulating the tumor 

microenvironment, which could influence immune cell 

recruitment and activation, thus presenting potential 

therapeutic implications for enhancing cancer immuno-

therapy effectiveness. More analyses on immunotherapy 

to further reveal the biological properties and roles of 

CCNE1 in different tumours are needed to provide an 

important reference for subsequent studies. 

 

Moreover, genetic mutations also play a critical role in 

the mechanism of action of carcinogenesis [58]. The 

overexpression of CCNE1 has been found in a variety 

of tumors, so, we further explored the corresponding 

mutation characteristics of CCNE1. Kang et al. showed 

that CCNE 1 gene amplification leads to poor prognosis 

in cancer patients [59]. CCNE1 gene mutations include 

amplification, missense mutations, truncating mutations, 

and fusion mutations. Missense mutations such as 

M336I/T/V result in amino acid substitutions that may 

impact the stability and function of the CCNE1 protein. 

Amplification may lead to overexpression of CCNE1 

protein, causing dysregulation of cell cycle control and 

promoting tumorigenesis. Fusion mutations can produce 

fusion proteins with novel functions or loss of original 

functions, affecting cell proliferation and differentiation. 

Truncating mutations may result in the production of 

truncated proteins lacking essential functional domains, 

thereby impairing their normal function. CCNE1 plays a 

critical role in cell cycle regulation, and its mutations 

and overexpression are closely associated with the 

development of various cancers. CCNE1 mutations may 

lead to cell cycle dysregulation, promoting cancer  

cell proliferation. A detailed analysis of different 

mutation types can enhance our understanding of the 

role of CCNE1 in cancer development and progression, 

providing a theoretical basis for precision medicine. 

 

Our study showed that CCNE 1 had the highest 

frequency of changes in uterine cancer patients, at 40%, 

whose main type is “amplification”. And we also found 

that in UCEC, the more prominent types are the 

“amplification” and “mutation”, accounting for about 

5% of the frequency of occurrence. Above all, most of 

the tumors listed in the study are formed under the 

influence of CCNE1, and the “amplification” is the 

predominant type. In conclusion, CCNE1 amplification 
may effectively predict the occurrence of adverse 

prognostic events in cancer patients, and the control  

of CCNE1 amplification will become a hot research 

direction for the control of adverse prognostic events. 

This suggested that the enriched pathways associated 

with CCNE 1 could be used as potential therapeutic 

options for the treatment of cancer patients. Additionally, 

the analysis found that the amplification of CCNE1 was 

associated with poor prognosis of patients, so the CCNE1 

gene mutation may also be a potential molecular marker 

for poor prognosis in endometrioma patients. 

 

For the first time, the top 100 proteins were screened 

by software and finally found CDK1, CKS1B, E2F1, 

CKS2, and FOXM1 to be associated with CCNE1. 

Although the different roles of the above proteins in 

tumor pathogenesis have been reported, little is known 

about the exact pathogenic mechanism of tumors, which 

is also the focus of our future studies. Meanwhile,  

in this study, the CPTAC dataset was used to explore 

the expression of CCNE1 protein in breast cancer, 

hepatocellular carcinoma, head and neck squamous cell 

carcinoma, ovarian cancer, and lung adenocarcinoma. 

 

We used GO enrichment analysis and KEGG pathway 

enrichment analysis to investigate the differential 

expression signatures of CCNE 1. The results found that 

the differentially expressed CCNE 1 was mainly 

associated with the regulation of cell division in the BP 

class. Moreover, it is also related with the protein 

binding regulation of MF class and the nuclear 

regulation of CC class. Importantly, miR-30c-2-3p has 

an important role in cancer cell migration, by regulating 

CCNE 1 gene expression to regulating cytokine 

expression, invasion and cell proliferation in breast 

cancer cells. Previous study has shown that miR-30c-2-

3p negatively regulates NF-κB signaling and cell cycle 

progression by downregulating CCNE 1 in breast 

cancer, resulting in reduced cytokine expression in vitro, 

cell invasion, and cell proliferation in vitro [60].  

In addition, previous studies in gastric cancer showed 

that CircDENND2A can promote the progression of 

non-small-cell lung cancer by regulating the CCNE1 

signaling pathway [61]. However, there were some 

limitations existing in our study. The data used for 

analysis were obtained from online services. More cell-

based studies and clinical experiments are needed to 

confirm our findings and to further explore interactions 

between relevant molecules, the precise mechanisms 

involved, and the potential clinical applications of 

CCNE1 in cancer. 
 

CONCLUSIONS 
 

In this study, a series of pan-cancer analyses were 

performed to determine the relevance of CCNE1 in pan-
cancer and its potential predictive value. We found that 

the expression of CCNE1 is related to clinical prognosis, 

immune infiltration of tumor cells, and gene mutation. 
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The pan-cancer analysis of CCNE1 can analyze the  

role and effect of CCNE 1 in tumor development  

and development from multiple perspectives, and can 

provide some help for clinical diagnosis, treatment and 

basic research. 
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