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INTRODUCTION 
 

There is a growing interest in rejuvenation interventions 

for their potential to mitigate the effects of aging in 

humans. These interventions, ranging from lifestyle 

changes such as calorie restriction and exercising over 

gene therapies like partial reprogramming up to surgical 

procedures as heterochronic parabiosis, have been 

shown to improve various biological aging markers [1] 

and to increase the average lifespan in several model 

organisms [2–5]. However, they suffer from two main 
limitations. On one hand, although these interventions 

proved efficacious in improving specific cellular 

processes, none of them achieves a holistic functional 

improvement across tissues. In this regard, a review of 

pharmacological approaches to slow aging identified 

mostly specific and non-overlapping effects on different 

hallmarks of aging [6]. On the other hand, clinical 

translation of current rejuvenation strategies is often not 

feasible (parabiosis), bears significant safety concerns 

(partial reprogramming) or requires sustained lifestyle 

changes that are known to have low compliance (calorie 

restriction, exercise). In order to mitigate these issues,  

it is imperative to characterize and compare current 

interventions at different levels of biological organization 
to enable the discovery of more comprehensive 

rejuvenation strategies that correct a wider array of 

dysregulated biological processes. 
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ABSTRACT 
 

Current rejuvenation strategies, which range from calorie restriction to in vivo partial reprogramming, only 
improve a few specific cellular processes. In addition, the molecular mechanisms underlying these approaches 
are largely unknown, which hinders the design of more holistic cellular rejuvenation strategies. To address this 
issue, we developed SINGULAR (Single-cell RNA-seq Investigation of Rejuvenation Agents and Longevity), a cell 
rejuvenation atlas that provides a unified system biology analysis of diverse rejuvenation strategies across 
multiple organs at single-cell resolution. In particular, we leverage network biology approaches to characterize 
and compare the effects of each strategy at the level of intracellular signaling, cell-cell communication, and 
transcriptional regulation. As a result, we identified master regulators orchestrating the rejuvenation response 
and propose that targeting a combination of them leads to a more holistic improvement of age-dysregulated 
cellular processes. Thus, the interactive database accompanying SINGULAR is expected to facilitate the future 
design of synthetic rejuvenation interventions. 
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Elucidating commonalities and differences of the effects 

of diverse rejuvenation strategies on different cell types 

and cellular processes remains a challenge. Although a 

wealth of high-resolution transcriptomic data has been 

produced, every study employs different quality control 

metrics and downstream processing pipelines, which 

impedes a direct comparison of the obtained insights. 

For instance, the parameters for filtering low quality 

cells are largely inconsistent in three major atlases of 

calorie restriction [7], heterochronic parabiosis [8] and 

exercise [9]. Moreover, the depth of the analysis varies 

from study to study. While some studies focus on 

describing the transcriptional changes caused by an 

intervention alone [10], others include computational 

modeling approaches to interrogate effects on the gene 

regulatory network or cell-cell interactome [7–8]. 

Nevertheless, the use of different computational tools 

largely prohibits a direct comparison even though the 

same kind of analyses were performed in different 

studies. Thus, in order to rigorously compare the effects 

of rejuvenation strategies, it is crucial to unify the 

processing of the data and the subsequent analysis. 

 

Computational network biology approaches have shown 

great success in providing mechanistic insights by linking 

different scales of biological organization, including 

transcriptional regulation, intracellular signaling and 

intercellular communication, thereby generating testable 

hypotheses [11]. For instance, pre-existing work has 

explored the changes in transcription factor (TF) activity 

associated with age by using network approaches to 

estimate TF expression based on the presence of its 

regulons [12]. As such, these approaches would allow 

the characterization of the rejuvenation effects on 

different cellular processes determined by signaling  

and transcriptional regulation as well as cell-cell 

communication. Moreover, following a network-based 

approach allows the identification of master regulators 

of each strategy and combining them could enable a 

more holistic rejuvenation, i.e., a more complete set  

of rejuvenated cellular processes.  

 

Here, we introduce SINGULAR (Single-cell RNA-Seq 

Investigation of Rejuvenation Agents and Longevity), a 

cell rejuvenation atlas that characterizes the response to 

cellular rejuvenation strategies at the single-cell level in 

a unified analysis framework. In particular, we propose 

to view aging as a metastable transcriptional state 

associated with loss of regular physiological function. 

Conversely, rejuvenation entails the conversion from an 

aged to a more youthful transcriptional state.  

 

In this regard, we characterized the effect of 6 
rejuvenation strategies across 9 studies on 73 cell types 

at the gene regulatory network, intracellular signaling, 

cell-cell communication and cellular process level. 

Moreover, we identified master regulators at every  

level of biological organization and identified common 

targets across immune cells. Finally, we exemplify how 

SINGULAR can be exploited to select drugs that could 

mimic the effect of complex interventions. Thus, we 

expect SINGULAR to be of great utility in informing 

further advances in human age reversal. 

 

RESULTS 
 

A unified processing and analysis pipeline for single-

cell based rejuvenation studies 

 

To overcome the abiding issue of heterogeneous 

processing and analysis approaches between different 

studies, we propose a unified multiscale analysis 

pipeline that allows for the characterization and 

comparison of the effects of rejuvenation interventions. 

Starting from quantified expression profiles of single-

cell RNA-seq experiments from treated and untreated 

donor samples, our pipeline first filters low quality  

cells based on dynamic thresholds for the percentage  

of mitochondrial and ribosomal reads as well as  

the relationship of read counts to detected genes.  

Next, the expression profiles of all cells in a dataset 

after regressing out the effect of cell cycle induced 

differences and normalization using scTransform [13]. 

Finally, the optimal clustering of cells is automatically 

identified by maximizing the Calinski-Harabasz Index 

[14]. 

 

After processing the data, our pipeline analyzes  

each dataset of treated and untreated samples at 

different levels of biological organization. Initially,  

it characterizes differentially expressed genes and  

the cellular processes they belong to. Subsequently, 

transcriptional regulatory networks (TRN) among 

differentially expressed genes by following a previously 

published method [15]. In brief, assuming an “inhibition 

dominant” regulatory logic in which one upregulated 

inhibitor is sufficient to cause the downregulation  

of a gene (no matter the number of activating 

relationships), a prior knowledge network (pkn) of TF 

- gene interactions is pruned to remove interactions  

in which the gene activity is behaving differently  

to what is seen in the differential expression profile. 

As a next step, our pipeline integrates signaling and 

transcriptional regulation to reconstruct sustained 

signaling cascades and identify their key molecules 

using SigHotSpotter [16]. Eventually, we employ 

InterCom to interrogate intercellular communication 

by reconstructing cell-cell interactions mediated by 

ligands and their cognate receptors [17]. In brief, 
InterCom infers ligand-receptor interactions by 

modeling intracellular signaling and downstream TF 

expression to ensure compatibility. 
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We collected 9 previously published single-cell RNA-

seq datasets of heterochronic parabiosis (3 datasets), 

calorie restriction (1), exercise (1), metformin (2), 

rapamycin (1) and in vivo partial reprogramming (2)  

[7–10, 18–22] (Figure 1A, Supplementary Table 1, 

Supplementary Figure 1). As expected, we observed 

substantial technical variability in these datasets 

evidenced by large differences in sequencing depth, 

which further underscores the need for a homogeneous 

data processing pipeline (Figure 1B). Altogether, the 

employed datasets span a total of 74 cell types across 

18 organs. Notably, tissues from the central nervous 

system, adipose tissue, liver and bone marrow could  

be found in multiple intervention datasets. To begin 

with, we set out to characterize the differential 

expression patterns of each cell type in each organ  

in response to the individual rejuvenation strategies 

and identified a considerable heterogeneity (Figure 

1C). While systemic interventions such as calorie 

restriction and heterochronic parabiosis consistently 

exert large effects on the transcriptome of multiple 

organs, metformin has little to no effect on the organs 

it has been examined in. Interestingly, although 

exercising is directly affecting the muscles by 

diverting blood to them, the largest transcriptional 

effects were observed in the liver, artery and spinal 

cord. 

 

Identification of transcriptional master regulators 

that mediate rejuvenation effects 

 

In order to gain insights into the regulatory relationships 

explaining the observed differential expression profile, 

we reconstructed TRNs among differentially expressed 

 

 
 

Figure 1. (A) Overview of the SINGULAR project and its initial motivation. Publicly available datasets for several rejuvenation interventions 

were analyzed in this study. With the exception of Parabiosis, analyzed from three datasets, Reprogramming, which was analyzed from two 
datasets, and Metformin, also used in the Rapamycin experiment condition, every condition had data from one study. SINGULAR combines 
a unified processing pipeline for all the datasets with three main tools to explore transcriptional regulatory networks, signaling pathways, 
and cell-to-cell ligand receptor interactions. (B) Example comparison of the technical heterogeneity motivating this study. UMI counts 
across organ systems and studies, as well as the organs sample in each of the different studies, both vary greatly. (C) Comparison of counts 
of unique upregulated and downregulated genes from different studies grouped at the organ level, derived using the Delegate method. 
Even after applying SINGULAR’s unified preprocessing pipeline, substantial heterogeneity by organ and study in the transcriptional 
response to rejuvenation remains. 
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genes for each cell type in different tissues. As a  

result, we obtained 317 TRNs of cell types that were 

affected by a rejuvenation intervention. On average, 

TRNs are composed of 72 genes (range: 2–867) 

although most networks contain less than 35 genes 

(Figure 2A). Interestingly, the size of the TRNs is  

only weakly related to the number of differentially 

expressed genes (Pearson correlation, r = 0.21, p < 

0.001), which suggests that the transcriptional response 

to rejuvenation interventions is dependent on other 

regulatory mechanisms. In this regard, we hypothesized 

that signaling dependent TFs, whose activity is not only 

mediated by their expression level but also extracellular 

signals, may regulate the genes that cannot be explained 

in the TRNs. Indeed, using a previously curated 

collection of signal-dependent TFs [23], we found 

between 77.8% and 100% (median 87.97%) of genes 

that are differentially expressed, have a known potential 

regulator but are not part of the TRNs can be regulated 

by signaling dependent TFs. In addition, we assessed 

how hierarchical each network is using the Krackhardt 

Hierarchy Score and found the TRNs to be highly 

hierarchical (average: 0.994, range: 0.932–1) (Figure 

2B). This indicates the presence of a few ‘master 

regulators’, i.e., TFs that explain a large fraction of gene 

expression changes (see Methods for details). 

 
Based on network statistics, we sought to identify these 

master regulators and simulated the downstream effects 

of activating a single TF in the network to assess the 

number of genes whose differential expression could be 

determined by this gene alone. Thus, a TF with a score 

of ‘1’ determines all genes in a network while a TF 

with a score of ‘0’ determines no other gene. Following 

this approach, we detected 493 TFs with a non-zero 

score across all cell types, organs and interventions. 

However, the majority of these TFs only act as master 

regulators in less than 5 conditions (Figure 2C). 

Moreover, the master regulator score of many TFs is 

low across the majority cell types and interventions. 

For example, the rejuvenation response in adipocytes 

after exercising is orchestrated by the co-expression  

of Clock and Arntl, which induce different down- 

stream factors depending on the organ of origin. On  

the other hand, Nfkb and Esr1 regulates varying 

fractions of differentially expressed genes depending 

on the intervention (Supplementary Figure 2A). Indeed, 

it is not uncommon that in different conditions both 

shared and distinct mechanisms are found, suggesting 

therapeutic approaches to be equally promising through 

similar mechanisms. In basal cells of the Skin, for 

instance, Srf, Cebpb, Atf4, Jun and Myc shared the 

majority of their downstream regulatory target genes 

whereas other TFs mostly acted in a non-overlapping 

manner (Supplementary Figure 2B). Similar patterns 

could also be found in different cell types of the same 

intervention, with Ddit3, Spib and Cebpb mediating the 

effect in the granulocyte lineage while the remainder of 

the transcription factor response is determined by the 

maturity of the cell (Supplementary Figure 2C). Not 

surprisingly, we also observed distinct mediators of  

the intervention response. For instance, Ybx1, Klf4 and 

Ets1 were found to be master regulators of exercise and 

calorie restriction in hepatocytes, whereas only Foxo3 

attained a high master regulator score in case of 

heterochronic parabiosis (Supplementary Figure 2D). 

 

Next, we aimed at interrogating the most common 

intervention mediators and selected the 30 TFs that have 

the highest average master regulator score across all  

cell types (Figure 2D). Surprisingly, when contrasted 

against previously existing analysis that documented 

substantial declines or increases in TF activity with 

ageing [12], the overlap with those TFs is limited; with 

only 4 of our 30 mater regulators appearing in such  

an analysis (Nfkb1, Irf1, Arntl and Id3). Moreover,  

the sign of the change in TF activity varied depending 

on cell type, rather than being consistently positive  

or negative. This would suggest a marked distinction 

between the regulatory agents associated with age and 

those able to orchestrate the rejuvenation response. 

 

Interestingly, our master regulator TFs have been 

previously associated with diverse cellular functions, 

including differentiation, proliferation, immune response 

and cell migration. Intriguingly, when grouping these 

TFs by their master regulator score in every cell  

type, we observed the presence of several clusters. As  

a general observation, we conclude that our master 

regulators rather group by intervention instead of  

cell type. In light of the diverse set of enriched  

cellular processes, this suggests the induction of distinct 

signaling pathways that differentially activate broad 

TFs. However, there exists one cluster that almost 

exclusively contains immune cells after treatment of 

heterochronic parabiosis or calorie restriction (Figure 

2D; right part). Although all of these TFs contribute  

to the mediation of the intervention effects, Jun,  

Junb, Jund, Atf4 and Fos, all of which belong to the  

AP-1 transcription factor complex, display a consistent 

involvement (Figure 2E). In addition, we observed that 

many smaller clusters are formed that predominantly 

contain a single master regulator even though the AP-1 

complex TFs mostly co-occur. The presence of the AP-1 

complex across multiple interventions prompted us to 

dissect the involvement of all known subunits [24] 

separately. Consistent with the known dimerization 

patterns of the AP-1 complex [25], Fos and Jun clearly 

emerged as the most common master regulators across 
interventions and cell types. In contrast, other Jun-, 

Fos- and Atf-family TFs act more selectively as master 

regulatory, which leads us to hypothesize that the cell 
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Figure 2. Properties and clustering of master regulators in the rejuvenation response. (A) Ridge plot of network size, calculated 

as sum of unique TFs and targets for each regulatory gene network, grouped by study (bin size = 30, average number of genes 72, median 
number of genes 31, range 2–867). Provided enough distinct regulatory networks are observed, their number of elements can vary 
between organs and cell types of the same dataset. (B) Krackhardt hierarchy scores of all TRNs. In this case, we universally see values very 
close to 1 (mean 0.994, rage 0.932–1), indicating a very hierarchical regulatory response for all rejuvenation interventions. This motivated 
the search for master regulators in the transcriptional networks. (C) Distribution of instances of a specific TF being observed in each of the 
TRNs. The majority of TFs are seen in only a few regulatory networks, but a minority appear in a significant fraction. (D) Heatmap of the TF 
score (see online methods) for the 30 TFs with the greatest average ranking across all TRNs. Clustering was performed with the manhattan 
distance and the McQuitty method. Coordinated TF responses can be observed, as well as activity patterns strongly associated more with 
the rejuvenation condition than the cell type, potentially uncovering more holistic rejuvenation interventions by targeting master 
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regulators behind different interventions. (E) Heatmap subset transcription factors known to be part of the AP-1 complex. Several clusters 
that contain a single master regulator can be observed in the differential rejuvenation response. Given these cofactors are expected to be 
coexpressed, this suggests a rejuvenation response in immune cell types under Calorie Restriction and Parabiosis that relies on the action of 
distinct AP-1 dimers. 

 

type and intervention specific effects are exerted by 

distinct AP-1 dimers. Interestingly, although previous 

studies have documented the influence of this complex  

in promoting age-related inflammation (“inflammaging”) 

[26], our analysis strongly suggests their action as anti-

aging mediators depending on their dimerization. 

 

To support the involvement of the identified master 

regulator TFs, we cross-referenced the 30 TFs having 

the highest master regulator score with aging-associated 

genes contained in GenAge [27]. As a result, we found 

53% (16/30) master regulators to be linked to aging 

with varying degrees of evidence. In particular, Arntl, 
Cebpb, Foxo1 and Jun possess strong evidence and 

have been directly linked to aging in mammalian and 

non-mammalian model organisms. In addition, the gene 

products of Myc and Nfe2l2 have been directly linked to 

aging in a cellular model system and Foxo3 has been 

shown to be involved in human longevity. Interestingly, 

several genes, i.e., Ar, Egr1, Jun and Sp1, have been 

shown to regulate genes previously linked to aging. 

Less evidence is provided for Hif1a and Nfkb1, which 

are known to be involved in pathways or mechanisms 

linked to aging. Finally, Ddit3, Fos and Stat3 are known 

effectors of aging-related genes. 

 

Despite the TFs that have been found in GenAge, we 

collected publicly available transcriptomic perturbation 

data of the top 30 master regulators and applied 

MultiTIMER [28], a multi-tissue transcriptional aging 

clock, to quantify potentially rejuvenating effects. Due to 

the nature of MultiTIMER as a predictor of transcriptional 

age in bulk data, we chose to validate the master 

regulators found in SINGULAR with experiments 

available in the Gene Expression Omnibus (GEO). In 

particular, we found knockdown/knockout experiments 

for Klf4, Irf1, Atf4, Myc, Hif1a and Esr1 in cell types 

where they have been identified as master regulators 

(Supplementary Table 3). Since master regulators are up-

regulated upon rejuvenating interventions, we would 

consequently expect the age of normal cells to increase 

after their knockdown or knockout. Indeed, we observed 

increases in the predicted cellular age after perturbing  

Klf4 (9.1 years), Irf1 (3.9 years), Hif1a (2.6 years). In 

addition, we also collected transcriptional profiles after 

overexpression of Klf4 and Myc. Interestingly, the 

predicted cellular age after Myc overexpression is 

considerably younger (−9.7 years) whereas it slightly 

increased in case of Klf4 (1.6 years). These results suggest 

that master regulators act synergistically with other TFs  

to exert a rejuvenating effect in a cell type dependent 

manner. This idea is further supported by current partial 

reprogramming strategies that upregulate Klf4 and Myc  

in combination with Pou5f1 and Sox2 to achieve a 

significantly higher reduction in cellular age compared to 

what we observed for Klf4 or Myc alone [29]. 

 

Crosstalk between transcriptional master regulators 

and intracellular signaling response 

 

Most of the TFs with the highest master regulator 

potential across interventions are well known to be 

activated or inhibited by multiple signaling pathways. 

Thus, we set out to identify the active signaling molecules 

that are likely to mediate the activation of master 

regulators in each cell type, tissue and intervention, as 

described before. Moreover, we compared the accordingly 

detected signaling molecules in treated and untreated 

samples to select those that are differentially active 

between both conditions. As a result, we identified 452 

molecules in 33 cell types across conditions and organs. 

Of these molecules, 74 directly activated the downstream 

TFs of the corresponding TRNs after treatments. The full 

set of results can be viewed in the SINGULAR database. 

 

To interrogate the function of the integrated signaling 

cascades and their induced TRNs, we performed Gene Set 

Enrichment Analysis (GSEA) of their constituent genes 

[30]. Strikingly, 23 integrated networks are negatively 

enriched in aging gene sets derived from Tabula Muris 

Senis, as found in The Molecular Signatures Database 

(MSigDB) [31]. This finding supports the rejuvenating 

effects of different interventions on cell types on  

the basis of an independent dataset (Figure 3A–3C).  

After heterochronic parabiosis however, neutrophils 

predominantly displayed a pro-aging signature (Figure 

3D). This is consistent with a previous study reporting an 

increase of a gene signature of neutrophil activation in 

hematopoietic stem and progenitor cells after parabiosis 

treatment [8]. Of note, especially in the case of parabiosis, 

we observed a reduction of aging signatures derived from 

various tissues. Nevertheless, in other cases, the enriched 

signatures precisely matched the tested cell type, such as 

in case of lung B cells where Grb2 mediates the activation 

of the transcriptional master regulator Fos (Figure 3B, 

Supplementary Figure 3A). 

 

Despite the reversal of pro-aging signatures in multiple 

cell types, we observed other enriched functions that  

are consistent with our current understanding of  

the interventions. For instance, E2f target genes, cell 

cycle control and the G2m checkpoint were negatively 
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enriched after partial reprogramming of the muscle, 

which displays an expected decrease in cellular 

proliferation that is consistent with previous studies 

indicating an up-regulation of the cell cycle inhibitor 

Cdkn1a in the critical treatment window [32] 

(Supplementary Figure 3B). Moreover, in the same 

experiment, cardiac muscle organogenesis was positively 

enriched suggesting an ongoing re-commitment to a 

fully differentiated state after de-differentiation (Figure 

3C, Supplementary Figure 3B). Interestingly, while 

Neutrophils in the bone marrow show signs of overall 

rejuvenation in response to heterochronic parabiosis, 

their inflammatory potential increases (Supplementary 

Figure 3C). This implies that parabiosis could have 

harmful effect on aging alongside its rejuvenating 

benefits. Finally, the response of T cells in the 

peripheral blood to Parabiosis2 was mediated by the 

kinase Pak2 and the master regulators Nfkb1 and  

Stat3. As a result, we observed a decline in the 

Pi3k/Akt/mTOR signaling pathway, which is a well-

known aging determinant. In fact, hypomorphic Pi3k 

mice show an increased longevity (Supplementary 

Figure 3D). 

 

Integration of gene network inference, signaling and 

intercellular communication analysis 

 

Based on our finding that the transcriptional response to 

several interventions could be linked to sustained 

signaling cascades that get activated, we finally aimed 

at interrogating whether these effects are induced by 

ligand-receptor mediated cell-cell interactions. Thus, we 

employed InterCom [17] to reconstruct the cell-cell 

communication networks of each treated and untreated 

organ. Similar to our assessment of the intracellular 

signaling cascades, we focus in the remainder on the 

most significant interactions that are unique to the 

treated condition and that involve a receptor as a key 

signaling molecule. The complete information can be 

accessed in the SINGULAR database. 

 

 
 

Figure 3. (A) Normalized enrichment scores for different cell types in different organs in the Parabiosis2 dataset. We observe substantial 

heterogeneity, including situations where a cell is negatively enriched both for its actual cell type and for the aging signature of other, very 
different lineages. This suggests that Parabiosis may be the most comprehensive rejuvenation intervention at this level of analysis. It must 
be noted that Neutrophils were the only cell type with a mixed rejuvenating and aging signature, but this is consistent with known 
responses to heterochronic parabiosis experiments. (B) Normalized enrichment score for the shared component between the TRN and the 
signaling network for Muscle fiber and Lung B cells under the Exercise condition. In this example, the geneSet cell markers for an aged 
transcriptome perfectly match the celltype the multi-modal network was derived from. (C) Normalized enrichment score for the shared 
component between the TRN and the signaling network in Reprogramming dataset for Muscle stem cells. In this example, the negative 
aging signature is found for three different cell types, none matching the one the data was derived from. (D) Bubble plot illustrating the 
number of cell types per organ and the fraction of cell types per organ where we were able to detect a sustained signalling network 
associated with the rejuvenation condition, per organ and study. Crosses indicate absence for any cell type. Full equivalence between the 
geneSet legend labels and the Tabula Muris Senis enrichments can be found in Supplementary Table 2. 
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Deriving mechanistic insights and testable hypotheses 

from the response to different rejuvenation strategies 

could significantly accelerate the development of new 

anti-aging treatments. Therefore, we focus on two 

illustrative examples to demonstrate the potentiality of 

our unified analysis approach. First, we found our 

analysis to recapitulate known cell communication 

effects in macrophages after heterochronic parabiosis 

(Figure 4A). More specifically, our analysis revealed 

that Gnai2 activates the AP-1 complex genes Jun  

and Fos upon dissociation of Ccr2 upon recognition  

of its cognate ligand Ccl2 [33]. Activation of the  

AP-1 complex in turn leads to the up-regulation of 

known chemotaxis related genes, such as Cd14, Cxcl2 

and Vegfa [34–36]. Indeed, positive enrichment of 

chemotaxis-related gene sets in a GSEA of the signaling 

cascades and downstream TFs underscored the chemo-

tactic expression program induced by Ccr2 (Figure 4B). 

As a second example we chose to illustrate a novel, 

non-canonical signaling cascade that has not been 

reported before. In response to exercising, Purkinje cells 

in the cerebellum form an autocrine loop and interact 

with oligodendrocyte precursor cells via the Fgf10-

Fgfr2 axis (Figure 4C). While our analysis recapitulates 

the downstream activation of Runx2, which in turn up-

regulates and guarantees the expression of Fgfr2, we 

found that Pax6 is activated by Tcf12 in response  

to Fgfr2 activation. Although the function of Pax6  

has not been reported in Purkinje cells, it is a known 

neuroprotective transcription factor [37]. 

 

Identification of potential drugs targeting key TFs 

and signaling molecules  

 

In order to demonstrate the utility of SINGULAR, we 

asked whether we can determine drugs that can target 

the identified TF master regulators and key signaling 

molecules. For that, we collected all available drug-

target relationships in DrugBank and searched for 

drugs that could activate our master regulators or 

mimic the effect of rejuvenation interventions on key 

signaling molecules. For this purpose, we classified 

TFs as master regulators if they determine at least 30% 

of the network TFs when activated according to our 

simulation studies (see online Methods). Unsurprisingly, 

of the 239 transcriptional master regulators across all 

cell types, organs and interventions, only 17 could be 

activated by drugs (Figure 4D). Moreover, these TFs 

predominantly belong to the class of nuclear receptors, 

including Nr3c1, Vdr, Nr1i2, Rxra and Ar. However, 

notable exceptions are the AP-1 complex proteins  

Jun and Fos as well Trp53. These further underscores 

the suitability to interfere with the AP-1 complex to 
mimic the effect of complex interventions. In order  

to determine whether any of these drugs possess 

known rejuvenating effects, we cross-referenced them 

with DrugAge, a database of aging related drugs [38]. 

As a result, we found several compounds with 

demonstrated effects on lifespan in model organisms. 

For instance, Curcumin, a Vdr agonist, extends the 

maximum lifespan of D. melanogaster on average by 

19.5% at high concentrations and Vitamin D3 extends 

the average lifespan of C. elegans by 26.8% in a dose-

dependent manner. Moreover, Bezafibrate, a partial 

agonist of Nr1i2, has been shown to increase the 

average lifespan of C. elegans by 13%. In contrast to 

TFs, the differentially active key signaling molecules 

between treated and untreated conditions are generally 

better druggable (Figure 4E). In particular, the 

microglia specific key signaling molecules after 

parabiosis App and Mapk14 are targeted by 24 and 56 

drugs, respectively. However, none of the identified 

molecules target both genes. 

 

DISCUSSION 
 

In this study, we performed a unified analysis of 

different rejuvenation interventions, with the goal of 

leveraging network biology to provide a rigorous 

comparison of their effects and mediators at different 

scales of biological organization. In doing so, we 

uncovered several master regulators orchestrating the 

rejuvenation response, and compared their influence 

across different organs, experiments and cell types. 

 

Our approach successfully identified several previously 

known age-related TFs. For instance, we found Arntl to 

be a master regulator in rejuvenation, corroborating its 

earlier identification as the TF with the most significant 

age-related decline in activity in at least one prior 

analysis [12]. However, only three other matching TFs 

were identified, with the sign of TF activity changes 

varying substantially by cell type. This suggests notable 

differences between transcriptional changes associated 

with aging and the regulators of rejuvenation. It also 

uncovered previously undocumented mediators of 

rejuvenation interventions. Moreover, in cases where 

the transcriptional mediators are known, our analysis 

provides novel insights. For example, while the AP-1 

complex formed by Fos and Jun has been described  

to regulate diverse cell functions, and in particular  

the inflammaging response, our analysis further 

demonstrates that different subunits and cofactors  

serve as master regulators of the response to specific 

interventions. In light of our findings and a recent  

study that highlighted an up-regulation of the Jun-Fos 

dimer expression, which is accompanied by increasing 

inflammation, it is plausible that AP-1 dimers composed 

of other subunits are responsible for inducing anti- 
aging effects [24]. Indeed, although AP-1 binds to a 

palindromic DNA motif, its specificity is conveyed  

by the bZIP subunits [39]. However, directing the 
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dimerization as a potential therapeutic approach remains 

a challenge due to the heterogeneous involvement of 

subunits in different cell types. Moreover, transcription 

factors have long been considered “undruggable” and 

only incremental progress has been made, which 

aggravates the search for potential interventions that 

 

 
 

Figure 4. Mechanistic insights from a combined approach of all tools used by SINGULAR. (A) Recapitulation of well documented 

cell communication pathway for Macrophage recruitment under the Parabiosis condition. Ccr2 recognizes Ccl2, which initiates a signaling 
cascade to activate the AP-1 complex, which leads to the activation of chemotaxis genes. (B) Further validation of this well-known pathway 
from gene set Enrichment analysis of the members of the connected component of TRN and signaling cascade crosstalk for Gnai2 as a 
signalling intermediate and Fos, Jun and Cepbp as TRN TFs. Values have been averaged from several related functions, full results in 
Supplementary Table 4. (C) Novel signaling cascade. In Purkinje cells of the cerebellum, Fgf10 binds to Fgfr2, initiating a cascade in which 
Pkrca leads to the activation of Mapk1, which recruits Runx2 for further expression of the Fgfr2 receptor, as well as a separate Creppb-
mediated signaling cascade that ends with Tcf12 activating Pax6, a transcription factor known for its neuroprotective properties. 
(D) Intersection between druggable activating TFs in DrugBank and the master regulators uncovered in this study. (E) Number of druggable 
key signaling molecules for every integrated TRN and signalling cascade. 
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could be translated to the clinics [40]. Apart from the 

AP-1 complex, our analysis revealed the transcriptional 

stress response TFs NFE2L2 and MAF as master 

regulators of certain rejuvenation interventions in 

different cell types. Indeed, MAF and NFE2L2 have 

been shown to dimerize and regulate gene expression 

programs that protect against oxidative stress, which  

are lost with age [41]. Moreover, over-expressing MAF 

has been shown to rescue these protective expression 

programs and preserve fitness in an animal aging model 

[41]. Conversely, the reduced activity of NFE2L2 leads 

to increased cellular senescence and inflammation [42]. 

 

The application of current intervention strategies with 

the largest effects across tissues, i.e., heterochronic 

parabiosis and exercising, is impractical in humans. In 

contrast, our multiscale analysis pipeline sheds light on 

the regulatory mediators of their effects. This offers the 

unique opportunity to design new approaches that mimic 

or combine the effect of these complex interventions  

in the future. For instance, we showed that immune  

and skin cell types emerge as having common master 

regulators across interventions, which suggests them  

to be amenable targets for intervention. Intriguingly, 

these immune cells whose rejuvenation is hypothesized 

to lead to a significantly increased healthspan [43].  

As of today, immune system rejuvenation is mostly 

considered for individual cell types [43]. However, 

despite stark phenotypic differences of immune cell 

types, our analysis suggests that rejuvenation to the 

extent it is achieved in heterochronic parabiosis is 

possible by targeting a common set of regulators.  

In addition to mimicking the effects of complex 

interventions, our analysis also offers the potential  

to experimentally validate non-overlapping master 

regulators from different inferred gene regulatory 

networks for additive or even synergistic benefits. For 

instance, Ybx1, Klf4, Ets1 and Fos orchestrated the 

response of hepatocytes to exercising while in the case 

of parabiosis, Foxo3 appeared to be the sole master 

regulator. Due to the differences in the transcriptional 

response, the combined targeting of these TFs is 

expected to have synergistic effects. 

 

Despite the advantages of our unified analysis pipeline 

and the utility of SINGULAR we discussed before, our 

study has a few limitations. First, the comparisons of 

cell types across interventions suffers from potential 

biases due to the number of cells gathered for each cell 

type in each study. Although we did not observe any 

implications in the datasets we employed for this 

study, an empirical analysis of the employed tools 

suggests that small populations of cells (less than 50) 
typically result in a higher number of false positive 

interactions. Second, when interrogating the cell-cell 

communication network, we rely on ligand-receptor 

mediated interactions. It is well known that other 

communication channels, such as extracellular vesicles, 

contribute to the exchange of information between 

cells. However, incorporating this information requires 

targeted experimental assays, which are currently still 

not widely applied. Third, differential expression 

testing in sc-RNAseq data is always at risk of false 

negatives due to drop-outs [44], a concern particularly 

acute with genes with a generally low level of 

expression like TFs. We nevertheless take steps to 

mitigate the impact of this concern. For instance, we 

selected the DELegate method for differential gene 

expression tests (see Methods) and focused on TFs  

that consistently appear across organs, cell-types and 

interventions. Finally, caution is warranted when 

interpreting the results due to inherent differences in 

the coverage of organs. For instance, while the effect 

of metformin was assessed in the intestine, adipose 

tissue and muscle, only the intestine was profiled in 

case of rapamycin.  

 

Nevertheless, we believe that SINGULAR is of  

great utility for better understanding the mechanisms 

underlying different rejuvenation interventions and to 

identify novel rejuvenation agents by providing a 

comprehensive array of target genes in the pursuit of  

a holistic anti-aging strategy. 

 

METHODS 
 

Unified processing of the sc-RNAseq rejuvenation 

datasets 
 

Data analysis was done in Seurat version 4.3.0 

(R versions 4.2.3 and 4.3.0), following a unified, 

biologically informed approach in preprocessing similar 

to Subramanian et al. [45]. 

 

All datasets were processed from cellranger matrix, 

feature and barcodes when possible. The main exceptions 

were the second Parabiosis dataset [8], which was 

processed from FASTQ files with cellranger 6.1 with  

all argument set to default except an explicit call to –

include-introns to get processed cellranger files, and the 

second Reprogramming dataset [18], in which the raw 

count matrix after quality control offered by the authors 

was used for all downstream analyses, due to the 

unavailability of the VectorBuilder sequences necessary 

to build the raw count matrices from the raw reads. 

 

Every dataset was further processed with a unified 

preprocessing pipeline in which the median absolute 

deviation argument of the our filterCells function was  
set to 3 to filter outlying cells based on mitochondrial 

counts, ribosomal counts, number of features and number 

of counts, with the latter two further filtered based in a 
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linear model with the formula = log10(nFeature_RNA) ~ 

log10(nCount_RNA)) for unified quality control. 

 

Resulting Seurat objects were further normalized with the 

SCT transform function with the vars.to.regress argument 

with “C.C. difference” for cell cycle adjustment and 

vst.flavor set to “v2”. Doublets were removed using 

DoubletFinder version 2.0.3. Cell cycle scoring for 

adjustment relied on the cell marker database annotation 

retrieved from Ensembl and provided in the repository  

as a supplementary file. 

 

Integration of within-experiment sc-RNA seq datasets 

and removal of unwanted sources of variation 

 

Integration of the datasets was performed with 

SCTtransform [13] splitting every Seurat object by 

biological replicates of the same condition and sex (if 

any) sex (if only this was available) and condition in 

every case. rPCA dimensionality reduction was used 

together with the SCT normalization method. 

 

Clustering of sc-RNAseq data and cell type 

identification 

 

LSK and Skin in the second parabiosis dataset [8]  

were downsampled (keeping original files 1–4 for the 

former and 5–8 for the later) due to the full data  

causing extreme numbers of clusters with the Monocle3 

clustering function. 

 

Every other dataset was clustered in full after 

preprocessing with the cluster_cells argument of the 

Monocle3 library version 3.1, with 10 neighbors, leiden 

clustering, UMAP used for dimensionality reduction 

and iterating 5 over several orders of magnitude of the 

resolution parameter. Every iteration was scored with 

the Calinski-Harabasz Index and the clustering with the 

highest score kept, except if more than 30 clusters were 

detected after this optimizing process, in which case the 

partitions function of Monocle3 was used instead. 

 

Preliminary cell type assignments were done using 

SCINA 1.2.0, but this was substantially supplemented 

by manual annotation with the support of the literature, 

the cell marker database and the panglao database of 

single-cell gene markers, as well as support from the 

markers provided by the original authors of each study, 

if it was provided. 

 

Differential gene expression test for sc-RNAseq data 

 

Differential gene expression analysis was in every case 
performed using the DElegate R package version 1.10 

(https://github.com/cancerbits/DElegate) a wrapper to 

use the DESeq-2 differential gene expression analysis 

assigning cells to pseudo-replicates. This choice stems 

from its positive benchmarking against other methods in 

the metrics of precision, sensitivity and false discovery 

rate [46]. Moreover, random assignment of pseudo-

replicates for pseudo-bulk analyses is the best option to 

mitigate the concern of drop-outs that is always present 

in scRNA-seq data. Final results were filtered to only 

keep those cases when the average log fold change in 

gene expression had an absolute value greater than 0.25 

or the gene was seen in more than 10% of the cells in 

that cell type for both conditions. When more than one 

control condition was provided (such as isochronic 

parabiosis and old untreated) both were taken as the 

comparison group against the rejuvenation intervention. 

Comparisons were always made against the old 

condition, dropping the young data, if any, from further 

analysis, even if they were used during the integration. 

 

Gene set enrichment analysis  

 

Analysis of enriched gene ontology functions and KEGG 

pathways was realized with package WebGestaltR 

version 0.4.4 and the ORA (overrepresentation analysis) 

method. Differentially expressed genes at the p-value 

adjust < 0.05 significance level were used as a query, 

while all the genes in the original count matrix (i.e., the 

RNA assay Seurat object rownames) were used as 

background. As illustrated in the attached repository, the 

remaining arguments were overrepresentation analysis, 

false discovery rate corrected with the Benjamini-

Hochberg with a threshold of 0.05. 

 

Strategy to identify cell-type specific transcriptional 

master regulators 

 

Inference of the master regulators uncovered in this 

study was done using R library GRNOpt, developed for 

a previous manuscript [15]. Differential gene expression 

results were booleanized by setting the log fold changes 

in the rejuvenation condition filtered as described above 

to 1 if they were positive and to 0 if they were negative. 

The inhibition dominance logic rule was used for 

building the transcriptional regulator networks with the 

prune gurobi function. This method has been utilized  

in prior studies to investigate cell state transitions, 

especially in the context of stem cell differentiation. 

Indeed, this approach is specifically designed to identify 

master regulators that orchestrate transcriptional shifts 

responsible for initiating and maintaining changes over 

time [47]. 

 

Every TF in a gene regulatory network was scored by 

exploring the consequences of initiating the state of 
every element in the network to undetermined and 

examining the consequences of activating each TF with 

a depth-first search algorithm. The fraction of the final 
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state of the network (as described by the booleanized 

gene expression) that matched all the downstream 

changes due to this activation was then the TF score, 

implementing the same inhibition dominance logic rule 

that is used during the creation of gene regulatory 

network, in which any number of inhibitory relationships 

takes precedence (i.e., sets the state to ‘inhibited’) over 

any number of activating relationships. In this way, a 

TF in a completely hierarchical connected relationship 

to the rest of the network that could explain its entire 

state by being activated would get a score of 1.0, while 

sparse networks in which not all the elements are 

connected will always get a fractional score, an end 

node that was only scored based on predicting its own 

state would get a score of 1/(N), where N is the size of 

the network, and an inhibited gene in the booleanized 

gene expression would get a score of 0, being unable to 

explain its own state relative to the differential gene 

expression if activated. 

 
The TF-regulon interactions database from  

CollecTRI [48] was used as a previous knowledge 

network. This previous knowledge network was  

retrieved using the omnipath python library with  

the omnipath.constants.InteractionDataset. COLLECTRI 

function with the 10090 argument (to get the interactions 

collected for mouse). Conversion of Protein IDs to gene 

symbols was performed with the getBM argument of 

biomart, with rows with non-matching NA values and 

those where the consensus stimulation and consensus 

inhibition entries were not opposites filtered out. Finally, 

for the Calorie Restriction study (performed on Rattus 
norvegicus) a further conversion of the mice previous 

knowledge network developed as described above was 

performed, from the mouse to the rat orthologs, using the 

“https://dec2021.archive.ensembl.org/” Esembl mirror 

during the call to the getLDS function. 

 
Endpoint previous knowledge networks for mice and rat 

are provided in the repository. 

 
Finally, during the development of the gene regulatory 

network, duplicate interactions and values in the TF 

“from” column that were not transcription factors were 

filtered out, both for the previous knowledge network 

and the booleanized differential gene expression input. 

 
Discovery of stable signaling networks and signaling 

hotspots from sc-RNAseq data 

 
For the cell communication results, we used 

Sighostpotter (https://gitlab.com/srikanth.ravichandran/ 

sigHotSpotter) with a custom modification in the 
for_plotting_networks_functions.R function .trimResults. 

Lines 56 and 61 were replaced with res_trimmed <- 

res_trimmed(res_trimmed(,2)>0.7,) and res_trimmed <- 

res_trimmed(res_trimmed(,2)<0.3,) respectively, to 

facilitate downstream analysis. Everything else was as 

seen in the repository and the modified version is 

provided with the main repository for a custom install. 
 

sigHotSpotter was selected for its ability to model both 

canonical and non-canonical signaling networks, which 

generate locally stable configurations. This modeling 

approach is ideal for studying the sustained, long-term 

changes involved in both aging and rejuvenation inter-

ventions. Moreover, sigHotSpotter identifies ‘hotspots’ 

in the cascade that sustain the new cell state. 
 

Results were analyzed with the sigHotSpotter pipeline 

function with cutoff value set to 30, percentile set to 70, 

and the RNA assay counts as input matrix. 
 

Signaling networks were kept after following two 

conditions. First, both the rejuvenation intervention and 

the control condition needed to have a non-NA results. 

Then, only signaling networks where the signaling 

intermediate was activated in one condition and 

inhibited in another (activation defined as a final score 

above 0.70, and inhibition as a value below 0.30,  

NA entries included) and present in the rejuvenation 

intervention were kept for downstream analysis. 
 

Cross-talk between TRNs and signalling networks 
 

To identify the cross talk between the master regulator 

transcriptional networks and the Sighostpotter results, 

filtered SigHotSpotter results were subset by signaling 

intermediate and the networks in which the same 

transcription factor shared a node with outgoing 

relationships both in the TRN and the SigHotSpotter 

edges object from column were concatenated to compute 

the connected components using igraph’s components 

function with the mode “weak” argument. If there was  

a single component, the elements of the entire shared 

network were taken, while if there was more than  

one, only the connected component with the signaling 

intermediate was used for downstream analysis. 
 

The elements of this combined network were then queried 

for Gene Set Enrichment Analysis with the WebGestaltR 

library (version 0.4.4) using the online enrich method 

GSEA and three further queries from the Molecular 

Signatures Database retrieved at https://www.gsea-

msigdb.org/gsea/msigdb. In particular, the M2 curated 

gene sets, M8 cell type signature gene sets and M5 

ontology gene sets were used. 
 

Cell to cell communication analysis in sc-RNA seq 

data 
 

Intercom was used to model the communication 

between cells as it pertains to those events that are only 

12179

https://dec2021.archive.ensembl.org/
https://gitlab.com/srikanth.ravichandran/sigHotSpotter
https://gitlab.com/srikanth.ravichandran/sigHotSpotter
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb


www.aging-us.com 13 AGING 

seen in treated rejuvenation conditions. For a complete 

description of how the tool works, we refer to the 

original work that introduced Intercom [17] but we offer 

a summarized version as follows: 

 
As a preliminary step, InterCom generates a scaffold  

of experimentally validated receptor-ligand cell-cell 

interactions, later integrated with intracellular signaling 

networks and gene regulatory interactions. For ligand-

receptor interactions, a previously curated database [49] 

had the extent of its relationship narrowed down to only 

those ligands annotated as ‘Secreted’ in Uniprot. 

 
For the intracellular signaling network scaffold, inter-

actions from databases both publicly available (Omnipath, 

Reactome) and with limited access (MetaCore from 

Thomson Reuters) were collected, choosing those 

related to signal transmission (phosphorylation and 

ubiquitination events). For transcriptional regulator 

interactions, we again used Metacore, keeping only 

direct interactions that were known to entail activation or 

inhibition. These three elements compose the scaffold. 

 
Regarding the analysis of the provided data, InterCom 

calculates an interaction score for each potential cell–cell 

interaction by multiplying the average receptor expression 

and average ligand expression in all cells of a population 

expressing the receptor or ligand, respectively.  

 
The significance of these scores is then assessed  

by comparing the scores of all potential cell–cell 

interactions contained in the scaffold between the two 

interacting cell types. Interactions with scores in the  

top decile are considered significant and are the focus  

of our analysis. 

 
As it pertains to specific parameters in our analysis, 

Intercom analysis was performed taking the SCT 

integration counts as an input matrix and with the 

sigcutoff and z.score.cutoff parameters set to 0. Every 

other argument was left as default.  

 
Results were further filtered to keep only the 

interactions unique to the rejuvenation intervention and 

with a significance score above 0.90, to keep the top 

decile as usual, as described above. 

 

Assessing the effect of MR perturbation on cellular age 

 

To validate the discovered master regulators, we carried 

out a search of perturbation data the Gene Expression 

Omnibus (GEO), using ‘knockdown’, ‘knock-out', 

‘shRNA’ ‘overexpression’ and ‘knock-in’ as keywords 

and selecting as ‘Study Type’ both ‘high throughput 

sequencing’ and ‘expression profiling by array. In 

addition, in order to keep comparisons informative, we 

selected datasets that meet the following criteria: (1) The 

relevant master regulator is perturbed. (2) This master 

regulator is the only gene perturbed in the experiment.  

(3) The study does not involve cancer, embryonic, or 

similarly altered cell lines that would confound the 

transcriptional age estimation. (4) The master regulator is 

found in our single-cell data at least once in a closely 

similar cell type to the one used in the bulk experiment.  
 

All datasets that met these selection criteria and 

included both control and perturbed data were used as 

input for MultiTIMER [28], a transcriptional age clock 

able to generate predictions for any tissue. Identifiers as 

well as the difference in predicted age can be seen in 

Supplementary Table 3. Master regulators shown in 

Figure 2D that are not listed in Supplementary Table 3 

either lacked perturbation data or did not meet the 

specified criteria described above. 
 

Expression data were converted into log2 of the rank  

of the gene expression and further subset to the 

intersection of genes present in all datasets before 

comparing the difference in predicted biological age 

between experimental data and controls. 
 

Data availability 
 

The following publicly available datasets were used in 

the analysis of this study: GEO Accession numbers 

GSE137869 (Calorie Restriction), GSE176206 and 

GSE144600 (Reprogramming), GSE193093 and 

GSE222510 (Parabiosis) as well as GSA CRA004660 

(Parabiosis) and CRA007207 (Exercise). 
 

Code for the processing pipeline and auxiliary functions 

in the workflow is available at https://github.com/ 

jarcoshodar/singularsource. 
 

SINGULAR is available as a publicly available interactive 

database at https://singular.lcsb.uni.lu/. Source code for a 

local install and exploration of the data is available at 

https://git-r3lab.uni.lu/mohamed.soudy/singular. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Each bar represents, for a given intervention, the average size of the old versus young differential 
gene expression set across organs and cell types. This is further categorized into two types of genes in the intersection between 

genes seen in old versus young and rejuvenated versus old untreated: those where the sign of the change is different (‘rescued’) and those 
where the sign remains the same (‘not rescued’). Given the sum of the rescued and not rescued fraction entails the genes for which we 
have information to compare, it is remarkable that with some heterogeneity, a very big fraction of the genes is rescued, meaning their 
expression state is successfully changed toward the state seen in young individuals. The noticeable exception is Metformin. Abbreviations: 
CR: Calorie Restriction; Ex: Exercise; Met: Metformin; Par: Parabiosis2; Rap: Rapamycin; Rep: Reprogramming2. 
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Supplementary Figure 2. (A) Heatmap of different TF scores for the Adipocyte celltype group. A shared Clock-Arntl mediated response 

can be seen twice the Exercise condition, but the downstream factors of this regulation change. (Values with no row with a value greater 
than .30 omitted). (B) Example of a highly dense network for two Basal cell types of the Skin. Srf, Cepbp Jun and Atf4 act in coordination in 
both cases, but the regulatory pathway downstream of that is almost entirely non-overlapping, and involves several transcription factors 
regulating each other. (Rows with no value greater than .30 omitted). (C) Different and shared rejuvenation factors, as well as less dense 
networks, after maturation of Granulocytes in the Parabiosis condition. (Rows with no value greater than .30 omitted). (D) Shared and 
distinct master regulators across and between interventions in Hepatocytes. (Rows with no value greater than .50 omitted). While Ybx1, 
Klf4, Ets1and Fos share a role in the rejuvenation response in both the Exercise and the Calorie Restriction conditions, two different 
datasets replicate involvement of Foxo3 instead in Parabiosis. This is an example of two candidate non-overlapping targets that could be 
investigated for additive or even synergistic rejuvenation benefits. 
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Supplementary Figure 3. Gene set enrichment analysis of genes belonging to selected signaling cascades in (A) Lung B cells after 
exercise, (B) Muscle stem cells after partial reprogramming, (C) Bone marrow neutrophils after parabiosis and (D) Peripheral blood T cells 
after parabiosis. 
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Supplementary Tables 
 

Supplementary Table 1. GEO and GSA accession numbers of datasets used in this study. 

Dataset Accession number 

Calorie Restriction GSE137869 

Exercise CRA007207 

Metformin GSE194386 

Parabiosis1 GSE193093 

Parabiosis2 CRA004660 

Parabiosis3 GSE222510 

Rapamycin/Metformin GSE210669 

Reprogramming GSE144600 

Reprogramming2 GSE176206 

 

 

Supplementary Table 2. Mapping of gene set names (column “Long name”) to their corresponding abbreviation 
(column “Short name”). 

Long name Short name 

TABULA_MURIS_SENIS_LUNG_B_CELL_AGEING Bcell aging 

TABULA_MURIS_SENIS_HEART_AND_AORTA_FIBROBLAST_OF_CARDIAC_ 
TISSUE_AGEING 

Cardiac aging 

TABULA_MURIS_SENIS_SPLEEN_PROERYTHROBLAST_AGEING Proerythroblast aging 

TABULA_MURIS_SENIS_MARROW_PRECURSOR_B_CELL_AGEING Hsc Bell aging 

TABULA_MURIS_SENIS_KIDNEY_KIDNEY_LOOP_OF_HENLE_THICK_ 
ASCENDING_LIMB_EPITHELIAL_CELL_AGEING 

Kidney aging 

TABULA_MURIS_SENIS_MARROW_HEMATOPOIETIC_PRECURSOR_CELL_ 
AGEING 

Bm precursor aging 

TABULA_MURIS_SENIS_MAMMARY_GLAND_STROMAL_CELL_AGEING Stromal aging 

TABULA_MURIS_SENIS_MAMMARY_GLAND_BASAL_CELL_AGEING Basal cell aging 

TABULA_MURIS_SENIS_MAMMARY_GLAND_LUMINAL_EPITHELIAL_ 
CELL_OF_MAMMARY_GLAND_AGEING 

Epithelial aging 

TABULA_MURIS_SENIS_BRAIN_NON_MYELOID_NEURON_AGEING Neuron aging 

TABULA_MURIS_SENIS_GONADAL_ADIPOSE_TISSUE_MYELOID_CELL_ 
AGEING 

Myeloid aging 

TABULA_MURIS_SENIS_MAMMARY_GLAND_T_CELL_AGEING Tcell aging 

TABULA_MURIS_SENIS_LIMB_MUSCLE_MESENCHYMAL_STEM_CELL_ 
AGEING 

Mesenchymal aging 

TABULA_MURIS_SENIS_SKIN_BULGE_KERATINOCYTE_AGEING Skin aging 

TABULA_MURIS_SENIS_BRAIN_MYELOID_MACROPHAGE_AGEING Macrophage aging 

TABULA_MURIS_SENIS_SPLEEN_MATURE_NK_T_CELL_AGEING Nkcell aging 

TABULA_MURIS_SENIS_MARROW_NAIVE_B_CELL_AGEING Bm Bcell aging 

TABULA_MURIS_SENIS_LUNG_NON_CLASSICAL_MONOCYTE_AGEING Monocyte aging 

TABULA_MURIS_SENIS_GONADAL_ADIPOSE_TISSUE_MESENCHYMAL_ 
STEM_CELL_OF_ADIPOSE_AGEING 

AdiMes aging 

TABULA_MURIS_SENIS_SPLEEN_T_CELL_AGEING SpleenTc aging 

TABULA_MURIS_SENIS_HEART_ATRIAL_MYOCYTE_AGEING Myocyte aging 

TABULA_MURIS_SENIS_THYMUS_THYMOCYTE_AGEING Thymus Tc Aaging 
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TABULA_MURIS_SENIS_LARGE_INTESTINE_LARGE_INTESTINE_GOBLET_ 
CELL_AGEING 

Goblet aging 

TABULA_MURIS_SENIS_SPLEEN_PROERYTHROBLAST_AGEING Eryth Spleen aging 

TABULA_MURIS_SENIS_LUNG_B_CELL_AGEING Lung Bc aging 

TABULA_MURIS_SENIS_LUNG_B_CELL_AGEING LungBc aging 

TABULA_MURIS_SENIS_SPLEEN_MACROPHAGE_AGEING Spleen Mcr Aging 

TABULA_MURIS_SENIS_SPLEEN_GRANULOCYTE_AGEING Spleen Gran Aging 

TABULA_MURIS_SENIS_LUNG_INTERMEDIATE_MONOCYTE_AGEING Lung Mon Aging 

TABULA_MURIS_SENIS_SPLEEN_B_CELL_AGEING Spleen Bc Aging 

 

 

Supplementary Table 3. Average age predictions from MultiTimer after mock treatment (column 
“Control_Avg_Age”) or TF inhibition or upregulation (column “Experimental_Avg_Age”). Positive and negative 
age differences (Age_Difference) correspond to a pro- and anti-aging effect, respectively. 

GSE Series CellType Method Gene Control_Avg_Age 
Experimental_ 

Avg_Age 
Age_Difference 

GSE114284 BEAS-2B ko IRF1 + IFNB 30.4647042486172 34.3877386364404 3.92303438782321 

GSE140026 M0 Macrophages ko ATF4 29.1668560993142 27.4402233049184 −1.7266327943958 

GSE140026 M1 Macrophages ko ATF4 59.5196662856039 57.7682136158112 −1.75145266979273 

GSE140026 M2 Macrophages ko ATF4 50.9511918034666 48.4115306709847 −2.53966113248191 

GSE140990 NHK siRNA KLF4 32.7457159077375 41.8536621191276 9.10794621139004 

GSE56989 
Primary human 
macrophages 

siRNA HIF1A 42.2828591457769 44.9064838639297 2.62362471815279 

GSE73550 
Endometrial 
stromal cells 

siRNA ESR1 29.9029503299127 27.8938114659652 −2.00913886394748 

GSE90982 HUVECs 
knockin/ 
upregulate 

KLF4 33.6684708599789 35.3380624939053 1.66959163392637 

GSE106502 MCF10A 
knockin/ 
upregulate 

MYC 41.4889946189905 31.7056828632328 −9.78331175575767 

 

 
Supplementary Table 4. Gene set enrichment results for the signaling cascade including the intermediate Gnai2 
and master regulators Fos and Cebpb in bone marrow macrophages after parabiosis treatment. 

geneSet 
Normalized 
EnrichmentScore 

FDR size userId 
Set collection 
origin 

Spleen 
Proerythroblast 
Ageing 

−1.89681927021782 0.0480488114910385 19 

Atf4;Bsg;Cdk4;Cited2;Emd;Ga
pdh;Hmgb1;Hsp90aa1;Hspa5;L
dha;Pgk1;Prdx3;Rbbp7;Sdhb;S
od1;Stmn1;Top1;Tuba1b;U2af1 

Cell type 
signature 

Marrow Precursor B 
Cell Ageing 

−1.83316975080196 0.0468624210838524 6 
Akr1a1;Bsg;Fth1;Gapdh;Hmgb
1;Sdhb 

Cell type 
signature 

nucleoside 
monophosphate 
metabolic process 

−2.13758989447581 0.0084662592850568 5 Hif1a;Hspa8;Ldha;Pgk1;Stat3 
GO 
enrichment 

purine nucleoside 
monophosphate 
metabolic process 

−2.13758989447581 0.0084662592850568 5 Hif1a;Hspa8;Ldha;Pgk1;Stat3 
GO 
enrichment 

nucleoside 
triphosphate 
metabolic process 

−2.13758989447581 0.0084662592850568 5 Hif1a;Hspa8;Ldha;Pgk1;Stat3 
GO 
enrichment 
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purine nucleoside 
triphosphate 
metabolic process 

−2.13758989447581 0.0084662592850568 5 Hif1a;Hspa8;Ldha;Pgk1;Stat3 
GO 
enrichment 

ribonucleoside 
monophosphate 
metabolic process 

−2.13758989447581 0.0084662592850568 5 Hif1a;Hspa8;Ldha;Pgk1;Stat3 
GO 
enrichment 

purine ribonucleoside 
monophosphate 
metabolic process 

−2.13758989447581 0.0084662592850568 5 Hif1a;Hspa8;Ldha;Pgk1;Stat3 
GO 
enrichment 

ribonucleoside 
triphosphate 
metabolic process 

−2.13758989447581 0.0084662592850568 5 Hif1a;Hspa8;Ldha;Pgk1;Stat3 
GO 
enrichment 

purine ribonucleoside 
triphosphate 
metabolic process 

−2.13758989447581 0.0084662592850568 5 Hif1a;Hspa8;Ldha;Pgk1;Stat3 
GO 
enrichment 

ATP metabolic 
process 

−2.13758989447581 0.0084662592850568 5 Hif1a;Hspa8;Ldha;Pgk1;Stat3 
GO 
enrichment 

HALLMARK_OXID
ATIVE_PHOSPHOR
YLATION 

−1.95707927282095 0.021953896816685 6 
Atp6ap1;Cox17;Dlst;Ldha;Prdx
3;Sdhb 

Hallmark 
gene sets 

WP_NUCLEAR_RE
CEPTORS 

1.74347968154799 0.0457183805087782 5 Nr1d2;Nr4a1;Nr4a2;Rora Wikipathways 

regulation of 
chemotaxis 

1.83367371500472 0.0328649544320262 9 Ccl4;Dusp1;Il1b;Vegfa 
GO 
enrichment 

regulation of 
leukocyte chemotaxis 

1.8567723688262 0.0242731163447965 8 Ccl4;Dusp1;Il1b;Vegfa 
GO 
enrichment 

granulocyte migration 1.883399693367 0.0142310469350107 9 Ccl4;Cxcl2;Il1b;Vegfa 
GO 
enrichment 

granulocyte 
chemotaxis 

1.883399693367 0.0142310469350107 9 Ccl4;Cxcl2;Il1b;Vegfa 
GO 
enrichment 

leukocyte migration 1.92899710894569 0.00678761916024705 11 Ccl4;Cxcl2;Dusp1;Il1b;Vegfa 
GO 
enrichment 

regulation of 
signaling receptor 
activity 

1.95289017271554 0.00430374403276534 8 Ccl4;Cxcl2;Il1b;Osm;Vegfa 
GO 
enrichment 

taxis 1.971841009153 0.00247895656287284 16 
Ccl4;Cxcl2;Dusp1;Il1b;Nr4a1;
Nr4a3;Vegfa 

GO 
enrichment 

leukocyte chemotaxis 1.98973358621909 0.0025822464196592 10 Ccl4;Cxcl2;Dusp1;Il1b;Vegfa 
GO 
enrichment 

myeloid leukocyte 
migration 

1.98973358621909 0.0025822464196592 10 Ccl4;Cxcl2;Dusp1;Il1b;Vegfa 
GO 
enrichment 

cell chemotaxis 1.99034656241804 0.00516449283931841 11 
Ccl4;Cxcl2;Dusp1;Il1b;Nr4a1;
Vegfa 

GO 
enrichment 

chemotaxis 2.00570057656868 0.00619739140718209 15 
Ccl4;Cxcl2;Dusp1;Il1b;Nr4a1;
Nr4a3;Vegfa 

GO 
enrichment 
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