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INTRODUCTION 
 

Aging is a process that progressively impacts cell 

functioning. In the mammalian species, it occurs 

heterogeneously in multiple organs and tissues, leading 

to their gradual deterioration. Senescence is defined 

therefore as a status in which cells are unable to 

proliferate and, therefore, represent a risk factor for 

many diseases [1], such as cardiovascular disease [2], 

dementia [3], and cancer [4] Despite this link with 

human pathologies, our understanding of the aging 

process remains limited.  

 

Progeroid syndromes are a group of very rare genetic 

disorders that exhibit clinical features of pathological 

aging that occur prematurely. Affected individuals with 
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ABSTRACT 
 

Cockayne syndrome (CS) is a segmental progeroid syndrome characterized by defects in the DNA excision repair 
pathway, predisposing to neurodegenerative manifestations. It is a rare genetic disorder and an interesting 
model for studying premature aging. Oxidative stress and autophagy play an important role in the aging 
process. The study of these two processes in a model of accelerated aging and the means to counteract them 
would lead to the identification of relevant biomarkers with therapeutic value for healthy aging. 
Here we investigated the gene expression profiles of several oxidative stress–related transcripts derived from  
CS-affected individuals and healthy elderly donors. We also explored the effect of nicotinamide 
supplementation on several genes related to inflammation and autophagy. 
Gene expression analysis revealed alterations in two main pathways. This involves the activation of arachidonic 
acid metabolism and the repression of the NRF2 pathway in affected individuals with CS. The supplementation 
with nicotinamide adjusted these abnormalities by enhancing autophagy and decreasing inflammation. 
Furthermore, CSA/CSB-dependent depletion of the mitochondrial DNA polymerase-γ catalytic subunit (POLG1) 
was restored following nicotinamide supplementation in CS-affected individuals’ fibroblasts. 
This study reveals the link between oxidative stress and accelerated aging in affected individuals with CS and 
highlights new biomarkers of cellular senescence. However, further analyses are needed to confirm these 
results, which could not be carried out, mainly due to the unavailability of crucial samples of this rare disease. 
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these diseases share the same characteristics as the 

elderly, such as hair loss, skin stiffness, neuro-

degeneration, sensory disorders, etc... It is mainly due to 

defects in DNA repair pathways [5]. Affected 

individuals are classified according to the age of onset 

of clinical manifestations. In infantile forms, affected 

individuals die at an early age, usually from cardio-

vascular problems, neurological or muscle degeneration 

[6]. Fortunately, they remain a category of rare diseases 

whose global incidence is estimated at around 1:50 000 

[7]. Given that segmental progeroid syndromes mimic 

regular aging, studies of these models have proved very 

useful not only for identifying the mechanisms involved 

in the cellular senescence of certain vital tissues but also 

for studying age-related pathologies [6]. 

 

Cockayne syndrome is a rare genetic disorder belonging 

to the segmental progeroid syndromes; it is caused by 

genetic variations in ERCC6 (CS-B form) and ERCC8 

(CS-A form) genes. Both proteins, CSA and CSB, are 

known to play an essential role in transcription-coupled 

nucleotide excision repair pathway [8]. CS is a disease 

of unknown prevalence in Africa. Most affected 

individuals of African origin were reported in the 

European cohort, with a total of 17 affected individuals 

(6 CS-B and 11 CS-A) [9, 10]. Most of them are from 

North Africa. A few clinical studies describing CS have 

been reported in the Egyptian [11] and Tunisian 

populations without genetic characterization [12, 13]. 

 

Reactive oxygen and nitrogen species (RONS) are 

produced by all cells under aerobic conditions and play 

an important role in senescence and age-related diseases 

[14]. In fact, the generation of RONS is not only limited 

to harmful effects on the organism but also contributes 

to various beneficial processes such as energy 

production, immune mechanisms, and several signaling 

pathways. Under normal conditions, cellular ROS may 

be scavenged by the antioxidant system, restoring redox 

equilibrium. Nonetheless, cell damage happens when 

the cell’s antioxidant mechanism fails, either by 

surpassing its capacity or by becoming less active, 

which consequently activates the cell death pathway, 

leading to cellular senescence. Autophagy is a process 

that degrades damaged cellular components into basic 

molecules in order to preserve cellular homeostasis and 

enhance cell survival [15]. Another hallmark of 

oxidative stress damage is the loss of mitochondrial 

function and the onset of chronic inflammation. 

Therefore, substances that directly eliminate ROS or 

boost cell antioxidant capacity are predicted to help in 

the preservation of skin homeostasis [16]. 

 

Vitamin B3 stands as a known anti-oxidant component 

as it contributes to improving nerve tissue function, 

protects against cell damage, and reduces inflammation 

[17]. It consists of two compounds: nicotinic acid 

(niacin) and nicotinamide, both of which are 

distinguished by their pharmacological composition. 

Vitamin B3 supplementation usually involves 

nicotinamide, because it is better tolerated within the 

body, while nicotinic acid is often used to regulate 

cholesterol levels [18]. 

 

Nicotinamide, as an amide water-soluble form, is used 

in the synthesis of NAD+ which plays a role against 

oxidative stress and chronic inflammation. Actually, it 

doesn’t exist any solid proof stating that nicotinamide 

has distinct molecular targets for skin aging [19]. 

 

Oxidative stress is caused by a redox imbalance, which 

can lead to chronic inflammation. Autophagy is also an 

important defense mechanism that cells use to respond 

to oxidative stress. An in-depth study of these 

processes would lead to the identification of bio-

markers for aging.  

 

The aim of our work is to study the expression profiles 

of genes linked to oxidative stress in CS affected 

individuals and, in the elderly, and to analyze the effect 

of nicotinamide in both groups.  

 

RESULTS 
 

RT2 profiler gene expression analysis in CS and in 

healthy elderly donors 

 

Oxidative stress-associated gene expression changes in 

Cockayne syndrome affected individuals with the form A 

(CS-A) and B (CS-B) as well as in elderly were identified 

by performing RT2 profiler PCR array. A change in 

mRNA expression of more than two-fold relative to 

normal was set as the cutoff value for considering a gene 

to be under-expressed or over-expressed. Analyses of the 

data revealed expression changes in 54 genes in the CS-B 

group, 64 genes in the CS-A group, and 50 genes in the 

elderly group, among the 84 studied genes that are 

normalized to healthy young donors (Figure 1).  

 

For the CS-A group, a total of 63 genes exhibited 

increased expression, while only mitochondrial 

Peroxiredoxin (PRDX3) was under-expressed (fold 

regulation-2.4). Among the 2 most upregulated genes 

were Arachidonate 12-lipoxygenase (ALOX12) (fold 

regulation 136) and polynucleotide kinase 3’-

phosphatase (PNKP) (fold regulation 177). 

 

As for the CS-B group, 49 oxidative stress-related genes 

were over-expressed such as the albumin gene (ALB) 

(fold regulation 133) and ALOX12 (fold regulation 122) 

while two Peroxiredoxin, PRDX3 and PRDX4 were the 

least expressed with values of -4 and -5 respectively. 
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In the third group of elderly healthy donors, 33 genes 

were over-expressed from which the top 2 were also 

ALOX12 (Fold regulation 15.85) and the heat shock 

protein HSPA1A (Fold regulation 12.75). In this group, 

the least expressed genes compared to those in young 

healthy donors’ fibroblasts were the transcription factor 

FOXM1 (Fold regulation -14.32) and PRDX3 (Fold 

regulation -10.06). 

 

From the list of differentially expressed genes, 

statistical significance (P <0.05) was noted only in 5 

genes in the CS-B group and in 6 genes in elderly 

donors’ group. Regarding the CS-A-affected 

individuals, no statistical significance was noted, 

however, the same trend was noted in gene expression 

in the CS-A and the elderly group. (Table 1). 

 

To estimate the functions of identified statistically 

significant genes, we further undergo gene set 

enrichment analysis (GSEA) using KEGG and wiki 

pathway. GSEA analysis showed that the selected set of 

genes was enriched in various biological processes, 

cellular components, and molecular functions. The 

subnetwork shows the following associations from 

Gene Ontology and from KEGG: GPX7, ALOX12, 

EPHX2, and PTGS1 belong to the biological process 

arachidonic acid metabolic process (GO:0019369) 

(adjusted P-value= 1.45e-05). While from 

WikiPathways: The genes PRDX1, NQO1, TXNRD1, 
and HSPA1A are members of the WikiPathway NRF2 

pathway (WP2884) (adjusted P-value= 9.57e-04) 

(Figure 2A, 2B). 

 

Effects of nicotinamide on oxidative-stress-related 

gene expression in CS-affected individuals 

 

One of the most well-known pathways involved in 

oxidative stress is NAD(P)H oxidase pathway. Vitamin 

B3 is vital for the metabolism of many oxidative-related 

genes because it provides coenzymes such as NADH 

and NADPH, which are required for their function 

including hub genes from the RT2 profiler results such 

as PRDX3 FOXM1 NQO1, and ALOX12. 

 

First, RT-qPCR was performed on this set of genes to 

validate the results obtained by the PCR array analysis 

on a larger cohort of affected individuals. Analysis 

revealed the same tendencies with a significant decrease 

of PRDX3 and FOXM1 in CS-B affected individuals 

with values of fold change respectively (0.06±0.03 p-

value =0.009) and (0.1±0.17 p-value =0.04) (Figure 3A, 

3B). A significant increase in the transcription level of 

NQO1 was also noted in CS-B affected individuals (fold 

change = 4.23 ±0.6 p-value =0.02) (Figure 3C). 

ALOX12 though statistically non-significant maintained 

higher levels in CS-A and CS-B affected individuals. 

 

Secondly, we examined the effect of nicotinamide 

(NAM) at a dose of 1mg on their expression levels. We 

noted that following nicotinamide supplementation, 

there is an increase in the expression of PRDX3 and 

FOXM1 in CS affected individuals and in elderly group 

with a statistically significant fold change between CS-

B and CS-B stimulated with nicotinamide (18,75±1.1 p-

value=0.03). This was noted also for FOXM1 (Fold 

change old 41,99±24, 4,9±1 in CS-B, and 26,33±4 in 

CS-A). Furthermore, NAM supplementation decreased 

the expression level of ALOX12 in both groups of CS-

affected individuals CS-A and CS-B while it was 

maintained in the elderly group. 

 

Effects of nicotinamide on inflammatory-related 

genes in CS-affected individuals’ fibroblasts  

 

Oxidative stress and subsequent generation of free 

radicals can harm cell and tissue homeostasis, 

 

 
 

Figure 1. Scatter plot of differentially expressed genes in the 3 different groups normalized to healthy controls. (A) CS-A, (B) 
CS-B, (C) Elderly group. 
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Table 1. Significantly altered oxidative stress gene expression in CS-A, CS-B and in elderly compared to 
young healthy control. 

Symbol 

Fold change (compared to the young healthy control group) 

CS-A CS-B Old 

Fold change p-value Fold change p-value Fold change p-value 

ALOX12 137.29 0.349832 122.41  0.033298 15.85 0.346680 

EPHX2 8.29 0.355182 10.26  0.041885 4.39 0.227914 

FOXM1 1.97 0.390080 0.20 0.015982 0.07 0.008348 

GPX7 0.64 0.747536 1.90 0.239060 0.42 0.042258  

HSPA1A 9.05 0.269523 1.23 0.555769 12.76 0.005347 

NQO1 0.95  0.866789 4.17 0.048009 0.33  0.097544 

PRDX1 0.71 0.727858 2.73 0.196081 0.15 0.034985 

PRDX3 0.41 0.597151 0.20 0.922096 0.10 0.039915 

PTGS1 4.12 0.361782 4.22 0.042959 2.61 0.368511 

TXNRD1 5.70  0.224758 0.56 0.650882 3.25  0.046888 

 

particularly during aging. We, therefore, explored the 

effects of nicotinamide supplementation on P65 and 

TNF-a expression in CS-affected individuals’ fibro-

blasts. At normal condition, the P65 gene expression in 

CS-A affected individuals was 518,49±186, and it 

declined to 8.87±5, when NAM supplementation was 

added, to a fold change of 8.87±5.  

 

The same tendency was observed in TNF-a in CS-A and 

CS-B affected individuals’ groups that had the fold 

change of 855,21±16 and 165,80±41 respectively 

normalized to young control. These levels decreased 

considerably under different doses of NAM to reach a 

fold change of 88.7 ±12,57 in CS-A P-value<0.01 and 

2.9±1.7 P-value =0.04 in CS-B under a dose of 1mg/ml 

of NAM (Figure 4). For the elderly group, the results 

were heterogeneous due to the variability of health 

conditions and were therefore not presented. 

 

Effects of nicotinamide on the autophagy-related 

genes in CS affected individuals’ fibroblasts 

 

The level of P62 was low in Cockayne syndrome 

affected individuals (fold change 0.5±0.3) and similar 

to the elderly group (fold change 0.01±0.08) under 

starvation conditions. After nicotinamide supplementa- 

 

 
 

Figure 2. Bar chart of GSEA obtained from GESalt4 representing. KEGG (A), Wikipathway (B) and gene ontology (C). 
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tion for 24h, although not statistically significant the 

fold change of P62 gene increased to 14.56± 3.3 in the 

CS-A group, to 1.2±0.04 in CS-B, and 228±7 in the 

elderly group. 

 

The same tendency was observed for the PINK1 gene 

which was slightly under-expressed in all non-

stimulated conditions. NAM stimulation did not 

significantly affect its expression level, except in the 

elderly group where its expression increased 687-fold 

(Figure 5). 

 

Effects of nicotinamide supplementation on nuclear 

POLG1 expression in CS-affected individuals’ 

fibroblasts 

 

Nuclear POLG1 staining in primary fibroblasts 

following NAM supplementation at various con-

centrations for 24 h is shown in Figure 6A. The 

assessment of fluorescence intensity showed a 

significant decrease in both CS affected individuals’ 

forms (CS-A 1137± 800, and CS-B 1883 ±930 

compared to the healthy donor control 2566± 1000. All 

NAM concentrations used for the stimulation could 

increase the level of polg1 POLG1 in CS affected 

individuals’ cells as shown by the increased 

fluorescence intensity (p < 0.05) Q-PCR results, though 

not statistically significant, showed the same tendency. 

(Figure 6B). 

 

DISCUSSION 
 

Age-related diseases represent a public health problem. 

Identifying dysregulated parameters during aging is, 

therefore, a major objective of modern medicine. In 

addition, orphan diseases, of genetic origin, are 

 

 
 

Figure 3. The level of oxidative stress-related gene expression after nicotinamide stimulation. The histograms represent fold-

changes in genes up-or downregulated in CS-A, CS-B, elderly group and young healthy donors’ group normalized to non-treated control 
conditions of each group. (A) PRDX3, (B) FOXM1, (C) NQO1 and (D) ALOX12. 
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neglected and are rarely subject to therapy, this is the 

case of Cockayne syndrome (CS) for which no therapy 

exists. 

 

Aging is an unavoidable part of life, resulting in a 

decline of cell functioning. Segmental progeroid 

syndromes mimic some clinical aspects of normal 

aging and provide a rare opportunity to understand 

fundamental processes underlying human aging. 

 

Cockayne syndrome (CS) is a rare genetic disorder 

predisposed to accelerated aging. Affected individuals 

suffering from CS are characterized by growth delay, 

photosensitivity, and neurological manifestations such 

as impaired motor coordination, speech difficulties, and 

reduced intellectual capacity. Affected individuals also 

show signs of premature aging. Cognitive deficiencies 

may also be observed. The severity of symptoms can 

vary according to the subtype of the disease [9, 20] In 

Tunisia, previous work on this syndrome showed 

clinical particularities and reported 13 affected 

individuals [21, 22]. 
 

Reactive oxygen species ROS are the main factors 

responsible for skin aging, it contributes to the 

expression of cyclooxygenase and lipoxygenase, and 

 

 
 

Figure 4. P65 and TNF-a expression in CS affected individuals’ fibroblast normalized to young healthy donors’ group 
following of 0.5mg/ml and 1mg/ml NAM supplementation. (N=1 for CS groups, done in duplicate). 

 

 
 

Figure 5. P62 and PINK1 expression in CS-A, CS-B, and elderly affected individuals’ fibroblast normalized to non-treated 
control conditions of each group under doses of 1mg/ml NAM (N=1 for CS groups done in duplicate). 
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regulate some inflammatory process [23, 24]. The 

involvement of oxidative stress in the aging process is 

therefore well known. In addition, cells taken from 

affected individuals with CS are known to be 

hypersensitive to oxidative stress. However, the 

molecular mechanisms involved remain poorly 

understood. Previous work has shown that primary 

fibroblasts derived from affected individuals with CS-A 

and CS-B forms display an altered redox balance [25, 

26] like what we observed in our PCR array results. 

 

In this work, the expression profiles of the two genes 

related to oxidative stress were different between 

affected individuals with CS-A or CS-B forms. Indeed, 

by examining the number of fibroblasts from affected 

individuals with the CS-A form, we found that they 

have a moderate response to oxidative stress. These 

findings are in line with previous work suggesting that 

cells from CS-A-affected individuals are more sensitive 

to the action of H2O2 than wild-type cells, while cells 

from CS-B-affected individuals are even more sensitive 

[27]. We didn’t find any statistically significant altered 

gene expression in CS-A group even though it has the 

same tendency as the elderly group. This may be due to 

the small number of tested samples via PCR array 

(N=3) and since one of the tested cases had a different 

genotype from the others (Table 2). 

The analysis of the expression of the set of genes 

associated with oxidative stress in elderly in the 

Tunisian population has never been explored or 

compared with CS segmental progeroid model as it 

represents a form of accelerated ageing disorder. With a 

small number of individuals with rare disorders such as 

CS, statistical power calculations for the needed sample 

size in rare disease clinical studies may be impossible 

[28]. The screening for oxidative stress-related genes in 

common with regular ageing revealed an increased 

expression of ALOX12 in CS-affected individuals. 

ALOX12 is often termed plate platelet-type 12-

lipoxygenase, codes for an enzyme that oxidizes free 

fatty acid, crucial for inflammation and oxidative stress 

defenses [29], it has been therefore implicated in 

adipogenesis [30]. Its over-expression can promote 

oxidative stress by triggering low-density lipoprotein 

oxidation via the p38 mitogen-activated protein kinase 

(MAPK) and nuclear factor B (NFk-B) pathways [31]. 

In fact, mice models that mimic CS disorder show clear 

changes in systemic metabolism during post-natal 

development, including loss of adiposity which 

contributes to premature mortality [32]. 

 

Within the same rationale, we observed an under-

expression of Peroxiredoxin 3 (PRDX3) in both CS 

affected individuals and elderly. PRDX3 is a regulator 

 

 
 

Figure 6. Level of nuclear POLG 1 upon supplementation with different doses of nicotinamide (NAM). (A) Representative images 

using a fluorescence microscope after treatment with NAM (0.5 and 1 mg/mL) for 24 h labeled with polg1 (Red) and nuclei with DAPI (blue) 
(the scale bar is 5 µm). (B) corresponding fluorescence intensity and QPCR results for the same gene, the p-values were calculated using 
unpaired two-tailed Student’s t-test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p<0,0001). 
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Table 2. List of studied samples. 

Code Age Sex Pathology/genotype Type of experiment/ Cell passage number 

H32 

Less than 25 

M 

Obtained from chirurgical waste 

during surgeries 

P6 (PCR array/QPCR) 

H34 M P5(PCR array/QPCR) 

H35 M P7(PCR array/QPCR) 

H36 F P6(QPCR) 

T9 F P5(QPCR-IF) 

T10 M P5(QPCR) 

Old 13 87 M P7(PCR array/QPCR) 

Old14 80 F P6(PCR array/QPCR) 

Old15 89 M P5(PCR array/QPCR) 

Old16 87 M P8(QPCR) 

Old17 85 F P5(QPCR) 

Old20 79 M P6(QPCR) 

CS1 5 F ERCC8 c.843+1G>C P6(PCR array/QPCR) 

CS2 4 M ERCC8 c.598_600delinsAA P5(PCR array/QPCR-IF) 

CS6 4 M ERCC8 c.598_600delinsAA P5(PCR array/QPCR) 

CS11 3 M ERCC8 c.598_600delinsAA P5(QPCR) 

CS16 8 F ERCC8 c.598_600delinsAA P5(QPCR) 

CS10 8 M ERCC6 c.3156dup P5(PCR array/QPCR-IF) 

CS12 7 F ERCC6 c.3156dup P5(PCR array/QPCR) 

CS14 8 M ERCC6 c.3156dup P6(PCR array/QPCR-IF) 

 

of mitochondrial hydrogen peroxide, presumably 

scavenging ~90% of the generated ROS [33, 34]. It 

plays also a role as a putative chaperone under stress 

conditions [35]. Previous work suggests also that 

silencing of PRDX3 would promote oxidative stress–

induced cellular senescence [36]. In other disorders with 

common DNA pathway defects such as in Fanconi 

anemia, PRDX3 was found to be downregulated in 

cellular models which is in line with our findings [37]. 

 

As for the molecular signature that was specific to CS-

affected individuals, we noted the over-expression of 

the Polynucleotide Kinase-Phosphatase (PNKP) only 

in the affected individuals with defects in the ERCC8 

gene (CS-A group). The PNKP is known to be 

involved in important DNA repair processes, such as 

base excision repair [38]. Though ERCC8 is also 

implicated in base excision repair pathway, no clear 

relation between the two genes exists [39, 40] and we 

speculate that ERCC8 may play a subsequent pathway 

role in controlling the PNKP expression. We further 

noted a differential over-expression of the ALB 

(Albumin coding gene) in affected individuals with 

defects in the ERCC6 gene (CS-B group). The mRNA 

levels of Albumin are known to be hepatocyte-specific 

genes. Its expression in these affected individuals may 

be related to the hepatic cytolysis observed in these 

affected individuals [22]. 

An overall gene set enrichment analysis for the RT2 

results highlighted two altered pathways in CS affected 

individuals namely arachidonic acid metabolism and 

NRF2 pathway. Arachidonic acid metabolism is a 

biological process that transforms polyunsaturated fatty 

acid into different biological compounds via enzymatic 

reactions mainly Cyclooxygenase, Lipoxygenase, 

Cytochrome p450, and Anandamide pathways [41]. 

These processes play a role in regulating inflammatory 

mediators’ expressions such as TNF-a and enhance the 

development of senescent cells such as fibroblasts [42]. 

In fact, in response to DNA damage in CS-affected 

individuals, it was noted that arachidonic acid-related 

mediators have an enhanced expression that promotes 

the immune-response associated with the premature 

aging phenotype [43].  

 

On the other hand, nuclear factor (erythroid-derived 2)- 

like 2 (NRF2), controls the genes playing a role against 

oxidative damage during the process of aging. It is 

essential for maintaining mitochondrial functioning and 

controlling inflammatory response by competing with 

the Nf-kB pathway. NRF2 decreases lead to many 

disorders including neurodegenerative disorders, and 

other age-related pathologies [44]. 

 

NAD+ is an essential coenzyme that plays an important 

role in various metabolic pathways, and increasing its 
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rate appears to be a promising strategy for treating a 

wide variety of pathologies. This has been shown via 

several studies in animal models and in humans for the 

treatment of cardiovascular, neurodegenerative, and 

metabolic disorders [45]. Nicotinamide (NAM) known 

as vitamin B3 is one of NAD+ precursors that is 

prescribed usually as a dietary supplement. NAD 

supplementation has been linked to the treatment of 

many disorders [46]. It is converted to NAD+ in the last 

step of the salvage pathway [47]. 

 

Recent work has suggested that reduced NAD+ has 

been observed in CS-affected individuals’ fibroblasts 

isolated from affected individuals and in mouse models 

and that this appears to be associated with the aging 

phenotype [48]. 

 

In this study, we observed that NAM enhances the 

expression of FOXM1 and PRDX3 while enhancing P62, 

without having a major effect on PINK1 in CS affected 

individuals. Previous studies performed on CS mouse 

models suggested reduced autophagy [49]. Given the fact 

that this set of genes are major interactors in the NRF2 

pathway, and that previous work suggests that activation 

of NRF2 helps in maintaining the autophagy pathway 

through P62 [50]. These results are consistent with 

previous work suggesting that NAM supplementation 

restored redox homeostasis via NRF2 and protected cells 

from oxidative stress, as in the case of aged liver cell 

models [51] and in Parkinson disease affected individuals’ 

cells [52]. In addition, NAM supplementation enhances 

the mitochondrial OXPHOS, which in turn enhances 

peroxiredoxins’ stability to maintain the stemness of cells 

through ROS disposal [53, 54]. 

 

Further studies suggested that NAD+ increases the 

activity of PRDX3, and FOXM1 by increasing their 

acetylation level [55, 56]. It was also proposed that P62 

increases upon stimulation with nicotinamide in the 

blood of psoriasis-affected individuals [57]. P62 and 

PINK1 are involved in multiple cellular processes 

related to aging such as mitophagy [58, 59], oxidative 

stress response [60], and inflammation [61]. During cell 

senescence, it was reported that their level declines [62]. 

 

In CS affected individuals, the expression of both 

autophagy-related genes P62 and PINK1 was decreased 

in our cases which is consistent with previous work that 

showed that in response to stress, CS-B deficient cells 

demonstrated decreased colocalization of P62 and 

PINK1 within mitochondria resulting in decreased 

mitophagy. It is therefore important to note the 

beneficial role of NAM supplementation [49, 62]. 
 

Within NRF2 targeted genes we reported an alteration 

in the expression of NQO1 that was specific to CS-B 

group. NQO1 is one of the quinone reductases that plays 

multiple roles in cellular adaptation to stress. One of 

these functions includes its involvement as a producer 

of NAD+ for enzymes like PARP and sirtuins [63]. An 

increased rate of this protein has been noted in the 

segmental progeroid model of XPG-deficient mice, 

which highlights its association with the aging process 

giving the interaction of XPG protein with the core TC-

NER factor [64]. Exogenous NAD+ via NAM 

supplementation does not seem to impact the expression 

of NQO1. 

 

The effect of NAM supplementation was further studied 

on the altered Arachidonic acid metabolism by 

examining the expression of ALOX12 and one of the 

related inflammatory pathways associated with P56 and 

TNF-a. Upon administration, we noted the decreased 

expression of these genes in both CS forms. It is known 

that nicotinamide prevents lipid peroxidation in 

experimental animal models possibly including 

arachidonic acid [65, 66]. 

 

Regarding inflammatory genes linked to arachidonic 

acid metabolism, as to the related inflammatory genes 

to Arachidonic acid metabolism studies in this work we 

noted high expression level of TNF-a. In fact, high 

expression of TNF-α resulted in the premature 

senescence of human dermal fibroblasts [67].  

 

While most CS affected individuals are known for their 

photosensitivity, previous work has shown that 

nicotinamide supplementation improved cell viability 

loss and attenuated the inflammatory response in 

photosensitive skin [16] especially through reducing 

expression level of NF-κB subunit (p50) [68], which 

was the case of P50 expression level, noted in CS 

fibroblasts. This confirms the anti-inflammaging 

proprieties of this molecule in the CS model.  

 

Further research into the secretory expression of other 

mediators associated with senescence, such as IL-6 and 

IL-8, would also have been of interest, given that 

previous work has suggested that NAM can reduce UV-

induced erythema and decrease the production of 

inflammatory mediators (including cytokines) in the 

skin [69]. In addition, we have previously shown that 

the rate of IL-8 was significantly increased in the 

peripheral blood of the same studied cohort of CS-

affected individuals compared to healthy control [70]. 

 

Aside from being classified as a form of segmental 

progeroid disorder, the clinical features of CS-affected 

individuals share substantial similarities with what is 
often observed in mitochondrial diseases [71, 72]. 

Polymerase-γ catalytic subunit (POLG1) is an enzyme 

that ensures accuracy in the replication and repair of 
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mitochondrial DNA [73]. Mutations in POLG1 are also 

associated with several mitochondrial disorders such as 

Alpers-Huttenlocher syndrome, polyneuropathy, ataxia 

and progressive external ophthalmoplegia [74, 75]. In a 

mouse model, mutations in this gene were suggested to 

be associated with premature aging [76]. It was also 

shown that in CS cells, the degradation of the POLG1 

protein leads to an alteration of mitochondrial 

functionalities including a reduction in mitochondrial 

DNA and to oxidative phosphorylation (OXPHOS) 

[77]. The decrease of POLG1 expression was further 

confirmed in this work in both forms (CS-A and CS-B). 

After NAM supplementation an increase of the level of 

this polymerase was noted which suggests the activation 

of an underlying mechanism related to the SIRT 

pathway [78]. 

 

Throughout this work and given the particularity of 

affected individuals with Cockayne syndrome who do 

not develop cancer despite the defect in the NER 

pathway, the detection of biomarkers related to the 

process of accelerated aging could also represent 

potential targets for preventing age-related diseases 

such as cancer, hence the originality of this work.  

 

As has been stated before, the study of genes’ 

expression in rare disorders could lead to a decrease in 

the statistical strength of certain analyses, however, it 

could highlight new biomarkers such as those found in 

this work [79]. Indeed, as it was recently shown that 

supplementing NAD+ precursors can restore mito-

chondrial dysfunction in CS-A or CS-B cells [80]. Here, 

we support these findings and confirm that nicotinamide 

would be a key element in future innovative therapeutic 

strategies that aim to improve the severe phenotype of 

various DNA repair diseases. However, this study 

requires further functional analyses to confirm these 

results, particularly with regard to the exact effect of 

nicotinamide on the major defects in CS-A/B. These 

analyses could not be carried out for two main reasons, 

namely lack of funding and above all the unavailability 

of certain crucial samples given the rarity of the disease. 

 

MATERIALS AND METHODS 
 

Skin biopsy sampling of CS-affected individuals  

 

Eight affected individuals were recruited from the 

Department of Neuropediatric, National Institute of 

Neurology Mongi Ben Hamida from 2017 to 2019. 

Written informed consent was obtained from affected 

individuals’ families or legal tutors. Skin biopsies were 

collected for UDS/RRS testing. Three affected 

individuals were genetically confirmed as CS-B [22] 

and 5 CS-A [21]. The study was conducted in 

accordance with the Declaration of Helsinki Principles 

and approved by Institute Pasteur Ethics Committee  

in Tunisia (reference 2017/31/I/LR16IPT05/V2), 

(reference 2018/32/I/ LR16IPT05/V1). Further details 

are in Table 2. 

 

Healthy primary dermal fibroblasts 

 

Primary cell cultures of human fibroblasts were isolated 

from skin biopsies of healthy donors (N=6 young and 

N=8 old). Small skin fragments have been obtained 

following surgeries to treat femur fractures in healthy 

people who have fallen. Further details are in Table 2. 

 

Cells were grown at 37° C in a 5% CO2 humidified 

atmosphere in Dulbecco's modified Eagle's medium 

(DMEM) (1g/L glucose) with GLUTAMAX (Life 

Technologies, Gibco, USA) supplemented with 10% 

fetal calf serum (Gibco) and 1% penicillin/streptomycin 

(Gibco). All primary fibroblast cultures were analyzed 

at similar passages (passages 5 to 7). No anomalies 

were observed on the morphological aspect, nor on the 

proliferation rate, as shown in Supplementary Figure 1. 

 

Nicotinamide supplementation 

 

Cells were seeded in six-well plates and treated with 0.5 

mg or 1mg of nicotinamide (Sigma-Aldrich, USA) for 

24h in a medium with 0.5 % fetal calf serum (Gibco). 

 

RNA extraction and reverse transcription 

 

The trizol technique was used to isolate fibroblast RNA. 

The concentration and purity of RNA were determined 

using spectrophotometry on a Denovix DS11. Followed 

by genomic DNA removal using a DNase kit 

(Invitrogen), starting with an identical amount of 1µg 

RNA, cDNA synthesis was done whether for PCR array 

analysis using the RT2 first strand kit (Qiagen) or for 

further qPCR analyses with SYBR Green (Roche), using 

the Superscript II Reverse Transcriptase kit and dNTPs 

primers (Invitrogen, USA) according to the 

manufacturer's instructions. 

 

Oxidative stress PCR array 

 

The expression of 84 different genes of oxidative stress 

was measured by quantitative RT2 Profiler PCR array 

according to manufacturer recommendation in 3 CS-A, 

3 CS-B affected individuals, 3 Old donors and 

normalized to 3 healthy controls donors (PAHS-065, 

SABiosciences Qiagen, Germany). The Real-Time PCR 

reaction was done using the LC480 Roche system. All 

data were analyzed for relative quantification using the 
online tool (https://dataanalysis2.qiagen.com/pcr) which 

automatically calculates the fold-change for the gene 

expression.  
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QPCR analysis 

 

We tested the expression of ALOX12, PRDX3, FOXM1, 
NQO1, P62, and PINK1 genes using the SYBR Green-

based qPCR technique on LC480 light cycler system. 

Primers were selected from the Primer bank database 

(https://pga.mgh.harvard.edu/primerbank/). Relative 

quantification Ct values were obtained from the 

threshold cycle number of a triplicate test and 

normalized to the healthy control fibroblast. PPIA and 

RLPO were used as housekeeping genes. Threshold 

cycle (Ct) was used to calculate relative gene expression 

by the 2-ΔΔCT method. 

 

PolG1 immunofluorescence staining 

 

Cells contained in 8-wells Lab-Tek chamber slide were 

fixed with 4% paraformaldehyde (PFA) and blocked 

using blocking buffer containing 5% BSA (Gibco) 0.5% 

(v/v) TritonTM X-100 (Sigma-Aldrich, USA). 

Fibroblasts were then incubated with primary antibody 

solution POLG1 rabbit NBP1-52300 at a dilution of 

1/150 overnight at 4° C and further stained with 

secondary antibody solution Goat Anti-Rabbit (Alexa 

Fluor® 594) (1:1000 in blocking buffer) for 1 h at room 

temperature (RT). Coverslips were mounted on slides 

using ProLongTM diamond antifade mounting medium 

with DAPI (Invitrogen, USA). Images were captured 

using Leica DM200 confocal microscope (Leica 

Microsystems, Wetzlar, Germany) for two CS affected 

individuals and one control. Quantitative measurements 

were performed with FIJI software and at least 100 cells 

were selected 

 

Statistical Analyses 

 

All data are expressed as mean ± SEM. Statistical 

analyses were performed with GraphPad Prism 9 

software (GraphPad Software). Significance is set as 

significant for p-values of less than 0.05. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. CS fibroblasts and morphology (A) Skin fibroblasts’ proliferation rate. Absolute number of cells from passage 2 to 
6 (n = 3). Proliferation was almost similar for CS, elderly, and Healthy donors. (B) Morphology of skin fibroblasts of healthy donors and CS-
affected individual. Cells were subjected to light microscopy and photographed. A representative image is shown. 
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