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INTRODUCTION 
 

Background 

 

Esophageal cancer (EC) is one of the most common 

digestive tract tumors, the mortality and morbidity  

stated as the 6th and 7th in the world, respectively [1]. 

Esophageal squamous cell carcinoma (ESCC) is the 

main subtype of EC, accounting for nearly 80% of EC 

patients and the 5-year survival rate of most ESCC 

patients present with advanced disease is among 5–20% 

[2]. There has been a change in the incidence rate over 

the past few decades. ESCC is not only frequently seen 

in developing countries, but has had a dramatic increase 

in the western world, just in the United States with 

16,940 new cases and 15,690 deaths every year [3]. 

There is a clinical concern about ESCC that poor  

5-year overall survival rates are associated with this 

malignancy despite the advance in management and 

treatment [4, 5]. Lymph node metastasis (LNM) is one 

of the clinical risk factors that contributed the most  

to poor prognosis [6, 7]. ESCC patients with LNM  
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ABSTRACT 
 

Purpose: There is no golden noninvasive and effective technique to diagnose lymph node metastasis (LNM) for 
esophageal squamous cell carcinoma (ESCC) patients. Here, a classifier was proposed consisting of miRNAs to 
screen ESCC patients with LNM from the ones without LNM. 
Methods: miRNA expression and clinical data files of 93 ESCC samples were downloaded from TCGA as the 
discovery set and 119 ESCC samples with similar dataset GSE43732 as the validation set. Differentially 
expressed miRNAs (DE-miRNAs) were analyzed between patients with LNM and without LNM. LASSO 
regression was performed for selecting the DE-miRNA pair to consist the classifier. To validate the accuracy and 
reliability of the classifier, the SVM and AdaBoost algorithms were applied. The CCK-8 and wound healing assay 
were used to evaluate the role of the miRNA in ESCC cells. 
Result: There were 43 DE miRNAs between the LNM+ group and LNM- group. Among them, miR-224-5p, miR-99a-
5p, miR-100-5p, miR-34c-5p, miR-503-5p, and miR-452-5p were identified by LASSO to establish the classifier. 
SVM and AdaBoost showed that the model could classify the ESCC patients with LNM from the ones without LNM 
precisely and reliably in 2 data sets. miR-224-5p in the classifier as the top contributor to discriminate the two 
groups of patients based on AdaBoost, promoted ESCC cell proliferation and migration in vitro. 
Conclusion: The classifier based on these 6 miRNAs could classify the ESCC patients with LNM from the ones 
without LNM successfully. 
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have more chance to progress to loco-regional and 

distant recurrence which leads to a worse prognosis  

[8, 9]. The overall 5-year survival rates of ESCC 

patients with LNM would drop from 70–92% to 18–

47% after surgery [6, 10–12]. The clinical decision  

of esophagectomy is heavily based on the status of 

LNM [7, 13]. Meanwhile, knowledge of LNM status is 

essential to decide whether ESCC patients can be cured 

with endoscopic resection alone without the need of 

other therapies [7, 14]. Hence, accurate discrimination 

of the patients with LNM from those without LNM for 

determining clinical strategies and prognostic outcomes 

is crucial. Until now, a gold standard modality of the 

LNM diagnosis strategy barely exists. Approximately 

40% of patients are unable to detect the micro-

metastases by the non-invasive conventional imaging 

techniques, which leads to a poor prognosis [15, 16]. 

There is a need to study the molecular biomarkers for 

detecting LNM status. 

 

Rationale and knowledge gap 

 

MicroRNAs (miRNAs), showing an emerging direction 

of untraditional diagnosis, are giving innovative insights 

into the detection of cancer. Many efforts have been 

made to evaluate miRNAs to detect tumors in their 

early stage, such as for non-small-cell lung cancer, 

colorectal cancer, and ESCC [17–20]. Meanwhile, some 

models were established based on the miRNAs to 

predict the probability of LNM for cancer patients [21–

23]. Until now, no such model had been established  

to detect the probability of LNM for ESCC patients. 

 

The least absolute shrinkage and selection operator 

(LASSO) is one type of regression that selects a reduced 

group of the covariates to establish the classification 

model [24]. Support vector machines (SVMs) are one  

of the supervised learning models which analyze data  

for classification and ensure accuracy [25]. Adaptive 

Boosting (AdaBoost), is an algorithm to evaluate 

performance as well as rank the importance of factors in 

the classifier [26]. The classifier constructed by LASSO 

and verified by SVM and AdaBoost is reliable as a 

statistical predictive model that accurately classifies the 

probability of clinical events [27, 28]. 

 

Objective 

 

In the present study, we aimed to identify the miRNAs 

entered into a classifier that can be used to discriminate 

the ESCC patients with LNM from the patients without 

LNM by LASSO. Then the accuracy and reliability of 

the classifier were evaluated by SVM and AdaBoost. 
Furthermore, the factors in the model were ranked 

according to the contribution to the classification 

function by AdaBoost. The target genes of miRNA have 

been predicted by 3 prediction websites, and further 

pathway analyses that these target genes may be 

involved in were carried out by Gene Ontology (GO) 

and Kyoto Encyclopedia of Genes and Genomes 

(KEGG). Meanwhile, the function of over-expressed 

miRNA on proliferation and migration of TE-1 (ESCC 

cell) was explored. 

 

MATERIALS AND METHODS 
 

Collection and preparation of the data 

 

93 ESCC tissue samples with the corresponding clinical 

information were downloaded from The Cancer Genome 

Atlas (TCGA) data portal (https://portal.gdc.cancer.gov/; 

IlluminaHiseq platform) as a discovery group to establish 

the classifier that was applied to discriminate the ESCC 

patients with LNM from the ones without LNM and 

GSE43732 including miRNA expression profiles of  

119 ESCC frozen tumor tissue samples with clinical 

information from National Center for Biotechnology 

Information (NCBI) Gene Expression Omnibus (GEO) 

based on Agilent-038166cbc_human_ miR18.0 platform 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE43732) as a validation set to verify the classifier. 

 

miRNA-expression data of TCGA set and GSE43732 

set were normalized and log2-transformed for the high 

and low expression of miRNAs, applying log-rank p < 

0.05 as the cutoff. 

 

Screening for DE-miRNAs 

 

From the TCGA database, 38 ESCC patients with  

LNM formed the experimental set and 55 ESCC 

patients without node metastasis formed the control set. 

After the normalization of miRNA expression data, 

differential expression analysis was performed between 

the 2 groups by the “limma” package in R 4.0.3. The 

miRNAs with p < 0.05, |log2FC|>1, and false discovery 

rate (FDR) q < 0.1 were identified as significant DE-

miRNAs. 

 

Construction of the classifier 

 

The LASSO regression was applied to identify DE-

miRNAs for establishing the classifier within the TCGA 

set by glmnet package of R. Discrimination capability 

of the classifier was evaluated by area under the ROC 

curve (AUROC). 

 

Verification of the classifier 

 
SVM and AdaBoost were to verify the classifier by R 

package of the e1071 and adabag. The efficacy and 

accuracy of the classifier were evaluated by kappa, 
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accuracy, sensitivity, specificity, positive predictive 

value (PPV), and negative predictive value (NPV) 

in the TCGA database (n = 93) and GSE43732 dataset 

(n = 119). Furthermore, all factors in the classifier were 

given the sort order by Adaboost. 

 

Function analysis 

 

Target genes of the ranked miRNA were predicted 

using miRDB (http://mirdb.org/), tarbase (https:// 

ngdc.cncb.ac.cn/databasecommons/), and TargetScan 

(https://www.targetscan.org/) and overlapped target 

genes were obtained by taking the intersection through 

the website of Venn (http://bioinformatics.psb.ugent. 

be/webtools/Venn/). For the predicted targeted genes, 

gene ontology (GO) function and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway enrichment 

analyses were performed by the data from the database 

for annotation, visualization, and integrated discovery 

(DAVID) and the “tidy” package in R 4.1.3. 

 

Cell culture and transfection 

 

The human esophageal cancer cell line TE-1 was 

purchased from the Cancer Institute (Chinese Academy 

of Medical Sciences, Beijing, China). TE-1 cells were 

cultured in a DMEM medium containing 10% fetal 

bovine serum, 37°C, and a 5% CO2 incubator in  

the closed culture. TE-1 cells were transfected with 

miR-224-5p mimics and negative controls (NCs) 

(GenePharma, Suzhou, China). The sequence of sense 

miR was 5′-UCAAGUCACUAGUGGUUCCGUUU 

AG-3′ and antisense was 5′-AAACGGAACC 

ACUAGUGACUUGAUU-3′. GP-Transfected mate 

(GenePharma, Suzhou, China) as the cell transfection 

reagent was transfected with miRNA using the 

manufacturer’s instructions. 

 

Cell proliferation assay 

 

TE-1 cells were seeded in the 6-well plate first, 24 h 

after transfection, and the cells were reseeded to a 96-

well plate at a density of 6 × 103 cells per well. A Cell 

Counting Kit-8 assay (CCK-8) was performed at 0 h, 24 

h, 48 h, and 72 h, respectively. The absorbance of the 

450 nm laser was measured after a 2 h incubation of 

cells with CCK-8. Each group had 3 repeats and the 

experiments were performed in triplicate. 

 

Wound healing assay 

 

In 6-well plates, transfected cells were cultured (1 × 106 

cells/well). Before a scratch was made with the 20 µL 
pipette tip, cells were starved for 24 hours in a serum-

free medium after it reached 90%. At 0 h, 12 h, and 24 h, 

photos were taken (Olympus, Tokyo, Japan) and the 

relative cell migration rate was calculated based on the 

filled wounded area. 

 

Statistical analysis 

 

Data are expressed as the mean ± standard deviation 

(SD) from three independent replicates. The student’s  

t-test was used to compare the two groups of samples. 

The log-rank test was used to define the subgroups 

based on the expression of miRNAs. All statistical 

analyses were performed using R software (version 

4.1.3) and pictured by GraphPad Prism version 5.0. 

p < 0.05 by 2 sides was regarded as statistically 

significant. 

 

RESULTS 
 

Identification of DE-miRNAs 

 

The overall study design was depicted in Figure 1. A 

total of 43 DE-miRNAs between the LNM + (n = 38) 

and LNM − (n = 55) samples were acquired, consisting 

of 20 down-regulated miRNAs and 23 up-regulated 

miRNAs in the patients with LNM compared to the 

ones without LNM. The volcano map indicated that the 

expression of these DE-miRNAs was significantly 

different between the 2 groups (Figure 2). 

 

Destruction of a classifier by LASSO 

 

By the TCGA dataset, LASSO regression was applied 

to filter the optimal combination. With a min lambda of 

0.048 obtained by performing 1000 cross-validations, 

6 miRNAs (AUROC = 0.854) among 43 DE-miRNAs 

consisted the classification model which were miR-224-

5p, miR-99a-5p, miR-100-5p, miR-34c-5p, miR-503-

5p, and miR-452-5p (Figures 3A, 3B and 4A–4C). 

 

Verification of the classifier by SVM and Adaboost 

 

The constructed classifier was verified by SVM and 

Adaboost on both the TCGA dataset (training set)  

and GSE43732 (validation set). Based on the SVM 

algorithm, the model could discriminate the patients 

with LNM from those without LNM in both datasets. 

This is evident by AUROC in the TCGA set of 0.823, 

and in the GSE43732 set of 0.897 (Figure 5A, 5B).  

As Table 1 shows, the classifier reliably distinguished 

the two groups as evident by: kappa (0.719); accuracy 

(0.838); sensitivity (0.909); specificity (0.736); PPV 

(0.833); and NPV (0.848). 

 

From Adaboost, the classifier was with favorable 
accuracy (accuracy = 0.896, 0.963 in TCGA and 

GSE43732) and reliability (kappa = 0.906, 0.904 in 2 

sets) as well, more details were shown in Table 1. 
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Figure 1. The flowchart of this study. 

 

 
 

Figure 2. The volcano plot of differentially expressed miRNAs (DE-miRNAs) between ESCC patients with LNM and without 
LNM from the TCGA dataset. The purple dots and grey dots represent upregulated DEs and downregulated DEs with significance 

(adjusted p-value < 0.05 and |log2 (FC)| > 1), respectively. The black dots are those DEs without significance. 
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Ranking the importance of factors in the classifier 

by Adaboost 

 

The factors in the classifier were ranked by the 

AdaBoost algorithm on both the TCGA dataset and the 

GSE43732 set. In the TCGA set, miR-224-5p was the 

most significant one for discriminating the patients  

with LNM from the ones without LNM, followed by 

miR-99a-5p, miR-100-5p, miR-34c-5p, miR-503-5p, 

and miR-452-5p (Figure 6A). For the GSE43732 group, 

miR-224-5p contributes more to classify the patients 

into 2 groups than other miRNAs, miR-99a-5p, miR-

100-5p, miR-452-5p, miR-34c-5p, and miR-503 (Figure 

6B). 

 

Function analysis by KEGG and GO 

 

KEGG pathway analysis revealed that the most 

enriched pathways for miR-224-5p target genes were 

the PI3K-Akt signaling pathway, human papillomavirus 

infection, and proteoglycans in cancer (Figure 7A). 

According to the GO analysis, they were engaged in 

protein binding, nucleus, and membrane formation 

(Figure 7B). 

 

Cell proliferation and migration assay  

 

Over-expressed miR-224-5p significantly promoted TE-

1 cell proliferation compared to the NC group (Figure 

8A). In addition, the wound healing assay showed that 

the miR-224-5p mimic group had an enhanced TE-1 

cell migration rate (Figure 8B). Taken together, these 

results suggest that miR-224-5p may act as an oncogene 

to promote ESCC progression. 
 

DISCUSSION 
 

Key findings 

 

In this study, we used 2 nationwide cohorts of ESCC 

patients to develop and validate a classifier consisting 

of 6-miRNA to discriminate the patients with LNM 

and without LNM. The present classifier successfully 

stratified patients into the group with LNM and 

without LNM in both the discovery cohort and the 

validation cohort as evidenced by values of C-index, 

AUROC, accuracy, kappa, sensitivity, specificity, PPV, 

and NPV. Furthermore, the largest contributor to the 

present classifier is miR-224-5p which might play a 

positive role in ESCC cell proliferation and migration. 

 

Limitations 

 

In the present study, some limitations should be 

considered. Even though the external validation cohort 

was available, the patients were from United States 

rather than from other countries; the population in 

other countries are needed to validate the classifier.

 

 
 

Figure 3. Variable selection by LASSO. (A) Hierarchical clustering shows the correlation matrix heatmap of 43 DE-miRNAs from the 

differential expression analysis. (B) Hierarchical clustering shows the correlation matrix heatmap of 6 DE-miRNAs which consisted of the 
classifier from LASSO regression analysis. Each cell represents the Pearson correlation between the row and column corresponding miRNAs. 
The legend shows the color change along with the change of correlation coefficient from 0.0 to 1.0. 
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Moreover, the demographic factors, such as alcohol 

and smoking, which are well-known risk factors, were 

not analyzed in the present study through the classifier 

with favorable discrimination usage. Furthermore, miR-

503-5p as one of the contributors was identified by 

LASSO in TCGA, however, in GSE43732, only miR-

503 was available. Even though miR-503-5p belongs  

to the miR-503 cluster, there is a need to verify it in  

the other validation group. The samples and clinical 

information of ESCC patients from Affiliated Hospital 

of Chifeng University and Chifeng Oncology Hospital 

were collected to overcome these limitations. 

 

Comparison with similar researches 

 

miRNAs have emerged as vital biomarkers due to  

their tumor and tissue specificity, their ability to resist 

RNase-mediated degradation (possibly due to their  

short length), and their intact expression in tissues as 

well as in bodily fluids (including blood samples). 

There was a study based on the miRNA signatures to 

build a classifier to detect LNM for T1b gastric cancer 

(GC) patients [29]. In that study, different miRNAs 

were analyzed between patients with LNM and without 

LNM, then the LASSO regression model was used  

to select miRNAs to establish the classifier. As the 

AUROC value reaching to 0.843, the classifier might 

have favorable discrimination usage based on the LASSO 

regression analysis. However, in that study, only the 

LASSO regression was applied to build and validate  

the model. In the present study, to ensure the accuracy 

and reliability of the classifier, the DE-miRNAs were 

analyzed between ESCC patients with LNM (+) and 

LNM (−) firstly, then the LASSO algorithm was applied

 

 
 

Figure 4. Establishment of the classifier by LASSO. (A) ROC curve to evaluate the discrimination ability of the classifier constructed by 

LASSO regression to different ESCC patients with LNM from the ones without LNM. (B) The vertical dashed lines were calculated at the best 
log (lambda) value and (C) LASSO coefficient values. 
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Table 1. The validation of the classifier by SVM and Adaboost. 

Index 
Discovery cohort Validation cohort 

SVM AdaBoost SVM AdaBoost 

Kappa 0.719 0.906 0.796 0.904 

Accuracy  0.838 0.896 0.899 0.963 

Sensitivity 0.909 0.854 0.870 0.881 

Specificity 0.736 0.836 0.923 0.815 

Pos Pred Value 0.833 0.824 0.903 0.884 

Neg Pred Value 0.848 0.878 0.895 0.854 

p-Value (Acc > NIR)  <0.001 <0.001 <0.001 <0.001 

Discovery cohort: TCGA dataset; Validation cohort: GSE43732 dataset. 

 

 
 

Figure 5. Verification of the classifier by SVM. (A) ROC curve to evaluate the discrimination ability of the classifier constructed by the 

SVM algorithm to different ESCC patients with LNM from the ones without LNM in the TCGA dataset. (B) ROC curve to evaluate the 
discrimination ability of the classifier constructed by the SVM algorithm to different ESCC patients with LNM from the ones without LNM in 
GSE43732. 

 

 
 

Figure 6. Sorted the miRNAs in the classifier based on the contribution by Adaboost. (A) The miRNAs in the classifier were 
ranked by Adaboost based on the contribution in TCGA dataset. (B) The miRNAs in the classifier were ranked by Adaboost based on the 
contribution in GSE43732. 
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Figure 7. GO and KEGG analysis for targeted genes of miR-224-5p. (A) KEGG pathway analysis was performed for the candidate 

target genes. (B) Biological process enrichment analysis of candidate target genes. 

 

 
 

Figure 8. Effect of miR-224-5p on proliferation and migration in cultured ESCC cell. (A) CCK8 assays were performed at 0 h, 24 h, 

and 48 h after the transfection of TE-1 cells with miR-224-5p mimic and miR-NC. (B) Wound healing assay of the relative migration rate of 
TE-1 cells transfected with miR-224-5p mimic and miR-NC. *p < 0.05. 
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to build the classifier by filtering among the 43 DE-

miRNAs, followed by SVM and AdaBoost serving as 

the validation algorithms to verify the discrimination 

usage of the 6-miRNAs classifier. Finally, with all these 

algorithms, a precise and reliable classifier based on 

miR-224-5p, miR-100-5p, miR-99a-5p, miR-452-5p, 

miR-34c-5p, and miR-503 was established. 

 

Explanations of findings 

 

The exertion-type of miR-224-5p mostly depends on the 

tissues or organs. For example, it acts as an oncogene  

in gastric cancer [30]; whereas it displays a tumor-

suppressive role in prostate cancer and lung cancer  

[31, 32]. Moreover, miR-224-5p performed a positive 

role in radiotherapy and chemotherapy resistance in 

laryngeal carcinoma [33]. Zang et al. pointed out that 

up-regulated miR-224-5p was related to the higher 

probability of LNM in papillary thyroid carcinoma [34] 

and predicted the less favorable event-free survival 

(EFS) in ovarian cancer [35]. From the Adaboost,  

miR-224-5p is the top contributor to different ESCC 

patients with LNM from the ones without LNM. Besides 

that, it promoted ESCC cell proliferation, migration, 

and invasion in vitro. To explore its functional roles on 

ESCC, we predicted the target genes of miR-224-5p  

and analyzed the signaling pathways as well as possible 

biological processes which were involved in these target 

genes. KEGG and GO showed that they might be 

functionally related to the PI3K-Akt signaling pathway, 

human papillomavirus, and proteoglycans in cancer. 

Several studies verified that ESCC contributed to the 

abnormal activation of the PI3K-Akt signaling pathway 

[36–39]. The human papillomavirus (HPV) might relate 

to the incidence of ESCC, especially, infection by 

HPV16 and 18 which are associated with higher ESCC 

incidence risk compared to other HPV types. HPV16 

infection promotes the invasion and migration of ESCC 

through mediating tumor-associated macrophages. The 

proteoglycans were associated with the promotion of 

ESCC progression. Nevertheless, cell functional research 

is needed to confirm the findings of our study. 

 

miR-99a-5p was decreased, expressed in several tumors, 

such as ESCC, breast cancer, bladder cancer, etc. [40–

42]. The down-regulation of miR-99a-5p was related to 

a poor prognosis for ESCC patients [40]. miR-452-5p 

expression was related to TNM staging, and patients 

who had high expression of it might have a poorer 

prognosis time in colorectal cancer [43]. miR-503 was 

illustrated as performing the restraining role in different 

tumor tissues, which was also related to the tumor  

size, stage, metastasis status, and prognosis [44]. miR-
100-5p acted as an accelerator to cardiac hypertrophy, 

heart failure, and human articular chondrocytes through 

several pathways [45–47]. Several studies focused on 

cancer showed the function of miR-34c-5p as a tumor 

suppressor [48, 49]. Besides that, Kaiyou Fu, et al. 

illustrated that miR-34c-3p and miR-34c-5p might serve 

as biomarkers for detecting the LNM in endometrial 

cancer. 

 
Implications and actions needed 

 
The classifier had good performance on discriminating 

the ESCC patients with LNM from the ones without 

LNM. The onco-role of hub miRNA (miRNA-224-5p) in 

the model was explored only by the in vitro experiments, 

the in vivo ones were not carried out. Further studies are 

urged to clarify underlying functions. 

 

CONCLUSION 
 
The classifier consisting of these 6 miRNAs was 

established and validated; it can be applied to 

discriminate the ESCC patients with LNM from the 

ones without LNM with favorable accuracy and 

reliability. The classifier provided significant diagnostic 

value to existing diagnosis strategies and may assist in 

more individualized diagnosis for these patients. 
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