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INTRODUCTION 
 
Oral submucous fibrosis (OSF) is predominantly 
prevalent in the areas of South and Southeast Asia,  
with a malignant transformation rate into oral squamous 
cell carcinoma (OSCC) ranging up to 4-13% [1–3]. 
Recognized as an areca nut-associated oral potentially 

malignant disorder (OPMD), OSF is characterized by a 
gradual reduction in mouth opening, largely due to the 
dysregulation the extracellular matrix (ECM) synthesis 
and degradation [4]. Despite various approaches being 
applied to alleviate symptoms [5–8], none have proven 
curative for OSF. Hence, deeper understanding in the 
pathogenesis of OSF is necessary to developing more 
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ABSTRACT 
 
Oral submucous fibrosis (OSF) is an oral potentially malignant disorder that is closely related to the habit of 
areca nut chewing. Long non-coding RNA (lncRNA) myocardial infarction-associated transcript (MIAT) has been 
identified as an essential regulator in the fibrosis progression. However, the role of MIAT in the development 
of OSF remains unknown. The transcriptomic profile showed that MIAT is significantly overexpressed in  
the OSF cohort, with a positive correlation to fibrotic markers. The silencing of MIAT expression in primary 
buccal mucosal fibroblasts (BMFs) markedly inhibited arecoline-induced myofibroblast transformation. 
Mechanistically, MIAT functioned as a miR-342-3p sponge and suppressed the inhibitory effect of miR-342-3p 
on SOX6 mRNA, thereby reinstating SOX6 expression. Subsequent RNA expression rescue experiments 
confirmed that MIAT enhanced resistance to apoptosis and facilitated myofibroblastic properties such as cell 
mobility and collagen gel contraction by regulating the miR-342-3p/SOX6 axis. Taken together, these results 
suggest that the abnormal upregulation of MIAT is important in contributing persistent activation of 
myofibroblasts in fibrotic tissue, which may result from prolonged exposure to the constituents of areca nut. 
Furthermore, our findings demonstrated that therapeutic avenues that target the MIAT/miR-342-3p/SOX6 axis 
may be a promising approach for OSF treatments. 
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effective therapies and preventing its malignant 
transformation.  
 
Myofibroblasts, key ECM-secreting cells, play a major 
role in wound healing and pathological fibrosis. These 
cells can escape from apoptosis, leading to continued 
tissue remodeling and fibrosis through increased 
production of mediators like pro-inflammatory cytokines 
and transforming growth factor-β (TGFβ), as well  
as excessive secretion of ECM components such  
as collagens [9–11]. In OSF, higher expression of 
myofibroblast markers has been reported [12]. Therefore, 
approaches to suppress the persistent activation of 
myofibroblasts offers a promising strategy to resolve 
pathological fibrosis. 
 
Emerging studies have revealed the role of epigenetic 
regulation by non-coding RNAs (ncRNAs) in 
modulating the activation of myofibroblasts [13]. The 
interplay between long non-coding RNAs (lncRNAs) 
and microRNAs (miRNAs) has gained great attention 
for its impact on the development of pathological 
fibrosis. Mechanically, lncRNAs can function as 
competing endogenous RNAs (ceRNAs), acting as 
miRNA sponges to disrupt the interaction of miRNAs 
and their target mRNAs [14]. For instance, LINC00084 
has been demonstrated to mediate myofibroblast 
activation in fibrotic buccal mucosa fibroblasts. The 
upregulation of this lncRNA increases the epithelial-
to-mesenchymal transition (EMT)-activator ZEB1 by 
sponging miR-204 [15]. Another study showed that  
the arecoline-induced lncRNA H19 binds miR-29b, 
thereby impeding miR-29b from interacting with  
type I collagen (COL1A1) and inhibiting several 
myofibroblast phenotypes [16]. However, the specific 
functions of dysregulated lncRNAs in the progression 
of OSF remain inadequately explored. 
 
Myocardial infarction-associated transcript (MIAT), an 
intergenic lncRNA initially identified as a risk locus for 
myocardial infarction [17], has since been found to be 
overexpressed in various cancers, where it regulates 
multiple biological processes such as cell cycle, invasion, 
metastasis, and drug resistance [18]. In oral cancer 
tissues, MIAT is upregulated and associated with poor 
prognosis [19]. MIAT has also been implicated in 
several fibrotic diseases, including heart failure [20], 
renal fibrosis [21], and chronic pancreatitis [22]. 
Notably, MIAT knockdown has been shown to inhibit 
TGF-β-stimulated myofibroblast formation in mouse 
fibroblasts [21]. However, the role of MIAT in OSF 
development, particularly in influencing myofibroblast 
transdifferentiation, remains unclear. Given MIAT’s pro-
fibrotic role, elucidating its precise molecular interactions 
and pathways is crucial. This study, therefore, aims  
to investigate MIAT’s involvement in myofibroblast 

activation and OSF progression, as well as its ceRNA 
network, addressing a critical gap in our understanding 
of OSF pathogenesis. 
 
RESULTS 
 
MIAT expression increases in the fibrotic buccal 
tissues and its derived primary fibroblasts 
 
To identify key dysregulated lncRNAs involved in 
OSF progression, we initially established a cohort 
comprising 25 patients with OSF and 25 healthy 
individuals. RNA-sequencing analysis showed that 
MIAT was aberrantly upregulated in the fibrotic buccal 
tissues from OSF patients (OSF; n=2) compared to that 
of normal tissues from healthy individuals (N; n=2; 
Figure 1A). Results from qRT-PCR confirmed over-
expression of MIAT in OSF specimens (n=25) and 
fBMFs (n=5) compared to normal tissues (N; n=25) 
and fibroblasts derived from non-fibrotic buccal mucosa 
(nBMFs; n=5), respectively (Figure 1B, 1C). These 
findings suggest that dysregulated MIAT expression in 
fibrotic tissues may be associated with myofibroblasts 
activation. To further validate the association between 
MIAT expression and myofibroblasts activation, we 
expanded our cohort to include 45 OSF patients and 
assessed the expression of pro-fibrotic markers in  
their fibrotic buccal tissues, including alpha-smooth 
muscle actin (α-SMA; encoded by ACTA2), collagen 
type 1 alpha 1 (COL1A1), and fibronectin (FN1). As 
expected, results from qRT-PCR revealed that the 
expression of MIAT was positively correlated with 
ACAT2 (Figure 1D), COL1A1 (Figure 1E), and FN1 
(Figure 1F). It has been known that myofibroblast 
acquires more contractile phenotype by increased actin 
stress fibers, so α-SMA can be used as a differentiated 
myofibroblast marker [23]. During differentiation, 
myofibroblasts display increased expression and 
secretion of FN and collagen [24]. As such, we 
postulated that the expression of MIAT may be 
involved in the regulation of myofibroblast activation 
and contribute to the development of OSF. 
 
Silencing MIAT reduces the myofibroblastic 
properties of fBMFs 
 
To test our presumption, we used a lentiviral  
vector-mediated short hairpin (sh) RNA targeting 
MIAT to knock down the expression of MIAT in 
fBMFs (Figure 2A) and examined the effect of  
MIAT on myofibroblast phenotypes. First, a collagen 
gel contraction assay was conducted to assess the 
contractile forces generated by myofibroblasts, which 
propagated throughout the collagen matrix and resulted 
in decreased matrix size. As shown in Figure 2B,  
the downregulation of MIAT markedly attenuated the 
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collagen gel contractility of fBMFs. Another feature of 
myofibroblasts is that they proliferate and migrate to 
the damaged site during wound healing. By using 
Transwell migration and scratch (wound healing) 
assays, we demonstrated that suppression of MIAT 
significantly inhibited the cell migration (Figure 2C) 
and wound-healing ability (Figure 2D) of fBMFs. 
 
Loss of MIAT inhibits the arecoline-induced 
myofibroblast transformation of nBMFs 
 
We previously demonstrated that arecoline treatment can 
effectively induce nBMFs to acquire myofibroblastic 
properties [15, 25–27]. Thus, to understand whether 
MIAT is involved in the transformation of fibroblasts  
to myofibroblasts, we assessed the expression of MIAT 
in nBMFs after treatment with 0, 5, 10, and 20 μg/mL 
arecoline for 24 hours. RNA sequencing analysis 
showed that MIAT levels were up-regulated in nBMFs 
treated with 10 and 20 μg/mL arecoline (Figure 3A). 
Also, results of qPCR analysis demonstrated that 
arecoline gradually increased MIAT expression in a 
dose-dependent manner (Figure 3B). Based on our 
previous findings [15, 25–27], in this study, nBMFs 

were cultured in medium containing 20 μg/mL arecoline 
for 24 hours. This treatment induced an increase  
in α-SMA expression (Figure 3D and Supplementary 
Figure 1), contractility (Figure 3E), and cell migration 
(Figure 3F), collectively confirming the acquisition of 
myofibroblast-like properties. As expected, the silencing 
of MIAT in the arecoline-treated nBMFs (Figure 3C) 
successfully attenuated the expression of α-SMA 
(Figure 3D), and significantly reduced both collagen  
gel contractility (Figure 3E) and Transwell migration 
capacity (Figure 3F). These results implied that 
downregulation of MIAT may prevent myofibroblast 
transformation and potentially mitigate the progression 
of OSF. 
 
MIAT promotes myofibroblastic properties by acting 
as a sponge of miR-342-3p 
 
Recent studies focused on the biological roles of 
lncRNAs as miRNA sponges. Due to the miRNA-
mediated post-transcriptional suppression of targeted 
mRNA occurs in the cytoplasm, determining the sub-
cellular localization of MIAT is precedence. Herein,  
we showed that MIAT was preferentially located in the 

 

 
 

Figure 1. MIAT is upregulated in fibrotic buccal tissues and primary fibrotic buccal mucosa fibroblasts from patients with 
OSF. (A) RNA-sequencing analysis showed that MIAT was an up-regulated differentially expressed gene (fold change ≥ 2.0; p < 0.01) in 
fibrotic tissue samples (OSF) compared to normal tissues (N) from patients with OSF (n=2) and healthy individuals (n=2). (B) The relative 
expression of MIAT in samples of normal (N; n=25) and fibrotic (OSF; n=25) tissue was assessed by qRT-PCR analysis. Data are mean ± S.D. (C) 
The relative expression of MIAT was further assessed in primary normal buccal mucosa fibroblasts (nBMFs; n=5) and fibrotic buccal mucosa 
fibroblasts (fBMFs; n=5) by qRT-PCR, with differences between groups analyzed using the paired Student’s t-test. (D–F) A significant positive 
correlation was observed between the expression of MIAT and fibrotic markers, including ACTA2 (encoding α-SMA; D), COL1A1 (E), and FN1 
(F) in samples of fibrotic tissue (n=40). 
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cytoplasm of fBMFs (Figure 4A). By using 
bioinformatics prediction tools, several putative 
miRNA binding sites contained in MIAT sequences 
were identified, including miR-342-3p. Since a recent 
study has demonstrated the interplay between MIAT 
and miR-342-3p in retinal pericytes [28] and miR-342-
3p was downregulated in OSF tissues using RNA 
sequencing analysis (Figure 4B), we then investigated 
whether miR-342-3p mediated the fibrosis effect of 
MIAT. Bioinformatics analysis predicted that MIAT 
3’UTR sequence had a potential binding region for 
miR-342-3p (Figure 4C). To confirm the significance 
of miR-342-3p in OSF, the qRT-PCR analysis was 
conducted to evaluate its expression in clinical 
specimens. As expected, miR-342-3p was significantly 
decreased in OSF tissues (Figure 4D). Notably,  
we also found a significantly negative correlation 
between MIAT expression and miR-342-3p levels in 
OSF tissues (r = − 0.931, p<0.05, Figure 4E). Results 
demonstrated that the miR-342-3p mimics evidently 

lowered the activity in wt-MIAT group but had no 
effect in mut-MIAT group (Figure 4F). Furthermore, 
we showed fBMFs with miR-342-3p mimics exhibited 
lower myofibroblast features, including collagen gel 
contraction, Transwell migration and wound healing 
abilities (Figure 4G–4I).  
 
Given that miR-342-3p is negatively correlated with 
MIAT and that adding this miRNA to fBMFs inhibited 
myofibroblast differentiation, it is crucial to investigate 
whether MIAT directly sponges miR-342-3p in its 
exertion of fibrotic trait. Since the evasion of apoptosis 
by myofibroblasts is a hallmark of fibrotic disorders, 
understanding this interaction is essential [10]. Thus, we 
measured the percentage of apoptotic cells in fBMFs 
infected with MIAT shRNA along with miR-342-3p 
inhibitor. Our results showed that transfection of miR-
342-3p inhibitor into fBMFs successfully avoided cell 
apoptosis induced by silencing of MIAT (Figure 5A). 
Similarly, miR-342-3p inhibitor counteracted the effect 

 

 
 

Figure 2. Knockdown of MIAT suppresses the myofibroblastic properties. (A–D) Primary fBMFs (obtained from two patients 
with OSF; fBMFs−1 and −2) were transfected with lentiviruses expressing non-targeting ShRNA (Sh-Luc.) and Sh-MIAT (Sh-MIAT−1 and 
−2). The MIAT knockdown efficiency was assessed using qRT-PCR analysis (A). The cells (fBMFs−1 and −2) were then cultured in 
collagen gel for additional 48 hours, and the gel area after cell contraction was measured (B). Cells (fBMFs−1 and −2) were cultured in 
Transwell system for an additional 24 hours, and their migration ability was quantified (C). Data are presented as mean ± SD (n=3); *p 
< 0.05 vs. Sh-Luc. (A–C). Confluent monolayers of fBMFs−2 were scratched and cultured for 48 hours, and the wound closure was 
assessed. Scale bar, 50 μm (D). 
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of silencing of MIAT on collagen gel contraction 
(Figure 5B), protein expression of α-SMA and 
COL1A1 (Figure 5C and Supplementary Figure 2), 
and cell migration (Figure 5D). Taken together, these 
data indicate that MIAT functions as a miR-342- 
3p sponge to promote myofibroblast properties in 
fBMFs. 
 
MiR-342-3p mitigates myofibroblast activation by 
suppressing SOX6 
 
Several studies have shown that SRY-box transcription 
factor 6 (SOX6) may be a target of miR-342-3p in 
renal or cardiac injuries [29, 30] and implicate in  
renal fibrosis [29, 31], so we sought to examine 
whether SOX6 plays a role for the anti-fibrosis effect 

of miR-342-3p during oral fibrogenesis. By using  
RNA sequencing analysis, we showed that SOX6  
was upregulated in OSF tissues compared to normal 
specimens (Figure 6A). We also predicted a potential 
miR-342-3p binding region on the SOX6 3’UTR 
sequence via miRDB bioinformatic analysis (Figure 
6B), and the results from a luciferase assay showed 
that the luciferase activity was significantly reduced in 
wild-type SOX6 in nBMFs (wt-SOX6), while there was 
no change in mutated SOX6 (mut-SOX6, Figure 6C). 
Besides, the expression of SOX6 in fBMFs was down-
regulated after transfection of miR-342-3p mimics 
(Figure 6D and Supplementary Figure 3). Additionally, 
we showed that overexpression of SOX6 in nBMFs 
(Figure 6E and Supplementary Figure 4) elicited 
multiple myofibroblast phenotypes, including higher 

 

 
 

Figure 3. Knockdown of MIAT impairs the arecoline-induced myofibroblastic transformation in BMFs. (A) Primary nBMFs 
(obtained from two healthy individuals; nBMFs−1 and −2) were cultured with arecoline (0, 10, and 20 μg/mL) for 24 hours, followed 
by RNA-sequencing analysis to determine the levels of MIAT (p < 0.01). (B) Normal BMFs (−1 and −2) were cultured with arecoline (0, 
5, 10, and 20 μg/mL) for 24 hours, followed by qRT-PCR analysis to determine the MIAT expression. (C–F) Normal BMFs (−1 and −2) 
were transfected with lentiviruses expressing non-targeting ShRNA (Sh-Luc.) and Sh-MIAT (Sh-MIAT−1 and −2). After 48 hours, the 
cells were cultured with or without arecoline (20 μg/mL) for 24 hours for the induction of myofibroblasts transdifferentiation. The 
expression of MIAT in each group was assessed using qRT-PCR analysis. Data are presented as mean ± SD (n=3); *p < 0.05 vs. Sh-Luc.; 
#p < 0.05 vs. Sh-Luc. with arecoline treatment (C). The protein expression of α-SMA in each group was determined using Western 
blotting analysis (D). Cells (nBMFs−1 and −2) were cultured in collagen gel for an additional 48 hours, and the resulting gel area after 
cell contraction was measured (E). Cells (nBMFs−1 and −2) were cultured in Transwell system for an additional 24 hours, and their 
migration ability was quantified (F). Data are presented as mean ± SD (n=3); *p < 0.05 vs. Sh-Luc.; #p < 0.05 vs. Sh-Luc. with arecoline 
treatment; Scale bar, 50 μm (E, F). 
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collagen gel contractility (Figure 6F), Transwell 
migration (Figure 6G) and wound healing (Figure  
6H) capacities. These results supported that miR-342-
3p suppresses myofibroblastic properties by targeting 
SOX6. 

MIAT promotes myofibroblastic properties through 
the miR-342-3p/SOX6 axis 
 
According to the above findings that miR-342-3p can 
bind to MIAT and SOX6 mRNA, we speculated that 

 

 
 

Figure 4. MiR-342-3p negatively correlates to MIAT expression in OSF tissues and acts as an anti-fibrotic miRNA in OSF.  
(A) RNA of cytoplasmic and nuclear fractions from primary fBMFs (−1 and −2) were analyzed by qRT-PCR to determine the subcellular 
localization of MIAT. Data are presented as mean ± SD (n=3); *p < 0.05 vs. Nucleus. (B) RNA-sequencing analysis showed that miR-342-3p was 
a down-regulated differentially expressed gene (fold change ≤ -2.0; p < 0.01) in samples of fibrotic tissues (OSF; n=2) compared to normal 
tissues (N; n=2). (C) An illustration of the predicted pairing region between miR-342-3p and MIAT 3’UTR, discovered using the miRanda 
database, and the 3’ UTR regions of full-length (wt-MIAT) and mutated MIAT (mut-MIAT) complementarity to the seed site of miR-342-3p, 
predicted by TargetScan in silico browser. (D) The relative expression of miR-342-3p in normal (N; n=25) and fibrotic (OSF; n=25) tissues was 
assessed by qRT-PCR analysis. Data are presented as mean ± SD. (E) A significant negative correlation was observed between MIAT and miR-
342-3p expression fibrotic tissue samples (OSF; n=45). (F) Fibrotic BMFs (−1) were co-transfected with either miR-Scramble (miR-Src.) or miR-
342-3p mimics, along with the indicated pmirGLO-based constructs shown in (C). Luciferase reporter activity was measured 24 hours post-
transfection. Data are presented as mean ± SD (n = 3); *p < 0.05 vs. wt-MIAT with miR-Src. (G–I) Fibrotic BMFs (−1 and −2) expressing Sh-Luc 
or Sh-MIAT were transfected with either miR-Src or miR-342-3p inhibitor for 24 hours. The cells (fBMFs−1 and −2) were cultured in collagen 
gel for an additional 48 hours, and the resulting gel area after cell contraction was measured (G). Cells (fBMFs−1 and −2) were cultured in 
Transwell system for an additional 24 hours, and their migration ability was quantified (H). Data are presented as mean ± SD (n=3); *p < 0.05 
vs. miR-Scr. (G, H). Confluent monolayers of fBMF−2 were scratched and cultured for an additional 48 hours, and the wound closure was 
assessed (I). Scale bar, 50 μm. 
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MIAT may serve as a ceRNA to regulate the miR-342-
3p/SOX6 axis during OSF progression. To verify this 
hypothesis, we assessed the relationship between MIAT 
and SOX6 and found they were positively correlated 
(Figure 7A). Furthermore, our results demonstrated  
that overexpression of SOX6 blocked the effect of  
MIAT silencing on apoptosis (Figure 7B), collagen gel 
contraction (Figure 7C), Transwell migration (Figure 7D) 
and the expression of fibrosis markers (Figure 7E and 
Supplementary Figure 5). Altogether, our data indicate 
that upregulation of MIAT in nBMFs following chronic 
exposure to arecoline may interfere the miR-342-3p-

mediated suppression of SOX6, resulting in persistent 
activation of fBMFs and development of OSF (Figure 8). 
 
DISCUSSION 
 
MIAT, also termed as Gomafu or LINC00066, is located 
at 22q12.1 with a length of 30,051 bp and was first 
identified in 2000 [32]. Ishii et al. later found MIAT  
is located within a susceptible locus for myocardial 
infarction (MI), leading them to name this novel gene as 
MIAT [17]. Beyond its role in cardiovascular diseases 
[33–35], MIAT dysregulation has been associated with  

 

 
 

Figure 5. The silencing of MIAT induces apoptosis and inhibits myofibroblastic properties by targeting miR-342-3p. (A–D) Fibrotic 
BMFs (fBMFs−1 and −2) expressing the Sh-Luc. or Sh-MIAT were transfected with either miR-Scramble (miR-Src.) or miR-342-3p inhibitor for 24 
hours. Cell apoptosis (annexin V+ or annexin V+/PI+) was assessed using flow cytometry (A). Cells (fBMFs−1 and −2) were cultured in collagen gel 
for an additional 48 hours, followed by the measurement of the gel area after cell contraction (B). Data are presented as mean ± SD (n=3); *p < 
0.05 vs. Sh-Luc.; #p < 0.05 vs. Sh-MIAT with miR-Src. (A, B). The protein expression of α-SMA and COL1A1 in fBMFs−1 was analyzed using Western 
blotting (C). Cells (fBMFs−1 and −2) were cultured in Transwell system for an additional 24 hours, and their migration ability was quantified. Data 
are presented as mean ± SD (n=3); *p < 0.05 vs. Sh-Luc.; #p < 0.05 vs. Sh-MIAT with miR-Src.; Scale bar, 50 μm (D). 
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a variety of disorders, such as impaired neuronal 
function [36] and glioblastoma [37] and various fibrosis 
diseases. For instance, MIAT has been shown to modulate 
cardiac fibrosis by serving as a ceRNA and negatively 
regulating multiple miRNAs, such as miR-29a-3p [38], 
miR-24 [39], or miR-214-3p [40]. Moreover, TGF-β1-
induced MIAT contributes to the activation of pancreatic 
stellate cells in chronic pancreatitis and proximal  
tubule epithelial cells in renal interstitial fibrosis by 
targeting miR-216a-3p/COX-2 [22] or miR-145/EIF5A2 
axes [41], respectively. In this study, we showed that 
MIAT was upregulated in OSF specimens, and the 
silencing of MIAT reduced myofibroblast phenotypes 

and activation. Our results further demonstrated that  
the arecoline-stimulated MIAT conferred myofibroblast 
transdifferentiation of nBMFs by acting as a ceRNA  
for miR-342-3p, thereby alleviating its repression on 
SOX6. 
 
Aberrant expression of miR-342 has been found in 
various diseases, such as diabetic nephropathy [29, 42] 
or cardiomyopathy [43]. Unlike most miRNAs where 
only one guide strand is loaded into RNA-induced 
silencing complex (RISC) while the other strand is 
destroyed rapidly, both miR-342-3p and miR-342-5p are 
excised from the same stem-loop precursor miRNA and 

 

 
 

Figure 6. SOX6 is a target of miR-342-3p. (A) RNA-sequencing analysis showed that SOX6 was an up-regulated differentially expressed 
gene (fold change ≥ 2.0; p < 0.01) in fibrotic tissues samples (OSF; n=2) compared to normal tissues samples (N; n=2). (B) An illustration of the 
predicted pairing region between miR-342-3p and SOX6 3’UTR were discovered using the miRDB database, and the 3’ UTR regions of full-
length (wt-SOX6) and mutated SOX6 (mut-SOX6) complementarity to the seed site of miR-342-3p, predicted by the TargetScan in silico 
browser. (C) Fibrotic BMFs (−1) were co-transfected with either miR-Scramble (miR-Src.) or miR-342-3p mimics, along with the indicated 
pmirGLO-based constructs shown in (B). Luciferase reporter activity was measured 24 hours post-transfection. Data are presented as 
mean ± SD (n = 3); *p < 0.05 vs. wt-SOX6 with miR-Src. (D) Fibrotic BMFs (−1 and −2) were transfected with either miR-Src or miR-342-3p 
inhibitor for 24 hours, followed by Western blotting analysis to determine the protein expression of SOX6. (E–H) Normal BMFs (−1 and −2) 
were transfected with lentiviruses expressing control vector (Ctrl.) or SOX6 (ov-SOX6). The overexpression efficiency of SOX6 was assessed by 
Western blotting analysis (E). Cells (nBMFs−1 and −2) were cultured in collagen gel for an additional 48 hours, and the resulting gel area after 
cell contraction was measured (F). Cells (nBMFs−1 and −2) were cultured in Transwell system for an additional 24 hours, and their migration 
ability was quantified (G). Confluent monolayers of cells (nBMFs−1 and −2) were scratched and cultured for an additional 48 hours, and the 
wound closure was assessed (H). Data are presented as mean ± SD (n=3); *p < 0.05 vs. Ctrl. (F–H). Scale bar, 50 μm. 
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become mature miRNAs [44]. It has been revealed that 
miR-342-3p acts as a tumor suppressor in oral cancer by 
inhibiting LIM and SH3 protein 1 [45], and our results 
suggested that dysregulation of miR-342-3p also 
participated in the development of precancerous OSF. 
Several studies have demonstrated the involvement of 
miR-342 in numerous fibrosis diseases by influencing 
myofibroblast activation. For example, miR-342-3p was 
found to regulate hepatic stellate cell (HSC) activation 
by affecting the Zbtb7a-mediated TGF-β signaling in  
a model of Echinococcus multilocularis infected liver 
fibrosis [46]. Another study showed that miR-342 directly 
interacted with Sp1 and inhibited its downstream TGF-
β1/Smad signaling, leading to the inhibition of HSCs 
activation [47]. In renal fibrosis, miR-342-5p has been 
revealed to target Ptch1 and inhibit its transcription 
factor FoxO3, leading to autophagy in the TGF- 
β1-stimulated TCMK-1 (mouse kidney) cells [48]. 
MiR‑342‑3p also has been demonstrated to increase cell 

proliferation and inhibit apoptosis of renal mesangial 
cells by reducing SOX6 expression [29]. In line with 
this finding, we showed that miR-342-3p exhibited anti-
fibrosis properties in fBMFs, possibly through direct 
suppression of SOX6. 
 
SOX6 is a transcription factor that was discovered in 
1990s [49, 50] and belongs to the SOXD subfamily 
along with SOX5 and SOX13 [51]. In humans, SOX6 
and SOX5 are located in paralogous chromosomal 
regions on 11p15.3–15.2 and 12p12.1, respectively. 
Although SOX6 do not harbor any transactivation or 
transrepression domains, it has been found to bind to 
various proteins, cofactors, and miRNAs to regulate the 
transcription and functions of multiple genes [52–54]. 
Several studies suggested that differential expression  
of SOX6 may account for numerous diseases, such as 
cardiomyopathy [54, 55]. In fact, emerging evidence 
demonstrated that SOX6 serves as a target for a number 

 

 
 

Figure 7. MIAT increases the myofibroblastic properties by positively regulating SOX6. (A) A significant positive correlation between 
the expression of MIAT and SOX6 in fibrotic tissue sample (OSF; n=43). (B–E) Fibrotic BMFs (−1 and −2) were co-transfected with lentiviruses 
expressing the following constructs in the indicated combinations: non-targeting ShRNA (Sh-Luc.), Sh-MIAT, control vector (Ctrl.), and SOX6 (ov-
SOX6). Cell apoptosis (annexin V+ or annexin V+/PI+) was determined using flow cytometry (B). Cells (fBMFs−1 and −2) were cultured in collagen 
gel for an additional 48 hours. The resulting gel area after cell contraction was measured (C). Cells were cultured in Transwell system for an 
additional 24 hours, and their migration ability was assessed. Scale bar, 50 μm (D). Data are presented as mean ± SD (n=3); *p < 0.05 vs. Sh-Luc.; 
#p < 0.05 vs. Sh-MIAT with Ctrl. (B–D). The protein expression of α-SMA and COL1A1 in fBMFs−1 was analyzed using Western blotting (E). 
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of miRNAs in renal fibrosis such as miR-342-3p  
[29], miR-19b [56], and miR-185-5p [31]. Notably, 
these studies showed that miRNA-mediated sponging 
of SOX6 promotes cell apoptosis and reduces the 
expression of fibrosis markers like fibronectin and 
type I collagen [29, 31]. Our results are consistent with 
these findings, showing that SOX6 suppresses apoptosis 
in myofibroblasts, thereby increasing fibrosis markers. 
Furthermore, we demonstrated that manipulation  
of SOX6 affected myofibroblast marker (α-SMA) 
expression and phenotypes, which provided direct 
evidence that upregulation of SOX6 leads to oral 
fibrogenesis through modulation of myofibroblast 
transdifferentiation. 
 
A limitation of this study is the inconsistency in 
sample sizes between the experiments analyzing gene 
expression correlations (e.g. Figure 1D–1F; n=40) and 
those comparing gene expression differences between 
OSF and normal (N) groups (e.g. Figure 1B; n=25). 
To minimize potential confounding variables, we 
utilized samples from patients with OSF and healthy 
individuals recruited during the same period (n=25 
per group) when comparing the expression differences 

of target genes. To enhance the statistical significance 
of our results, we continued to recruit OSF patients, 
expanding the sample size from 25 to 45. Our 
association analysis has indicated that the expression 
of MIAT strongly correlated to each gene of  
interest (Figures 1D–1F, 4E, 7A), suggesting that 
similar findings could be obtained from the smaller 
sample size (n=25). However, it is necessary to 
continue expanding both the number and diversity  
of patients, such as genetic background and clinical 
stage of disease progression. This would be beneficial 
to strengthen the evidence base of our study and  
to further elucidate the role of MIAT in OSF 
pathogenesis. 
 
In conclusion, our findings revealed that the aberrantly 
overexpressed MIAT in OSF tissues may be due to 
chronic stimulation of arecoline, resulting in trans-
differentiation of nBMFs via titrating the inhibitory 
effect of miR-342-3p on SOX6 expression. These results 
not only offered insight into how upregulated MIAT 
led to OSF, but also demonstrated that targeting this 
MIAT/miR-342-3p/SOX6 pathway may be a promising 
treatment direction. 

 

 
 

Figure 8. A diagram illustrates the mechanism of MIAT in the development of OSF. Upregulation of MIAT in nBMFs following 
chronic exposure to arecoline may interfere the miR-342-3p-mediated suppression of SOX6, resulting in persistent activation of fBMFs and 
development of OSF. 
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MATERIALS AND METHODS 
 
Tissue preparation 
 
45 samples of fibrotic buccal mucosa tissues (OSF) 
were obtained from surgical resection of OSF patients 
who did not receive any preoperative treatment at  
the Department of Dentistry, Chung Shan Medical 
University Hospital; and 25 samples of normal buccal 
mucosa tissues (N) were obtained from the surgical 
removal of impacted third molars of healthy individuals. 
All samples were obtained with the written informed 
consent of patients. For RNA-sequencing and qRT- 
PCR analysis, the obtained samples were immediately 
stored at -80° C before use. All ethical regulations and 
operations were complied with Institutional Review 
Board of Chung Shan Medical University Hospital.  
The histopathological identification of OSF samples 
was verified by two pathologists independently. Tissue 
specimens from 25 OSF patients and 25 healthy 
individuals, initially recruited during the same period, 
were used to analyze the statistical differences in  
the expression levels of various genes between the  
OSF and normal groups. Specimens from all recruited 
OSF patients (n = 45, including the initial 25 and  
an additional 20 subsequently recruited) were used to 
analyze the correlations among the expression levels of 
various genes of interest. Due to the limited availability 
of clinical tissue samples, the actual number of samples 
used in the experiments ranged from 40 to 45 (specific 
sample sizes are indicated in the respective figure 
legends). 
 
Cell culture 
 
Fibrotic buccal mucosa fibroblasts (fBMFs) and normal 
BMFs (nBMFs) were extracted from buccal mucosa 
tissues of OSF patients and healthy individuals, 
respectively. The details of primary cell isolation and 
culture were previously described [16]. In brief, buccal 
mucosa tissues obtained from surgery were incubated  
in Hanks’ Balanced Salt Solution (HBSS) at 4° C and 
transferred to the laboratory immediately for further 
processing. After trypsinization, the tissues were cultured 
in DMEM medium (with 10% fetal bovine serum 
[FBS], and 1% penicillin-streptomycin cocktail) and 
plated into 25-T flasks for 14 days. The cells which are 
spindle-shaped and migrated out of the tissues were 
defined as buccal fibroblasts. All cells were continuously 
passaged and used for subsequent experiments between 
the 3rd and 8th passages and were negative for 
mycoplasma contamination verified using short tandem 
repeat (STR) DNA profiling. Arecoline was purchased 
from Sigma (St. Louis, MO, USA). Arecoline was 
dissolved in phosphate-buffered saline (PBS) as a stock 
solution stored at -20° C before use. When nBMFs 

reached a designated density, cells were treated with 
arecoline at a series concentration (0-20 μg/mL) for  
24 hours. 
 
RNA-sequencing analysis 
 
Total RNA was extracted from the collected buccal 
tissue samples and primary BMF cells using Trizol 
reagent as directed by the manufacturer (Invitrogen, 
Carlsbad, CA, USA). RNA quality and quantity were 
evaluated using NanoDrop (Thermo Fisher Scientific, 
Waltham, MA, USA). All procedures of RNA library 
preparation, sequencing, and transcriptome discrepancies 
analysis were performed at Genomics Inc. The detail 
was described in our previous studies [57]. To verify  
the RNA-sequencing results, the selected differentially 
expressed gene expressions were further confirmed by 
qRT-PCR analysis. 
 
QRT-PCR analysis 
 
The methods of RNA extraction, quality control and 
quantitation are described above. For MIAT subcellular 
localization detection, the nuclear and cytoplasmic 
RNA from fBMFs were isolated using a PARIS™ Kit 
(Thermo Fisher Scientific). cDNA was prepared using 
The Superscript III first-strand synthesis system 
(Invitrogen) to reverse-transcribe RNA. ABI StepOne™ 
Real-Time PCR Systems (Applied Biosystems, Waltham, 
MA, USA) were used for PCR experiments with the 
resultant cDNAs. The specific primer sequences are 
listed as follows (5’-3’): MIAT, TATTTGCAGGGGG 
TGCTCTG (forward), GGGCAGGGGGTCTAACTCTA 
(reverse); α-SMA, AGCACATGGAAAAGATCTGG 
CACC (forward), TTTTCTCCCGGTTGGCCTTG 
(reverse); COL1A1, GATTCCCTGGACCTAAAGG 
TGC (forward), AGCCTCTCCATCTTTGCCAGCA 
(reverse); FN1, ACTGCGAGAGTAAACCTGAAGC 
(forward), GCGGTTTGCGATGGTACAGCT (reverse); 
miR-342-3p, GTGCTATCTGTGATTGAGGGA 
(forward),  CGGGTGCGATTTCTGTG (reverse); 
SOX6, GTCGCTTAATGTGTGGCTCG (forward), 
TGTTCTTCCTGCCCTGACATT (reverse); GAPDH, 
GTGGCTGGCTCAGAAAAAGG (forward), GGGG 
AGATTCAGTGTGGTGG (reverse); U6, CTCGC 
TTCGGCAGCACA (forward), AACGCTTCACGAA 
TTTGCGT (reverse). Relative expression levels were 
normalized using GAPDH as the internal control for total 
and cytoplasmic RNA, while U6 served as the internal 
control for nuclear RNA and miRNA normalization, 
and the 2-ΔCt method was applied. 
 
Knockdown of MIAT 
 
A lentiviral pLKO-shRNA-expressing vector was 
purchased from the National RNAi Core Facility 
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(Academia Sinica, Taipei, Taiwan). Lentivirus particle 
production was performed in 293T cells by co-
transfecting the pLKO-shRNA-expressing vectors with 
packaging and envelope plasmids with a ratio of 
10:10:1 using Lipofectamine 2000 reagent (Invitrogen). 
The virus-containing supernatant was collected after  
48 post-transfection and filtered through a 0.45-µm 
PVDF filter. Fibrotic BMFs were cultured with the 
filtered virus-containing supernatant supplemented with 
8 µg/mL polybrene (Merck, Darmstadt, Germany) for 
48 hours. The lentivirus-infected cells were selected  
by puromycin. Quantitative RT-PCR analysis was 
performed to verify the knockdown efficiency. The 
sequences for Sh-MIAT are listed below: Sh-MIAT-1, 
AAAAGCAGTCCAGGGTCTATTTATTGGATCCAA
TAAATAGACCCTGGACTGC; Sh-MIAT-2, AAAAG 
GGTTTGAACCTTTAGGATTTGGATCCAAATCCTA
AAGGTTCAAACCC. A pLKO-luciferase-expressing 
vector was used as the non-targeting control (Sh-Luc.). 
 
Collagen gel contraction assay 
 
A total of 0.5 mL of the collagen solution (2 mg collagen/ 
mL) was mixed with 1 × 105 cells and added into each 
well of a 24−well plate. After gel polymerization by  
30 minutes of incubation at 37° C, 0.5 mL DMEM 
medium was added to cover the polymerized gels 
entirely. Then the gels were scraped out and plated into 
another 24−well plate for 48 hours of incubation at 37° 
C. Images of the contracted collagen gels were captured 
and quantified using ImageJ software (NIH). The area of 
the contracted gel was measured and compared to the 
initial area to calculate the percentage of contraction.  
A decrease in relative gel area represents an increase in 
the gel contraction ability of cells. 
 
Transwell migration assay 
 
A total of 0.4 mL of a serum-free DMEM containing 1 
× 105 cells was added into the upper 8-μm pore insert, 
then the lower chamber was filled with 0.6 mL DMEM 
containing 10% FBS. After incubation at 37° C for  
24 hours, non-migrated cells on the upper side of the 
insert membrane were removed, and the migrated cells 
on the lower side were fixed with cold-100% methanol 
for 30 minutes at room temperature. The fixed cells 
were stained with 0.1% crystal violet solution for 20 
minutes. Migrated cells were visualized by capturing 
images using a microscope. For the evaluation of 
migrated cells, 0.4 mL of 30% acetic acid was added to 
each insert and incubated for 15 minutes to dissolve the 
crystal violet stain. The absorbance value at 570 nm of 
crystal violet stain from each insert was measured using 
a microplate reader (Infinite M200 Pro, Tecan Group 
Ltd., Männedorf, Germany) and quantified according to 
the manufacturer’s protocols. 

Wound healing assay 
 
After cell confluence reached 90%, a straight wound 
was introduced across the center of each well using  
a 200 μL sterile pipette tip. Each well was washed 
with PBS to remove any detached cells and debris, 
and cells were cultured with a serum−free DMEM 
medium for 48 hours. Images of the wound area were 
captured at the time points of 0 and 48 hours by 
microscope. 
 
Western blot analysis 
 
In brief, whole-cell lysate containing 20 μg  
of protein was separated by sodium dodecyl  
sulfate-polyacrylamide gel electrophoresis and then 
transferred onto a polyvinylidene fluoride membrane. 
After blocking for non-specific sites with 5% bovine 
serum albumin (BSA), the membrane was incubated 
with primary antibodies for 16 hours at 4° C, and 
subsequently incubated with the corresponding HRP-
conjugated secondary antibody for 1 hour at room 
temperature. The signals of antibody binding were 
developed by ECL substrate (Merck) and then 
captured using the LAS−1000 plus analyzer (GE 
Healthcare, Piscataway, NJ, USA). GAPDH was used 
as an internal reference. All the antibodies were 
purchased from Cell Signaling Inc. (Danvers, MA, 
USA). 
 
MiR-342-3p knockdown and overexpression 
 
MiR-342-3p mimics, miR-342-3p inhibitor, and miR-
scramble negative control (miR-Scr.) were purchased 
from Applied Biosystems (Waltham, MA, USA),  
and a total of 100 nM oligonucleotide sequences  
were transfected into cells using Lipofectamine 2000 
(Invitrogen). After 48 hours of transfection, cells were 
collected for subsequent experiments. 
 
Luciferase reporter activity assay 
 
The binding of miR-342-3p to MIAT or SOX6 was 
examined using a luciferase reporter activity assay 
(Promega, Madison, WI, USA). MIAT and SOX6 3’-
UTR with full-length (wild-type, wt) and mutant-type 
(mut) were synthesized and cloned into pmirGLO 
vectors according to the manufacturer’s protocols. 
Luciferase vectors were mixed with miR-342-3p mimics 
and miR-scramble (miR-Src.), respectively, and the 
mixtures were then co-transfected into cells using 
Lipofectamine 2000 reagent. The activity of luciferase 
reporter was detected using the Luciferase Assay 
System according to the manufacturer’s instructions. 
The relative activity of each group was normalized with 
Renilla luciferase internal control (VA). 
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Apoptosis assay 
 
Briefly, 2 × 105 cells were incubated with stained with 
1.5 μl Annexin V-FITC reagent and 1.5 μl propidium 
iodide (PI) for 5 minutes at room temperature in the 
dark. The stained cells were then directly measured 
using a Calibur flow cytometer (Becton Dickinson, 
San Jose, CA, USA). Data were analyzed using 
FlowJo software v10 (FlowJo LLC, Ashland, OR, 
USA). The Annexin single-positive and Annexin/PI 
double-positive populations were considered apoptotic 
cells. 
 
Overexpression of SOX6 
 
The SOX6 cDNA was cloned into the pCDHI-MCS1-
EF1-CopGFP plasmid (System Biosciences, Mountain 
View, CA, USA). The pCDH and two helper plasmids 
(packaging and envelope plasmids) were co-transfected 
into 293T cells using Lipofectamine 2000 reagent  
to produce lentiviral particles. The conditions for 
lentivirus production and infection were as described in 
the Knockdown of MIAT section. Following lentivirus 
infection, GFP-positive cells were sorted using flow 
cytometry.  Overexpression of SOX6 was confirmed 
using qRT-PCR and Western blot analysis. An empty 
pCDHI-MCSI-EF1-COpGFP vector was used as the 
control group (Ctrl.). 
 
Statistical analysis 
 
All results were plotted as mean ± standard deviation 
(S.D.). A p-value of 0.05 or less was considered 
statistically significant. Differences between two 
groups were analyzed using paired or unpaired 
Student’s t-test, while differences among multiple 
groups were analyzed using one-way analysis of 
variance (ANOVA). The correlation between two 
genes’ expression in clinical specimens was obtained 
using Pearson correlation analysis. All analyses  
were performed using Prism software, version 9.0 
(Graph-Pad Inc., La Jolla, CA, USA) and SPSS 
software, version 21.0 (SPSS Inc., Chicago, IL,  
USA). 
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Supplementary Figure 1. Original immunoblotting data for Fig. 3D 
 

 
 

Supplementary Figure 2. Original immunoblotting data for Fig. 5C 

 
 

Supplementary Figure 3. Original immunoblotting data for Fig. 6D 
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Supplementary Figure 4. Original immunoblotting data for Fig. 6E 

 

 
 

Supplementary Figure 5. Original immunoblotting data for Fig. 7E 
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