SUPPLEMENTARY FIGURES

Supplementary Figure 1. Growth curve and senescence characteristics of *in vitro* cultured NHEKs. (A) Examples of growth curves of NHEKs (various donors) showing the exponential growth phase, the pre-senescent phase, and the senescence plateau. (B) Representative microscopy images of SA- β -Gal staining in exponentially growing and senescent NHEKs (Donor K40FH1). Bar represents 50 μ m. (C) Cell morphologies observed by phase-contrast microscopy. The images shown illustrate the differences between proliferating and senescent NHEKs, recognizable by their large size and the presence of numerous cytoplasmic refringent or dark vesicles or particles. Bar represents 100 μ m. (D) Flow cytometric data of NHEKs (K40FH1) at the senescence plateau of forward scatter factor (FSC-A) and side scatter factor (SSC-A).

		Exp. Growing NHEKs- CM	Senescent NHEKs-CM		
Coordinate	Target/Control	Mean Intensity (a.u.)	Mean Intensity (a.u.)	Ratio (Sen/Exp.Growing)	
A3, A4	CCL1/1-309	10,7335	10,449	0,9734942	No change
A5, A6	CCL2/MCP-1	12,7225	14,199	1,11605423	Up
A7, A8	MIP-1a/MIP-1b	27,312	34,9235	1,27868702	Down
A9, A10	CCL5/RANTES	35,5275	66,9285	1,88385054	
A11, A12	CD40 Ligand/TN FSF5	96,111	100,356	1,04416768	
A13, A14	Complement Component CS/CSa	10,743	12,534	1,16671321	
A15, A16	CXCL1/GROa	9,6085	12,764	1,32840714	
A17, A18	CXCL10/IP-10	10,1925	11,113	1,0903115	
B3, B4	CXCL11/I-TAC	20,518	32,3985	1,57902817	
B5, B6	CXCL12/SDF-1	11,397	13,457	1,18074932	
87,88	G-C SF	58,651	89,4215	1,52463726	
89,810	GM-CSF	10,2805	16,3835	1,59364817	
B11, B12	ICAM-1/CD54	9,915	11,4535	1,15516894	
B13, B14	IFN-g	9,9505	11,401	1,14577157	
B15, B16	IL-1a/IL-1F1	10,335	12,7075	1,22955975	
B17, B18	IL-1b/IL-1F2	18,4475	21,4725	1,16397886	
C3, C4	IL-1ra/IL-1F3	10,522	12,904	1,22638282	
C5, C6	IL-2	9,79	11,3335	1,15766088	
C7, C8	IL-4	11,0315	12,934	1,17246068	
C9, C10	IL-5	11,5685	13,3665	1,15542205	
C11, C12	IL-6	10,6025	12,431	1,17245933	
C13, C14	IL-8	10,2915	11,92	1,15823738	
C15, C16	IL-10	11,059	13,408	1,21240619	
C17, C18	IL-12 p70	10,93	11,858	1,08490393	
D3, D4	IL-13	9,8245	11,309	1,15110184	
D5, D6	IL-16	10,1265	12,077	1,19261344	
D7, D8	IL- 17A	10,8955	12,867	1,18094626	
D9, D10	IL-17E	9,9755	11,387	1,14149667	
D11, D12	IL-18/IL-1F4	75,5645	89,466	1,18396866	
D13, D14	IL-21	10,593	12,0155	1,13428679	
D15, D16	IL-27	10,563	11,1275	1,05344126	
D17, D18	IL-32α	88,964	76,125	0,8556832	
E 3, E4	MIF	10,8305	18,343	1,69364295	
E 5, E 6	Serpin E1/PAI-1	12,88	10,1245	0,78506366	
E 7, E8	TN F-a	10,3445	11,739	1,13480594	
E9, E10	TREM-1	9,5195	10,749	1,12915594	

Supplementary Figure 2. SASP composition in NHEKs. Cytokine/chemokine array performed with conditioned medium from senescent and exponentially growing NHEKs. The intensity of the signals was quantified by densitometry (ImageJ) and normalized to positive controls for each sample.

Supplementary Figure 3: Contribution of ROS-generating activity of PTGS2 to the senescent phenotype in NHEKs. (A) NHEKs (donor K23FC1) at the exponential growing phase or at the senescence plateau were treated or not with NS398 or rofecoxib for 16 hrs. ROS levels were analyzed by using the H₂DCFDA probe. The fluorescence was normalized to cell numbers and was expressed as relative values, a value of 1 corresponding to the level of fluorescence in exponentially growing cells. (B) Senescent NHEKs (donor K23FC1) were transfected with a pool of 4 siRNAs targeting PTGS2, or with non-target siRNAs. ROS levels were measured and analyzed as in (A). In A and B, the measures were performed in triplicate. The bars represent the mean + SD.

Supplementary Figure 4. Evaluation of PTGES1 and PGFS silencing efficiency. (A) Analysis of PTGES1 protein levels in senescent NHEKs (Donor K40FH1) subjected to PTGES1 silencing compared to a non-target siRNA as control 96h after transfection. GAPDH was used as loading control. (B) Analysis of the amount of PGF2α. by competitive assay in senescent NHEKs (Donor K40FH1) subjected to PGFS silencing compared to a non-target siRNA as control 96 h after transfection. The results were normalized to the number of senescent NHEKs. Bars represent the mean ± SD of three independent experiments.

Supplementary Figure 5. PTGES1 controls the secretion of IL-10 through the production of PGE2. Senescent NHEKs (Donor K40FH1) were transfected with a pool of 4 siRNAs targeting PTGES1, or with non-target siRNAs (siCtrl). Two days after transfection, NHEKs were treated or not with 1 μ M PGE2 4-times a day during 3 days. The amounts of IL-10 in the conditioned media (secreted) were measured by an ELISA assay. Measures were performed in triplicate. Bars represent the mean +/– SD. Significant differences are indicated with asterisks with *p < 0.05 and **p < 0.01.

Supplementary Figure 6. Outcome of NHEKs. NHEK growth curve (from donor 4F0315) showing the exponentially growing, senescent and emergent (PSNE) phases.