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INTRODUCTION 

 
Brain aging is a biological process that comprehends 

degenerative, adaptive, and regenerative brain changes 

that elapse through maturity until the elderly. Yet, brain 

aging is often considered the transformation of the brain 

in old age. Brain aging encompasses modifications of 

molecules, neurons and glial cells, neural networks, 

vasculature, and ultimately, brain function, behavior, 

and cognition. 

Characteristics of senile plaques, cerebral 

amyloid angiopathy, and neurofibrillary tangles 

in human brain aging 
 

Senile plaques (SPs) and neurofibrillary tangles (NFTs) 

are principal neuropathological alterations of human 

brain aging and the hallmarks of Alzheimer’s disease 

(AD). For this reason, SPs and NFTs are named 

Alzheimer’s disease neuropathological change (ADNC) 

[1–7]. 
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ABSTRACT 
 

Brain aging is compared between Cercopithecinae (macaques and baboons), non-human Hominidae 
(chimpanzees, orangutans, and gorillas), and their close relative, humans. β-amyloid deposition in the form of 
senile plaques (SPs) and cerebral β-amyloid angiopathy (CAA) is a frequent neuropathological change in non-
human primate brain aging. SPs are usually diffuse, whereas SPs with dystrophic neurites are rare. Tau 
pathology, if present, appears later, and it is generally mild or moderate, with rare exceptions in rhesus 
macaques and chimpanzees. Behavior and cognitive impairment are usually mild or moderate in aged non-
human primates. In contrast, human brain aging is characterized by early tau pathology manifested as 
neurofibrillary tangles (NFTs), composed of paired helical filaments (PHFs), progressing from the entorhinal 
cortex, hippocampus, temporal cortex, and limbic system to other brain regions. β-amyloid pathology appears 
decades later, involves the neocortex, and progresses to the paleocortex, diencephalon, brain stem, and 
cerebellum. SPs with dystrophic neurites containing PHFs and CAA are common. Cognitive impairment and 
dementia of Alzheimer’s type occur in about 1-5% of humans aged 65 and about 25% aged 85. In addition, other 
proteinopathies, such as limbic-predominant TDP-43 encephalopathy, amygdala-predominant Lewy body 
disease, and argyrophilic grain disease, primarily affecting the archicortex, paleocortex, and amygdala, are 
common in aged humans but non-existent in non-human primates. These observations show that human brain 
aging differs from brain aging in non-human primates, and humans constitute the exception among primates in 
terms of severity and extent of brain aging damage. 
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Classical mature SPs are characterized by an extracellular 

fibrillar dense core surrounded by dystrophic neurites; 

mature plaques differ from earlier diffuse plaques, which 

are less compact and lack abnormal neurites. The main 

component of plaques is β-amyloid (Aβ). Aβ deposits 

can also be found in the walls of the meningeal and 

parenchymatous blood vessels, thus producing cerebral 

β-amyloid angiopathy (CAA).  

 

Cleavage of the trans-membrane β-amyloid precursor 

protein (APP) through α- and γ-secretases leads to  

the non-amyloidogenic pathway of APP degradation, 

whereas the combined action of β- and γ-secretases 

generates truncated C-terminal peptides Aβ42 and Aβ40, 

and many other small forms. Aβ40 and Aβ42 are the 

most abundant components of Aβ deposits in human 

brain aging and AD. Aβ may be modified by N-terminal 

truncation of soluble and insoluble peptide species as 

well as by truncation at the C-terminal, pyroglutamate 

modifications, isomerization/racemization, glycosylation, 

phosphorylation at Serine residues 8 and 26, and 

fibrilization. Soluble species are circulating, whereas 

insoluble forms are the principal components of SPs. 

Fibrillar β-amyloid is stained with thioflavin and Congo 

red. Under electron microscopy, Aβ peptides have a  

high degree of conformational variability: α-helical 

intermediate conformation on the membrane, structural 

transition, and β-conformation of amyloid fibrils. Cryo-

electron microscopy structure is characterized by two 

types of Aβ42 filaments and one type of Aβ40 filaments 

[8–14]. 

 

Tau deposits in human brain aging and AD manifest as 

granular cytoplasmic inclusions, pre-tangles, NFTs, 

neuropil threads, neurite clusters, and dystrophic neurites 

around β-amyloid cores in SPs. Tau deposits comprise 

3Rtau and 4Rtau isoforms generated by alternative 

splicing of the microtubule-associated protein tau gene 

(MAPT). Tau in brain aging and AD is progressively 

altered by post-translational modifications, principally 

hyper-phosphorylation at many phosphorylation sites, 

acetylation, abnormal conformation, truncation at the  

C-terminal and N-terminal regions, oligomerization, 

fibrillization, and aggregation. Biochemically, tau 

deposits in AD contain the six isoforms expressed in the 

human brain. Transmission electron microscopy reveals 

that tau granular filaments in AD comprise oligomers; 

pre-tangles form straight filaments; and NFTs paired-

helical filaments (PHFs) with a width between 80 and 

20nm and a cross-over spacing of 80nm. NFTs but  

not pre-tangles are argyrophilic with the Gallyas silver 

method [15–29].  

 
Human β-amyloid can seed and spread following the 

intracerebral inoculation in an appropriate host [30–36]. 

Similarly, intracerebral inoculation of abnormal human 

tau can induce the recruitment and transformation of 

native tau into abnormal forms in the host [37–45]. 
 

Braak stages of tau pathology and Thal phases 

of β-amyloid deposition in human brain aging 

and AD  
 

Tau pathology in human brain aging precedes by several 

years or decades the appearance of β-amyloid deposits 

and has a distribution that differs from that of SPs.  

 

Tau pathology advances following a typical gradient 

categorized as NFT Braak a-c subcortical and Braak 

stages I-VI. Braak a-c subcortical stages describe NFTs 

in selected brain stem nuclei, including the raphe  

nuclei and locus ceruleus. Braak stages I-VI delineate  

the progression of NFTs from the entorhinal and 

transentorhinal cortices (stages I-II) to the hippocampus, 

amygdala, inferior part of the temporal lobe, and limbic 

system (stages III-IV), and finally to the diencephalon 

and most parts of the telencephalon (stages V-VI). The 

passage from one stage to the next is continuous and is 

accompanied by increased NFT density [46–51]. 

 

Although with individual variations in severity, NFTs 

increase with age and affect about 85% of humans at 

age 65, involving the entorhinal and transentorhinal 

cortex, hippocampus, and the inner region of the 

temporal cortex. About 98% of individuals have NFTs 

in the telencephalon at 80 at least involving the same 

areas or more [46–49, 51–54].  

 

In contrast, SPs appear later, and their regional 

distribution is categorized into consecutive phases 

encompassing the neocortex (phase 1), allocortex  

and limbic system (phase 2), diencephalon and basal 

ganglia (phase 3), brain stem (phase 4), and cerebellum 

(phase 5) [55].  

 

About 30% of people have SPs at age 65, and around 

60% over 80. NFTs without SPs are detected in about 

35% of individuals older than 90 [49, 51, 53, 54].  
 

SPs and NFTs, and cognitive impairment and 

dementia in human brain aging 
 

Cognitive impairment and dementia result once certain 

thresholds of NFTs and SPs are reached, principally 

depending on individual genetic risk factors. 
 

Individuals with Down syndrome, caused by the presence 

of all or part of the third copy of chromosome 21, have 

large numbers of SPs and NFTs at age 40 [56, 57]. 
 

Patients suffering from familial AD (fAD) develop 

cognitive impairment and dementia between 50 and 65 
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years and bear mutations in one of the three genes 

involved in the β-amyloidogenic pathway: APP, 

presenilin 1 (PSEN1), and presenilin 2 (PSEN2); 

increased APP dosage is also causative of AD and CAA 

[58–64].  

 

Random individuals with large numbers of SPs and 

NFTs develop dementia over 65 years. The prevalence 

of dementia in humans 65-70 years old is about 1-5% 

and between 25% and 30% at the age of 85. The 

majority of sporadic cases of dementia have large 

numbers of SPs and NFTs and are categorized as 

sporadic AD (sAD) [65]. Cognitive status correlates 

with NFT burden rather than SPs [66].  

 

More than 70 low-penetrating genetic risk factors of sAD 

have been identified. The products of these genes are 

involved in four principal pathways, lipid metabolism, 

inflammation, membrane, and cytoskeleton [67–81]. 

 

Human brain aging and AD 
 

The definition of AD by the National Institute on 

Aging-Alzheimer’s Association (NIA-AA) is based on 

three pillars: (a) the neuropathological evidence of 

ADNC, (b) biochemical and neuroimaging biomarkers, 

and (c) clinical symptoms. 

 

NIA-AA guidelines assume that the appearance of SPs 

is the sine-qua-non condition for the neuropathological 

diagnosis of sAD. The sole presence of NFTs is  

not considered a prime manifestation of sAD. The 

evaluation of ADNC is based on an “ABC” score that 

includes histopathologic assessment of β-amyloid 

deposits (called A, based on Thal phases), staging of 

NFTs (called B, based on Braak stages), and scoring  

of neuritic plaques (called C, based on CERAD). Co-

morbid conditions must be assessed [82, 83]. 

 

Preferred neuroimaging methods comprise β-amyloid 

positron emission tomography (Aβ-PET), tau-PET, and 

functional magnetic resonance imaging. Biological 

markers include low Aβ levels in the CSF, increased  

P-tau/tau ratio in the CSF, and increased P-tau in serum.  

 

Clinically, AD is categorized as preclinical AD, mild 

cognitive impairment (MCI) due to AD, and mild, 

moderate, and severe Alzheimer’s dementia [84–90]. 

Preclinical AD is considered in individuals without 

clinical symptoms but with positive neuroimaging and 

biological markers showing Aβ and tau pathology 

without apparent cognitive impairment [85, 91, 92]. 

MCI due to AD is considered in people with positive 

biomarkers plus memory, language, and thinking 

problems. Dementia covers the most devastating stages 

of AD. 

Tau-PET observations are in line with neuropathological 

findings and NFT Braak stages in human brain aging and 

AD and confirm that: a) tau pathology precedes by 

several decades the appearance of β-amyloid in brain 

aging without cognitive impairment; b) tau pathology 

may be found in some individuals suffering from 

cognitive impairment without concomitant β-amyloid 

deposition, and; c) tau pathology, rather than β-amyloid 

pathology, correlates with progressive cognitive decline 

in sAD. The early presence of positive tau-PET in the 

inner regions of the temporal cortex in the absence of 

positive β-amyloid markers is not considered preclinical 

AD according to the current definition of the NIA-AA 

[93–97].  

 

Due to the constrictions linked to the NIA-AA 

definition of AD, the term Primary age-related 

tauopathy (PART) was coined to include cases with 

NFT pathology and without β-amyloid deposition [98, 

99]. This term covers the majority of aged individuals  

in their sixties and seventies at Braak stages I-IV  

and a percentage of older individuals without SPs. If 

present, clinical signs are interpreted as “normal brain 

aging”; mild cognitive impairment occurs in subjects  

at advanced NFT stages [100]. It is worth pointing  

out that the percentage of PART decreases at the  

time that β-amyloid pathology develops and AD is 

diagnosed following the NIA-AA guidelines. Against 

the implementation of a new disease, it has been 

suggested that PART is part of AD [101]; genetic 

factors are more likely to lower the amyloidogenic 

pathway and the formation of SPs in older patients  

with PART [102, 103]. Another proposal suggests that 

PART is ordinary in human brain aging, and β-amyloid 

is later added in a time-, rate- and region-dependent 

manner to produce AD [104]. 

 
An integrated hypothesis (AD overture) proposes that 

human brain aging with NFTs and SPs is a continuum 

with Alzheimer’s disease [54, 105]. AD is a progressive 

neurodegenerative biological process prevalent in human 

brain aging, characterized by the early appearance of 

3R+4Rtau NFTs that progresses following established 

Braak stages and followed decades later by β-amyloid 

pathology forming SPs and CAA. The process manifests 

as preclinical AD (covering early NFT stages). It 

progresses not universally to mild cognitive impairment 

due to AD (MCI-AD) and mild, moderate, and severe 

AD dementia (ADD) [54, 105]. 

 

Old world monkeys and Hominidae 
 

Several reviews deal with brain aging in non-human 
primates and its relationship with AD [106–110]. This 

review further discusses ADNC in the context of brain 

aging in Cercopithecinae and non-human Hominidae, 
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the species phylogenetically closest to the current Homo 
sapiens. 
 

β-amyloid and tau pathology in Cercopithecidae 

subfamily Cercopithecinae  
 

Cynomolgus monkey (Macaca fascicularis) 

(Figure 1) 
 

First studies in aged cynomolgus monkeys showed the 

presence of abundant β-amyloid plaques in the cerebral 

cortex [111–114]. 
 

Diffuse plaques, primitive plaques, and classical plaques 

were stained with anti-Aβ42(43) antibodies; diffuse 

plaques and only about one-third of classical plaques 

were not stained with anti-Aβ40. CAA in arterioles 

reacted with anti-Aβ42(43) and anti-Aβ40 antibodies; 

cortical capillaries were decorated with anti-Aβ42(43) 

but rarely with anti-Aβ40. APP, ubiquitin, and micro-

tubule-associated protein-2, but not tau, accumulated in 

the swollen neurites of mature plaques [112, 113].  

 
A more extensive study was performed by the same 

group using the brains of 64 cynomolgus monkeys 

[114]. Diffuse and mature plaques were located in the 

temporal cortex and amygdala in 16 out of 25 monkeys 

20 years old or older. CAA was found in 10 out of 16 

animals older than 22 years. Plaques and CAA were 

stained with anti-Aβ40 antibodies, whereas antibodies 

raised against Aβ8-17 did not detect diffuse plaques and 

only one-third of diffuse plaques [114].  

 

 
 

Figure 1. Aged cynomolgus monkey. Cerebral amyloid angiopathy involves blood vessels of the meninge (A), frontal cortex (FC), 
parietal cortex (Par C), and amygdala (Amyg) with additional β-amyloid (Aβ) deposition in the perivascular spaces. In contrast with the 
extensive cerebral amyloid angiopathy, a few neurons containing hyper-phosphorylated tau (antibody AT8) are scattered in the frontal and 
parietal cortex, and hippocampus. Paraffin sections slightly counterstained with haematoxylin. Upper two rows, bar = 180 µm; lower row, 
bar = 25 µm. 
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Additional biochemical and morphological studies were 

analyzed in thirty cynomolgus monkey brains. Nine 

brains were from young monkeys (age 4-8 years), 16 

were from adult monkeys (age 11-22 years), and five 

were from aged monkeys (age 30-36 years) [115]. SPs 

were detected in ten individuals aged 19 years or  

older; NFTs were not detected. SPs were stained with 

the antibodies 4G8 and ApoE, whereas the antibody β-

APP695 stained swollen neurites of SPs; neurites of SPs 

were not detected with the AT8 antibody. Western blot 

analyses showed that full-length APP695 protein was 

mainly expressed in the brains of young monkeys, 

whereas APP751 protein was increased in the brains of 

older monkeys [115]. 

 

Going further in the study of the same series plus four 

aged monkeys, Western blotting studies showed an 

accumulation of insoluble Aβ in the temporal and 

frontal cortex and hippocampal regions in animals aged 

20 years, and their levels increased with age. Soluble 

Aβ was detected only in animals over the age of 30. 

Western blotting showed increased levels of soluble  

tau and phosphorylated tau in the hippocampus of  

aged monkeys. Insoluble tau in the hippocampus of  

the animals aged 6, 17, 19, 25, and 32 years was not 

detected [116]. AT8-immunoreactive, Gallyas positive 

NFTs in neurons, glial cells, and clustered neurites were 

found in the medial temporal cortex adjacent to the 

amygdala in one monkey. Another aged monkey 

showed a positive neuron [116]. 

 

In an attempt to correlate clinical symptoms and 

neuropathological changes, six cynomolgus monkeys 

aged from 27 to 30 years (three with low levels of Aβ42 

in the CSF and poor delayed reported tasks (DRT) 

performance and three age-matched controls) and two 

young aged 7 and 9 years, were assessed in another 

study. CAA was observed in small brain vessels of the 

aged monkeys; SPs were only found in two monkeys 

with poor DRT performance. Only one aged monkey 

with poor DRT performance showed P-tau Thr231 

immunoreactivity in the cytoplasm of neurons of the 

temporal and occipital lobe [117]. 

 
Another study reported the presence of cortical diffuse 

plaques in cynomolgus monkeys aged 18 and 19 years 

[118].  

 
A different neuropathological disorder was observed in 

two separate reports.  

 
In the first one, an albino male cynomolgus monkey  

aged more than 35 years showed gait disturbances, 

trembling, decreased activity, and drowsing tendency. 

The neuropathological examination revealed marked 

neuronal loss in the substantia nigra, globus pallidus, 

putamen, thalamic nuclei, pyramidal cell layer of the 

hippocampus, and Purkinje layer of the cerebellum. 

Gallyas-Braak positive, phospho-tau-immunoreactive 

glial fibrillary tangles and NFTs were dominant features. 

Glial fibrillary tangles, including coiled bodies and thorn-

shaped astrocytes, together with argyrophilic threads, 

were located in the putamen, caudate nucleus, thalamic 

nuclei, substantia nigra, red nucleus, globus pallidus, 

trapezoid body, pyramid, pons, and medulla oblongata; 

neurofibrillary tangles in the thalamus. Ubiquitin-positive 

eosinophilic grumose or foamy spheroid bodies were 

observed in the substantia nigra and globus pallidus. 

Numerous SPs, visualized with PAM and Aβ40, 

ubiquitin, and APP immunohistochemistry, were seen  

in the cerebral cortex, putamen, caudate nucleus, and 

hippocampus. Some swollen neurites at the periphery of 

the plaques in the hippocampus were immunoreactive  

for neurofilament 200 but negative for phospho-tau. 

CAA was near plaques [119].  

 

The other report analyzed twenty-one brains from 

cynomolgus monkeys aged 7-36, [120]. Aβ plaques were 

frequent in the brains of eight cynomolgus monkeys  

over 25. Phospho-tau-containing neurons, astrocytes, 

oligodendrocytes (coiled bodies), and neuropil threads 

predominated in the basal ganglia and neocortex rather 

than the hippocampus in five animals aged 30 years  

or more. Phospho-tau inclusions consisted of 4Rtau. 

Western blot studies of sarkosyl-insoluble fractions 

showed increased density of a band stained with AT8 

and 4Rtau antibodies and decreased 3Rtau in monkeys 

with tauopathy. Finally, tau localized in 20-25 nm 

straight filaments in oligodendroglia-like cells and 

neurons, as revealed with electron microscopy [120].  

 

The last two descriptions best refer to a different 

tauopathy in cynomolgus monkeys close to progressive 

supranuclear palsy (PSP) in humans, added to age-

related Aβ deposition [119, 120]. 

 

Rhesus monkey (Macaca mulatta) 
 

Several studies have shown the presence of β-amyloid 

plaques and CAA in aged rhesus macaques [121–128]. 

Plaques are stained with anti-Aβ antibodies and some of 

them with anti-apoE [122, 123, 126, 129]; a smaller 

proportion contain heparin sulfate proteoglycans and 

alpha1-anti-chymotrypsin [126]. Interestingly, there is 

an increase in the Aβ40:Aβ42 ratio in plaques of rhesus 

macaques compared with humans [126]; Aβ40:Aβ42, 

1.4 [122] or 2.8 [124] in rhesus monkeys, and 0.33  

[11] or 0.88 [124] in humans. Animals before age 20 

have no plaques; the number of plaques increases with 

age but with marked individual variations [125, 128, 

130, 131]. CAA is only found in the oldest monkeys 

[130].  
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Most studies note the presence of a few neuritic 

processes stained with anti-neurofilament antibodies  

but the lack of tau-containing dystrophic neurites in 

macaque SPs [123]. However, in a series of eleven aged 

(25 to 31 years old, three males and eight females) rhesus 

monkeys, most plaques were diffuse, and a minority were 

compact and thioflavin S positive. Compact plaques 

showed a few dystrophic neurites stained with anti-PHF-

1 antibodies and were accompanied by microglia [131]. 

Aβ deposits in aged rhesus monkey brains include 3-mer, 

5-mer, 9-mer, 10-mer, and 12-mer oligomers, but not Aβ 

dimers. It is suggested that Aβ deposits devoid of Aβ 

dimers induce glial pathology but not tau pathology, 

neurodegeneration, and synapsis loss [132].  

 

SPs first appear in the neocortex; lower densities  

are found in the amygdala and insula and cingulate, 

limbic temporal, and temporal, occipital, and parietal 

association cortices; the lowest densities are in the 

hippocampus; the primary motor and sensory areas are 

not affected [121, 126]. In another study, the highest 

density of SPs was found in the prefrontal cortex, 

followed by the amygdala and surrounding temporal 

gyri; plaques were less frequent in the hippocampus 

[127, 128]. 

 

In an extensive study of 81 brains from animals ranging 

from 16 to 39 years old, Aβ plaques were found in 38, 

10 of which were associated with CAA [128]. Twelve 

aged monkeys had an involvement of amyloidosis in  

the liver, the adrenal, or the pancreatic islets, but no 

positivity to the β-amyloid was demonstrated in the 

brain [127, 128]. Previous studies in a cohort of 186 

rhesus monkeys aged 20 to 36 showed an incidence of 

cerebral β-amyloidosis associated with plaque formation 

and CAA in 51 brains of rhesus monkeys aged 25 to 36 

years [127]. 

 

Plaque density was measured in fourteen rhesus 

monkeys aged 5-30 years and compared with the 

cognitive status of every monkey [125]. Cognitive 

dysfunction and plaque density increased with age. 

However, plaque density did not correlate with 

cognitive impairment since some cognitively impaired 

animals had few amyloid plaques, and others with 

abundant plaques showed discrete cognitive impairment 

[125]. 

 

Cytoplasmic Aβ immunoreactivity without concomitant 

β-amyloid plaques has been reported in basal forebrain 

cholinergic neurons in aged rhesus monkeys [133].  

 

No NFTs were detected in an extensive series of 
macaques [128]. However, early electron microscopic 

studies revealed dystrophic neurites and PHFs in the 

prefrontal cortex of old macaques [134]. Moreover, 

abnormally phosphorylated tau, as detected with 

AT100, PHF-1, and TG-3 antibodies, was reported in 

the hippocampus and entorhinal cortex in a 28-year-old 

rhesus monkey [135].  

 

The brain of a rhesus monkey aged 43 with symptoms 

of cognitive impairment showed widespread amyloid 

and tau pathology. Amyloid plaques were seen in the 

neocortex and less abundant in the hippocampus. Mild 

CAA was also seen in the same regions. Amyloid 

deposits were composed of Aβ40, Aβ42, Aβ43, AβN1, 

and 4 AβpN3. The entorhinal cortex, hippocampus, 

and inferior temporal gyrus neurons contained 

phosphorylated tau. In the cerebral cortex, phospho-tau 

was localized in scattered neurites. Only a tiny 

percentage of tau-containing neurons were stained 

with Gallyas [136].  

 

A comprehensive study of β-amyloid and tau  

pathology was performed in a series of eleven rhesus 

macaques (aged 4.5-31 years) using the antibodies  

P-tauSer214, AT8 (P-tauSer202 + P-TauThr205),  

P-tauThr181, P-Thr231, anti-Aβ1-42, and anti-APP) 

[137]. Macaque brains were obtained after transcardial 

fixation and zero post-mortem interval, thus preserving 

weak phosphorylation sites that are usually rapidly 

dephosphorylated with post-mortem delay. P-tauSer214 

was found in layer II of the entorhinal cortex in young-

adult macaques (7-9 years); P-tau aggregated along 

microtubules in dendrites, transporting endosomes, 

trafficking between neurons at plasma membranes and 

the synapses. AT8 neuronal immunoreactivity appeared 

later in macaques aged 24-26 years and increased  

in density and distribution following Braak stages  

from stage I in younger macaques to stage IV in animals 

aged 33-34. Immunoelectron microscopy revealed the 

presence of P-tau-immunoreactivity in the cytoplasm of 

neurons and AT8-immunoreactive straight and paired 

10-nm filaments and typical 80-nm PHFs. P-tauSer214 

immunoreactivity appeared in the dorsolateral prefrontal 

cortex in macaques aged 31-34 years in glutamatergic-

like synapses and over the spine apparatus. Autophagic 

vacuoles in the soma and proximal dendrites, 

accumulation of late-phase lysosomes, and dystrophic 

neurites were also observed in layer II cortical neurons 

of the entorhinal cortex [137].  

 

Aβ42-immunoreactive plaques, mainly localized in 

layer V, and CAA were also observed in aged 

macaques. Dense plaques had a core composed of 10-

nm straight fibrils. Intracellular Aβ was found in 

endosomes localized next to mitochondria and on the 

plasma membrane in dendrites and axons [137].  
 

Additional biochemical studies further demonstrated 

early tau phosphorylation in vulnerable cortices, probably 

13150



www.aging-us.com 7 AGING 

modulated by calcium levels and mediated by specific 

kinases. Age-related calbindin and phosphodiesterase 

PDE4D reductions in pyramidal cell dendrites of the 

dorsolateral prefrontal cortex support this hypothesis 

[138].  

 

Stump-tailed macaque (Macaca arctoides) 
 

A unique series of monkeys showed altered behavior 

and impaired delayed matching and nonmatching-to-

sample responses in individuals aged 25-34. The post-

mortem examination demonstrated the presence of 

numerous polymorphous Aβ plaques in the prefrontal 

cortex, hippocampus, and parahippocampal regions and 

scarce neuronal granular deposits. All these deposits 

were stained with anti-Aβ42 and Aβ40 antibodies,  

with Aβ40 immunoreactivity as the predominant form. 

Although hyper-phosphorylated tau accumulated in 

neurons, a detailed description of tau pathology was 

lacking [139].  

 

Lion-tailed macaque (Macaca silenius) 
 

One study included Lion-tailed macaques and rhesus 

monkeys (n = 11) ranging from 4 to 41 years. The study 

did not make the distinction between the two species. 

APP immunoreactivity was seen in neuronal perikarya, 

proximal dendrites, and the axon’s initial segment in 

layers III and V of the neocortex. APP immunoreactivity 

increased with age. In older animals, senile plaques were 

distributed in the cerebral cortex; plaques contained Aβ, 

and many of them were also stained with anti-APP, 

anti-neurofilament, and anti-synaptophysin antibodies; 

enlarged axons and bulbous or knob-shaped swellings 

were found in mature plaques [140].  

 

Japanese macaque (Macaca fuscata)  
 

The distribution of β-amyloid was examined in the 

amygdala of aged (from 23 to 30 years old) Japanese 

macaques. The distribution of Aβ in the different 

subnuclei is similar to that seen in aged humans and 

parallels with zinc distribution [141]. No similar studies 

are available in other macaques. 

 

African green monkey, vervet (Chlorocebus 

aethiops sabaeus) 
 

Eleven African green monkeys aged 6-32 years were 

analyzed in one study [142]. Amyloid plaques appeared 

in aged animals, and their density increased with age, 

with predominance in the frontal cortex and entorhinal 

cortex and less correlation in the hippocampus and 

visual cortex. Biochemically, Aβ42 levels significantly 

correlated with age, whereas Aβ40 levels showed a 

trend toward a correlation with age. Tau pathology was 

revealed with antibody AT8 and Gallyas staining in two 

animals older than 20. NFTs localized in the entorhinal 

cortex and the stratum radiatum layers of CA1-4 of the 

hippocampus, thus suggesting neuronal origin, albeit tau 

in glial cells was also considered.  

 
Another study analyzed nine middle-aged (8.2-13.5 

years) and nine aged (19.5–23.4 years) female vervet 

African green monkeys [143]. Amyloid plaques (detected 

with the 6E10 antibody) were found in aged monkeys. 

Aβ plaques were localized in the anterior middle 

temporal gyrus, anterior cingulate gyrus, insular cortex, 

supramarginal cortex, superior frontal cortex, precentral 

and postcentral gyri, and occipital cortex; Aβ plaques in 

the superior parietal lobule and anterior superior temporal 

gyrus were found less frequently. Most plaques were 

diffuse, but neuritic plaques were also identified with the 

Bielchowsky silver stain. Guanidine-extracted Aβ42 or 

Aβ40 levels in the temporal and parietal cortex were 

significantly greater in aged vervets than in middle-aged 

animals. AT8 immunoreactivity was observed in all 

animals, but tau immunoreactivity was rarely reminiscent 

of pre-tangles and never as classical NFTs [143].  

 
The deposition of phosphorylated (P-Ser8Aβ) and non-

phosphorylated (npAβ) variants of Aβ was assessed in 

the brains of 15 Caribbean vervets ranging from 7.4 to 

32 years of age. Eight out of nine monkeys older than 

15 years had abundant deposits of P-Ser8Aβ and npAβ 

peptides. Diffuse and dense-core plaques were found  

in the frontal cortex, temporal cortex, and hippocampal 

region. In addition, P-Ser8Aβ was also observed in 

meningeal and parenchymal blood vessels [144]. 

 

Baboon (Papio) 
 
One study examined the brains of four aged baboons 

(Papio hamadryas). The estimated ages and genders of 

the animals were 20 years (female), 24 years (female), 

26 years (male), and 30 years (male) [145]. Numerous 

Gallyas positive and tau-immunoreactive, as revealed 

with the antibodies AT8, AT100, AT20, PHF-1, and 

TG-3, neuronal and glial inclusions were found in  

the two older animals. Neuronal deposits occurred  

in the cytoplasm, dendrites, and plexiform layers of  

the hippocampus proper. The dentate gyrus was also 

affected in the two older animals, principally in the 

male aged 30. Dense neuropil changes, immunopositive 

for phospho-tau, were seen in the plexiform layer of the 

hilus and the inner third of the molecular layer; NFTs 

were also seen in the granule cell layer. In addition,  

tau-containing astrocytes reminiscent of thorn-shaped 

astrocytes were seen in the periventricular, subpial,  

and perivascular regions of limbic brain areas such as 

the hippocampal formation, and the peri-amygdaloid 

cortex. Coiled bodies were abundant in the limbic fiber 
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tracts. Electron microscopical examination demonstrated 

tau-positive straight filaments (10-14 nm) in neurons 

and glial cells. Diffuse plaques and CAA, as revealed 

with the 4G8 antibody, were found in the two aged 

baboons and restricted to the temporal lobe, sparing  

the hippocampal formation and parahippocampal gyrus 

[145].  
 

The same authors also analyzed the brains of 50 

baboons (Papio anubis) ranging in age from 1 to 30 

years [146]. Animals were categorized into four age 

groups: Group I: 1-10 years (n = 9), group II: 11-20 

years (n = 13), group III: 21-25 years (n = 17), group 

IV: 26-30 years (n = 11). Phospho-tau pathology 

involved the hippocampus proper, dentate gyrus, and 

entorhinal cortex in most affected individuals of group 

IV. Mild to moderate tau pathology in the hippocampus 

and dentate gyrus occurred in some groups II, III,  

and IV specimens, respectively. As in the previous 

study, tau pathology was not restricted to neurons and 

neuronal fibers; thorn-shaped astrocytes and coiled 

bodies were equally seen in the same regions as in aged 

Papio hamadryas. Mild or moderate Aβ deposits were 

seen in basal frontal and temporal isocortical areas in 

some individuals of groups II, III, and IV without 

correlation with tau pathology [146].  
 

Another study focused on the characteristics of  

β-amyloidopathy in baboons [147]. Formalin-fixed  

brain tissue from six baboons (P. hamadryas,  

P. cynocephalus, and P. anubis; n = 2 each) aged from 

18 to 28 years. Neocortical plaques were mainly 

localized in layers 3-5 and usually involved blood 

vessels; plaques in the hippocampus were localized  

in the pyramidal cell layer. Diffuse plaques were 

primarily composed of Aβ42 over Aβ40; in addition, 

cotton-wool-like plaques, immunoreactive to 4G8 and 

NU1 antibodies, were observed in the cerebral cortex; 

numerous plaques contained Aβ oligomers. Punctate Aβ 

immunoreactivity was also observed in the cytoplasm of 

neurons near plaques. CAA was also present; compared 

to plaques, equal Aβ42 and Aβ40 immunoreactivity 

occurred in blood vessels [147]. Tau pathology in these 

animals was scanty, following the previous report of two 

P. hamadryas also analyzed in the present series [135].  
 

β-amyloid and tau pathology in non-human 

Hominidae 
 

Chimpanzee (Pan troglodytes) 
 

CAA involving meningeal and parenchymal blood 

vessels was abundant in an old chimpanzee aged 59 
years housed at the Yerkes National Primate Research 

Center of Emory University (Emory National Primate 

Research Centre), Atlanta, USA. Senile plaques, mostly 

diffuse or perivascular, were observed in the neocortex 

and hippocampus. Senile plaques and blood vessels 

were immunoreactive for Aβ and apoE. In contrast to 

human diffuse plaques, those in chimpanzees were 

negative for APP epitopes. Moreover, β40 was more 

prominent in the chimpanzee than in humans; the Aβ40: 

Aβ42 ratio in plaques was 1.13, compared with 0.37-

0.33 in AD. Immunohistochemistry with antibodies 

Tau-1, Alz-50, and PHF-1, revealed the absence of 

dystrophic neurites and NFTs in any region [123, 124].  

 

Another study analyzed a large group of 8 male  

(ages 39-62) and 12 female (ages 37-58) chimpanzees 

[148]. Samples from the prefrontal cortex, midtemporal 

gyrus, CA1 and CA3 subregions of the hippocampus, 

subiculum, and entorhinal cortex were processed for  

tau (AT8), APP/Aβ, and Aβ42 immunohistochemistry. 

All 20 chimpanzees showed APP/Aβ and Aβ42 

immunoreactivity in leptomeningeal, neocortical, and 

hippocampal arteries and smaller arterioles. CAA was 

more severe in the oldest animals. Thirteen chimpanzees 

had APP/Aβ-immunoreactive plaques, but only five  

of them showed plaques immunoreactive to Aβ42 

antibodies. Plaques were distributed in the neocortex 

and hippocampus and were less abundant or absent  

in younger individuals. Plaques were not surrounded  

by tau-containing dystrophic neurites. Phospho-tau 

pathology was categorized into pre-tangles, NFTs, and 

neuritic clusters. Pre-tangles and neuritic clusters were 

more abundant with age and predominate in the 

neocortex over the hippocampal region; only five 

chimpanzees had NFTs, four in the CA1 region of  

the hippocampus. Tau pathology was not associated 

with Aβ pathology [148]. In another study, the same 

authors stated that ADNC was not frequent in aged 

chimpanzees [149].  

 

A unique tauopathy was reported in a 41-year-old female 

chimpanzee who had suffered from a spontaneous, 

massive, left-hemispheric non-hemorrhagic stroke [150]. 

The post-mortem study revealed moderate CAA and less 

frequent SPs. In contrast, tau pathology was prominent, 

including pre-tangles, NFTs, neuropil threads, and 

plaque-like clusters of neurites. Most tau lesions were 

detected with the antibodies AT8 and CP13; fewer were 

with the PHF1, whereas the conformational antibody 

MC1 revealed only a few NFTs, plaque-like clusters, 

and neuropil threads. Plaque-like clusters were not 

related to astrocytes, as demonstrated with double-

labelling immunohistochemistry. Ultrastructurally, NFTs 

consisted of tau-immunoreactive PHFs with a diameter 

and helical periodicity indistinguishable from those seen 

in AD. Neuritic plaques and NFTs were also visualized 
with Campbell-Gallyas and Bielschowsky silver stains. 

Tau lesions were more severe in the prefrontal cortex, 

the temporal cortex, and the occipital cortex. The 
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hippocampus was less severely affected. Thread-like 

processes were also observed in the globus pallidus, 

neostriatum, diencephalon, white matter, and lower 

brainstem and, very infrequently, in the cerebellum. 

Granulovacuolar degeneration was absent. Sequencing 

the MAPT gene, that encodes tau proteins, revealed no 

mutations [150].  

 

Orangutan (Pongo) 
 

Sparse Aβ-immunoreactive, silver-negative plaque-like 

structures were observed in the brains of three 

orangutans aged 28, 31, and 36 years, but not in a 

younger age of 10. Many plaques were apoE 

immunoreactive. The Aβ40: Aβ42 ratio in plaques was 

1.38 (28 years old) and 1.34 (36 years old), thus 

showing a higher amount of Aβ40 when compared with 

AD. Sparse CAA was also observed in the oldest 

orangutan. Tau-containing structures, including NFTs, 

were undetected [151]. Another report cited similar 

alterations [152].  

 

Gorilla (Gorilla) 
 

Diffuse plaques were first reported in the cerebral 

cortex of a 44-year-old Western lowland gorilla 

(Gorilla gorilla gorilla). Plaques were stained with 

antibodies against Aβ protein, Aβ42, and Aβ43, but not 

against Aβ40. Half of the plaques were also stained with 

anti-apoE antibodies. Dystrophic neurites and NFTs 

were not seen [153].  

 

Another study analyzed the frontal cortex of males  

(22 to 49 years) and three females (32, 50, and 55  

years old) and the hippocampus of two males (13  

and 42 years old) and four females (32 to 55 years) 

western lowland gorillas [154]. The most characteristic 

feature was the presence of diffuse plaques and CAA in 

the neocortex and hippocampus. Plaques were more 

frequent in females, whereas CAA was in males. Plaques 

were stained with Aβ40, Aβ42, and Aβ oligomer 

antibodies but were weakly stained with thioflavine S. 

Neurofilament antibodies revealed a few dystrophic 

neurites that were not stained with anti-tau antibodies. 

Many neurons in the neocortex and hippocampus but not 

in the dentate gyrus, together with fine-beaded Alz50- 

ir fibers, showed granular Alz-50 immunoreactivity. 

However, tau-immunoreactive threads and NFTs tested 

with AT8 antibodies were absent. In contrast, a few 

astrocytes, coiled bodies, and plaque-like clusters of 

neurites were stained with Alz50, MC-1, and AT8 

antibodies in the neocortex and hippocampus of the 

oldest gorillas [154].  
 

The same authors studied ten adult wild mountain 

gorillas (Gorilla beringei beringei), seven females (16 to 

42 years) and three males (>20 to 35 years) [155]. Free-

floating sections containing frontal cortical areas were 

stained with antibodies against APP/Aβ, Aβ, Aβ42, 

Aβ40, Tau (Alz50 and AT8), and the endothelial marker 

CD31, SMI34. Diffuse plaques and CAA were found in 

gorillas older than 25. Vascular APP/Aβ-immunoreactive 

deposits were numerous between 30 and 40 years of age, 

involving meningeal arteries, arterioles, capillaries, and 

cortical blood vessels in layers I-IV. Plaques were stained 

with APP/Aβ, Aβ, Aβ42, and Aβ40 antibodies; abnormal 

neurites in plaques were stained with anti-neurofilament 

antibodies, but tau-containing dystrophic neurites were 

absent. A few scattered Alz50-immunoreactive neuritic 

clusters and glial cells and a few AT8-immunoreactive 

threads were seen in the frontal cortical areas. NFTs were 

absent [155].  

 

An aged albino gorilla, 40 years old had suffered during 

the last two years of life from progressive tetraparesis, 

nystagmus, and dyskinesia of the arms, hands, and  

neck, with accompanying abnormal behavior. The post-

mortem neuropathological study revealed large numbers 

of axonal spheroids associated with iron accumulation 

in the internal globus pallidus, together with numerous 

corpora amylacea in some brain areas, especially the 

substantia nigra. Sequencing of the gorilla PANK2 gene 

failed to detect any mutation. The β-amyloid deposition 

was limited to some small blood vessels of the cerebral 

cortex. Tau pathology was absent [156].  
 

Comparison of β-amyloid and tau in aged 

Cercopithecinae and non-human Hominidae 

and aged humans 
 

More than 450 middle-aged and aged monkeys and apes 

have been assessed neuropathologically in the revised 

series. Although corresponding to different species, and 

even considering that only a few individuals have been 

studied in some species, the total number is sufficient  

to get a preliminary idea of brain β-amyloid and tau 

deposits linked to brain aging in Cercopithecinae and 

non-human Hominidae. 

 

β-amyloid 
 

The resemblance of β-amyloid pathology between 

monkeys, apes, and humans can be related, at least in 

part, to similarities of APP and its cleavage product by 

the amyloidogenic pathway in these species. The β-

amyloid precursor protein 695 (APP695) is more than 

99% identical in chimpanzees and humans and can be 

cleaved into Aβ40/42 peptides [107, 157]. Biochemical 

studies have shown that the predicted amino acid 

sequence of the 695-residue β-amyloid protein of 

cynomolgus monkey is homologous to that of humans; 

the alternatively transcribed exons encoding the Kunitz 
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protease inhibitor region in monkeys shows only a 

single conservative amino acid substitution in the  

751-residue form of PAPP and four substitutions in 

PAPP77 in monkeys compared to humans [111]. Direct 

sequencing of PCR-amplified fragments of DNA 

revealed that the baboon APP bears four conserved 

substitutions in the open reading frame of exons 16 and 

17. Thus, the amino acid sequence of the Aβ domain of 

the baboon APP is similar to that in humans [147]. 

Subsequent reports further agree that Aβ peptide in 

monkeys has 100% sequence homology with human  

Aβ [107, 158]. However, other factors may influence 

species’ vulnerability to β-amyloid formation. For 

example, the human apolipoprotein (apoE) gene is 

polymorphic with three alleles E2, E3, and E4, with 

different capacities to bind lipoproteins; apoE4 is a  

risk factor for sAD. However, APOE in chimpanzees  

is monomorphic, whereas APOE polymorphism is a 

unique feature of humans [159].  
 

Tau 
 

Sequencing MAPT exons 1-13 has shown that 

chimpanzees share 100% sequence homology with 

humans; identities were 99.5% for gorilla tau and 99.0% 

for gibbon tau [160, 161]. The six tau isoforms found  

in the human brain have also been documented in 

chimpanzees [161] and vervets [162]. The amino acid 

sequence of the longest brain isoform of tau is 98% 

identical in humans and macaques [163]. Saitohin, an 

intronless gene encoding an open reading frame of 128 

amino acids located in the intron between exons 9 and 

10 of the human tau gene, differs among the primate 

species; the entire open reading frame is present in 

humans, chimpanzees, and gorillas, but not in gibbons 

and macaques [161, 164, 165]. Differences exist 

regarding exon 8 and intron 9 in macaques and apes 

[161, 166]. Beyond commonalities and differences, tau 

alterations in non-human primate brain aging are not 

fully documented, including the natural ratio of 3Rtau 

and 4Rtau in different brain regions, the phosphorylation 

sites, kinases, and phosphatases involved in the balance 

between tau phosphorylation and dephosphorylation, 

other post-translational modifications, truncation, 

oligomerization, and fibrillization [167]. Yet, electron-

microscopic studies show that PHFs are similar in 

rhesus macaques, chimpanzees, and AD.  
 

The structure of tau filaments has been recently 

examined using cryo-electron microscopy in AD and 

other tauopathies. Paired helical and straight filaments 

in AD are made of two identical protofilaments 

comprising residues 306-378 of tau protein, which adopt 
a combined cross-β/β-helix structure. Paired helical and 

straight filaments differ in inter-protofilament packing 

[168, 169]. Immuno-electron-microscopy indicates 

repeats 3 and 4, but not of the N-terminal regions  

of repeats 1 and 2, of tau in the filament cores of  

all AD cases. This structure is typical of AD [169]. 

Moreover, different human tauopathies have specific 

filament folds identified with cryo-electron-microscopy 

[170]. Filament folds are not rigid structures; filaments 

develop intermediate forms representing primary and 

secondary nucleation assemblies [171]. Tau folds, as 

revealed with cryo-electron microscopy, are unknown 

in non-human primates.  

 

Βeta-amyloid and tau seeding in non-human 

primates  
 

The β-amyloidogenic pathway in non-human primates 

can be triggered following intracerebral injection of 

exogenous fibrillar β-amyloid. Aβ obtained from AD 

inoculated in marmosets produces SPs in the host 

several months after the injection [172–175]. Yet 

inoculation of Aβ oligomers gives rise to very few 

plaques [175] or no plaques [176–178] in marmosets 

and macaques, respectively.  

 

Despite possible tau differences between humans and 

non-human primates, studies of tau seeding and 

spreading in Microcebus murinus demonstrate the 

capacity of AD tau inoculated into the cingulate cortex 

and corpus callosum, to seed and transform the host tau 

into NFTs and threads, not only at the site of the 

inoculation but distally in connected areas [179]. In the 

same line, inoculation of sarkosyl-insoluble fractions  

of PSP patients inoculated into the supranigral regions 

in rhesus monkeys produces NFT and globose tangles, 

tufted astrocytes, and coiled bodies at the site of 

injection, spreading to the connected regions as the 

striatum and thalamus [180]. In both experiments, 

inoculated animals showed clinical symptoms not 

observed in monkeys injected with non-tau-containing 

inoculums [179, 180].  

 
Inoculation of adenovirus-linked mutant tau into the 

hippocampus in rhesus monkeys also induced the 

formation of NFTs in the hippocampus and distal 

regions, thus demonstrating the capacity of exogenous 

mutant tau to induce NFT pathology in inoculated 

macaques [181, 182]. 

 

Cognition in aged old world monkeys and apes 
 

Delayed response task performance and poor memory 

have been reported in aged cynomolgus monkeys  

that presented Aβ42 depletion and tau increase in  

the CSF [183–185]. Cognitive impairment in male  

aged cynomolgus monkeys correlates with reduced 

testosterone levels in serum and Aβ42 in the CSF [186]. 
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No correlation between β-amyloid deposition and 

cognitive impairment has been found in cynomolgus 

monkeys [117].  

 

Rhesus monkeys have a slow decline in cognition which 

is manifested by mild impairment of various tasks 

starting in middle-aged monkeys and progressing  

in old-aged macaques [187–195]. Cognition decline 

parallels the decline in visual recognition ability  

[196, 197]. Moreover, cognitive impairment, when 

present, does not correlate with SP density [125]. 

Severe mental impairment has not been detected in old 

rhesus monkeys except a rhesus monkey aged 43 with 

cognitive impairment and SPs, CAA, and pre-tangles  

in the entorhinal cortex, hippocampus, and inferior 

temporal gyrus [136].  

 

Baboons over 20 years show a decline in learning novel 

tasks, movement planning, and simple discrimination 

and motivation [198].  

 

Early studies of cognition and aging in chimpanzees 

revealed no age-related deficits in discrimination  

tasks but impairments in the shortest retention delays 

of a delayed response task and an oddity task in  

older chimpanzees [199]. Another study in female 

chimpanzees revealed little evidence for a decline in 

physical cognition tasks with age but a decline in 

spatial memory and slight motor impairment in four 

chimpanzees aged 50 years [200]. Furthermore, older 

female chimpanzees were prone to perseveration errors 

[201]. Surprisingly, older chimpanzees were better 

than younger individuals in understanding causality 

relationships based on sound [200]. A more extensive 

series involving 213 chimpanzees showed a mild 

cognitive decline in older chimpanzees [202].  

 

Cognitive tasks were little affected with age in gorillas 

[203]. 

 

Brain aging and ad in Cercopithecinae and non-

human Hominidae 
 

Morphological changes associated with human brain 

aging include selective reduction of dendritic spines 

and synaptic contacts, dendritic arbors, and loss of 

neuronal subtypes; reactive astrocytosis, microgliosis, 

reduction of the white matter; increased lipofuscin in 

the cytoplasm of neurons and glial cells; corpora 

amilacea; small blood vessel disease, atherosclerosis, 

and concomitant parenchymatous vascular lesions; and 

brain atrophy and ventricular enlargement [204].  

 
Morphological changes linked to brain aging in non-

human primates are similar to those observed in the 

human brain, although less dramatic. These include 

selective neuronal loss, dendritic spine alterations, 

modifications in the dendritic arbors, and mild astroglial 

and microglial reactions [109].  

 

The evaluation of ADNC for the neuropathological 

diagnosis of AD following the guidelines of the NIA-AA 

is based on the “ABC” score. A designs β-amyloid 

deposits; this parameter can be quantified in the brains  

of available non-human primates. B refers to the NFT 

Braak stage; Braak stage has only been recognized in 

rhesus monkeys aged 24-26 years [137] and doubtfully 

in chimpanzees [148]; tau pathology is unclassifiable  

in many aged non-human primates [205]. C refers  

to modified semiquantitative CERAD neuritic plaque 

scoring without adjustment for age and clinical 

diagnosis; neuritic plaques characterized by the presence 

of tau-immunoreactive dystrophic neurites surrounding 

the β-amyloid core are rare in non-human primates.  

 
Regarding neuroimaging and CSF biomarkers, Aβ-PET 

and tau-PET have not been developed in aged non-

human primates. Reduced Aβ levels in the CSF are 

recorded in aged cynomolgus monkeys [183–185]; this 

parameter correlates with the presence of SPs and CAA 

currently observed in the aged individuals of this 

species. Tau levels in the absence of P-tau levels in the 

CSF lack value for the diagnosis of AD.  

 
Finally, cognitive changes in aged cynomolgus monkeys, 

rhesus monkeys, and apes are mild or moderate. Mild 

impairment or moderate cognitive impairment does  

not correlate with SPs and NFTs. Severe cognitive 

impairment or something equitable with AD dementia 

has never been observed in Cercopithecinae and non-

human Hominidae.  

 
Considering these observations, it is challenging to 

ascribe brain changes and behavior to AD in aged  

non-human primates based on the NIA-AA guidelines. 

On the other hand, PART is non-existent even in  

aged rhesus macaques with NFT pathology compatible 

with Braak stages I-IV because β-amyloid pathology 

coincides in these monkeys [137]. 

 
NIA-AA guidelines follow the creed of the β-amyloid 

cascade hypothesis that assumes β-amyloid as the prime 

neuropathological change in AD and the requirement 

for its diagnosis; tau pathology is a consequence of the 

effects of Aβ [206, 207].  

 
However, the hypothesis does not apply to changes in 

human brain aging, as NFTs precede the appearance of 

β-amyloid for decades, and the distribution of NFTs 
does not match the distribution of β-amyloid deposits 

[54, 105, 208, 209]. The β-amyloid cascade hypothesis 

does not match the neuropathological changes observed 
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in non-human primate brain aging. In non-human 

primates, β-amyloid deposition is the first or the  

only proteinopathy; tau pathology, if present, has an 

unrelated regional distribution.  

 
The alternative hypothesis AD overture states that 

human brain aging with ADNC and AD is a continuum 

biological process in which the first neuropathological 

manifestation is the emergence and progression of NFT 

pathology that precedes several decades the appearance 

of β-amyloid plaques or it remains as the sole ADNC in 

some individuals [54, 105].  

 
Following the same rationale based on the timing and 

distribution of lesions, non-human primate brain aging 

is a continuum biological process in which the first,  

and in most cases the only neuropathological ADNC is 

β-amyloid, forming SPs (mainly diffuse plaques) and 

CAA; tau pathology is inconstant and when present 

unrelated to β-amyloid.  

 
Previous studies have suggested that AD is a disease 

unique to humans [54, 107, 108, 148, 155]. However, 

the point is not whether or not AD is a unique human 

disease but to understand why human brain aging 

differs from brain aging in close relatives such as 

Cercopithecinae and non-human Hominidae and other 

non-human primates [107, 109, 210]. The main 

difference between brain aging linked to ADNC in non-

human primates and humans is the overwhelming tau 

pathology in humans from the beginning to the last 

stages of the continuum.  

 

Other proteinopathies co-existing with ADNC in 

brain aging  

 
Other proteinopathies are frequent in aged humans, 

including argyrophilic grain disease (AGD) [211–215], 

aging-related tau astrogliopathy (ARTAG) [216–218], 

limbic predominant TDP-43 proteinopathy (LATE) 

[219, 220], and amygdala-predominant Lewy body 

disease (LBD) [221] with characteristic α-synuclein 

inclusions. The prevalence is very high, from 50% to 

99% of individuals aged 80, depending on the disease. 

All these alterations may appear in the sixties and 

increase in severity and distribution in older individuals. 

They usually co-exist in the same subject.  

 
Although pre-tangles, tufted astrocytes, and coiled 

bodies are observed in aged baboons [145, 146],  

no AGD has been described so far in monkeys  

and apes. LATE has been assessed in aged rhesus 
macaques with negative results [222]. LBD does not 

exist in natural conditions in any species except 

humans.  

However, thorn-shaped astrocytes in the periventricular, 

subpial, and perivascular regions of limbic brain areas, 

such as the hippocampal formation and the peri-

amygdaloid cortex, characteristic of ARTAG, have been 

reported in aged baboons [145, 146].  

 

Granulovacuolar degeneration, commonly associated 

with NFT pathology in the hippocampus and temporal 

cortex in human brain aging and AD, has been reported 

in the hippocampus and the medium-temporal lobe in 

six aged cynomolgus monkeys bearing P-tau Thr231 

immunoreactivity in the cytoplasm of neurons of the 

temporal and occipital lobe [117, 223]. 
 

Finally, hippocampal sclerosis, usually accompanying 

PART and LATE but also isolated in the aged human 

brain [224], has not been reported in non-human 

primates.  

 

Together, not only NFT pathology but also other 

proteinopathies and related lesions are frequent in 

human brain aging but extremely rare or absent in non-

human primate brain aging. Moreover, they all affect,  

at first, the archicortex and paleocortex to extend at  

later stages to the neocortex and other regions of  

the telencephalon. These observations show that the 

phylogenetically oldest areas of the human cerebral 

cortex and amygdala are particularly vulnerable to 

human brain aging [210].  

 

Prospects 
 

Molecular brain aging is not limited to β-amyloid and tau 

pathology. Studies in human brain aging have shown a 

large number of molecular alterations occurring in brain 

regions before the appearance of NFTs and SPs (for 

example, the frontal cortex in individuals at Braak NFT 

stages I-II). An extensive list can be consulted elsewhere 

[54, 105]. A summary of the principal modifications 

includes aberrant cell-cycle re-entry and altered adult 

neurogenesis, altered brain lipids and lipid raft 

composition, membrane protein composition covering 

synapses, neurotransmitters and receptors, endoplasmic 

reticulum-mitochondria membranes, mitochondria and 

oxidative phosphorylation, increased oxidative stress  

and stress damage, protein synthesis impairment from  

the nucleolus to the ribosome, deregulated protein 

phosphorylation, kinase activation, senescent astrocytes 

and oligodendroglia, senescent microglia and neuro-

inflammation, and primary alteration of the blood vessel 

walls [54, 105]. All these alterations augment during the 

progression of the biological process of human brain 

aging until the advanced stages of dementia [54].  

 

Similar molecular studies are not available in non-

human primates. Therefore, it is difficult to understand 
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to what extent tau pathology is the only molecular 

pathway that differentiates brain aging in humans and 

non-human primates. Intuitively, it is probably not the 

case; several molecular modifications most likely 

converge in non-human primate’s brain aging.  

 

Genetic and epigenetic factors that differentiate even 

species as close as chimpanzees and humans may also 

be relevant [225–230].  

 

There is an urgent need to study brain aging in non-

human primates comprehensively. Brain aging in most 

species is a benign stage of progressive deterioration 

without relevant cognitive consequences. The exception 

among primates is Homo sapiens, whose brain presents 

an unusual vulnerability to aging compared to other 

species. 
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