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INTRODUCTION 
 

Bladder cancer (BLCA) is among the most common 

genitourinary malignancies with high morbidity and 

mortality. In 2023, it is estimated to account for  

82,290 new cases and 16,710 deaths, constituting 2.7%  

of all cancer-related fatalities in the United States  

[1]. New immunotherapies utilizing immune checkpoint 

blockade (ICB), such as monoclonal antibodies targeting 

programmed death-1 (PD-1) and programmed death 

ligand-1 (PD-L1), have shown promise in BLCA 

treatment [2]. However, ICB has demonstrated limited 

success in BLCA, except for specific molecular subtypes 

with exceptional immunogenicity [3]. Additionally, the 

efficacy of ICB has reached a plateau, with the proportion 

of patients exhibiting durable clinical benefit showing  

no significant change over the years [4]. Therefore, it  

is crucial to identify additional prognostic markers or 

immune-enhancing strategies that could enhance the 

efficacy of this immune-stimulating treatment. 

 

The circadian rhythm serves as a central regulator 

governing the essential activities of the body. 

Epidemiological and experimental evidences indicate that 
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ABSTRACT 
 

Circadian rhythm disruption impacts the efficiency of both chemotherapy and immunotherapy, yet identifying the 
key factors involved remains challenging. Circadian rhythm disruption can trigger aberrant fibroblasts activation, 
suggesting potential roles of cancer-associated fibroblasts (CAFs) in addressing this issue. In this paper, TCGA-BLCA 
patients were classified into two subgroups based on the expression of core circadian rhythm genes (CCRGs). The 
CCRG-based subgroups showed distinct fibroblast-related signals, from which a risk model composed of five 
fibroblast-related genes was finally established with excellent survival prognostic value in both TCGA and GEO 
datasets. The risk model was positively associated with the infiltration of CAFs and can efficiently predict the 
immunotherapy response in BLCA. Besides, high-risk score was associated with reduced sensitivity to a majority of 
traditional chemotherapeutic drugs such as oxaliplatin and gemcitabine. Further, the correlation between CCRGs 
and the risk genes was analyzed. Among the five risk genes, FAM20C displayed the most extensive correlation with 
the CCRGs and exhibited the strongest connection with CAFs infiltration. Moreover, FAM20C independently served 
as a predictor for the response to immunotherapy in BLCA. In conclusion, this study has identified a circadian-based 
signature for evaluating CAFs infiltration and predicting the efficacy of chemotherapy and immunotherapy. The 
central gene FAM20C has emerged as a promising candidate which merits further investigations. 
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disruption of circadian rhythm facilitates tumor initiation 

and progression [5]. Conversely, reinforcement of 

biological rhythms may hinder cancer progression and 

reduce recurrence [5]. Many fundamental physiology 

aspects, including the immune system, are governed  

by circadian rhythms. The circadian rhythm regulates 

immune cell homing, migration and hence plays critical 

roles in adaptive immune responses [6]. Therefore,  

the circadian rhythm has long been pursued to  

enhance the outcomes of cancer treatment. Intriguingly,  

non-pharmaceutical interventions involving circadian-

compliant timing of ICB administration have been 

associated with improved outcomes [4]. A study 

involving 146 patients with advanced melanoma revealed 

that ICB infusions administrated after 4:30 pm were 

associated with shorter overall survival, highlighting the 

advantages of morning over evening administration [7]. 

Similar findings were observed in a study on metastatic 

non-small cell lung cancer, demonstrating a remarkable 

four to five-fold increase in efficacy with morning  

ICB administration [8]. Therefore, the circadian rhythm 

presents a promising target for improving the efficiency  

of cancer therapy. However, due to the widespread impact 

or foundations of circadian rhythms, identifying the 

critical cues involved remains challenging. 

 

Cancer-associated fibroblasts (CAFs) are the main 

stromal cells in tumor microenvironment (TME) that 

are integral to cancer malignant progression [9].  

The functions of CAFs encompass a wide spectrum, 

including matrix deposition and remodeling, reciprocal 

signaling interactions with cancer cells, as well as 

crosstalk with infiltrating leukocytes. This makes them 

a potential target for optimizing therapeutic strategies 

against cancer [10]. Accumulating evidences indicate 

that circadian rhythm disruption leads to abnormal 

activation of fibroblasts and eventually resulting in 

fibrosis in various organs [11, 12]. In the context of 

CAFs, disruption of the circadian rhythm by genetic 

deletion method in mouse can promote transition of 

CAFs into myofibroblasts, thus exacerbating fibrotic 

phenotype and metastasis in various tumors [13]. 

Conversely, CAFs also have potential to regulate the 

circadian rhythm in tumor cells. Co-culture with CAFs 

can modify the oscillated expression of the circadian 

proteins in cancer cells [14]. Therefore, circadian 

rhythm disorder is closely related to the activation and 

function of fibroblasts, forming a mutually reinforcing 

process that promotes the malignant phenotype of 

tumors. 

 

Hence, the purpose of this study was to develop a 

fibroblast-related signature based on the dysregulated 
circadian rhythm genes to predict prognosis and 

characterize the immune landscape of BLCA patients. 

In addition, the correlation between the circadian 

rhythm genes and the signature genes were analyzed to 

explore the possible regulatory networks. 

 

MATERIALS AND METHODS 
 

Data acquisition and processing 

 

The bulk RNA-sequencing (RNA-Seq) data along with 

clinical information were retrieved from the TCGA-

BLCA database (https://portal.gdc.cancer.gov). The 24 

core circadian rhythm genes (CCRGs), namely ARNTL, 

ARNTL2, CLOCK, CRY1, CRY2, PER1, PER2, PER3, 

TIMELESS, BHLHE41, BHLHE40, CSNK1D, CSNK1E, 

DBP, FBXL3, HLF, NFIL3, NPAS2, NR1D1, NR1D2, 
RORA, RORB, RORC, and TEF, were sourced from 

previously published literature [15, 16]. Different 

expression of these genes between normal and tumor 

bladder tissue was analyzed using the “edgeR” package, 

with thresholds set at |log2FC| > 1.0 and p < 0.05.  

 

Furthermore, the RNA expression data of BLCA, 

including GSE32894 (308 urothelial carcinomas), 

GSE13507 (165 primary bladder cancer patients), 

GSE149582 (12 de novo muscle-invasive bladder 

cancer and 14 progressive muscle-invasive bladder 

cancer samples), GSE128192 (28 cases of sarcomatoid 

carcinomas and 84 cases of conventional urothelial 

carcinomas), and the immunotherapy data GSE67501 

(11 renal cell carcinoma samples from patients 

receiving anti-PD-1 immunotherapy), GSE78220 (28 

melanoma samples from patients receiving anti-PD-1 

immunotherapy), GSE35640 (65 melanoma samples 

from patients receiving MAGE-A3 immunotherapy), 

were obtained from the Gene Expression Omnibus 

(GEO) database. The BLCA immunotherapy data 

IMvigor210 (298 metastatic urothelial cancer samples 

from patients receiving PD-L1 blockade immunotherapy) 

study were acquired from the website (http://research-

pub.gene.com/IMvigor210CoreBiologies/). 

 

BLCA subtype classification  

 

The differentially expressed CCRGs between low-  

and high-stage of BLCA were utilized to subtype 

patients through the unsupervised clustering analysis 

using the “ConsensusClusterPlus”R package. The K-

means clustering algorithm was used to identify stable 

circadian-based subgroups within BLCA. Since k = 2  

is sufficient for well-separated subgroups, the patients 

were separated into subgroup 1 and subgroup 2 (C1 and 

C2). Subsequently, differentially expressed genes 

(DEGs) between the circadian-based subgroups were 

analyzed using the “edgeR” package, with thresholds 
set at |log2FC| > 1.0 and FDR < 0.01. Then, Gene 

Ontology (GO) enrichment analysis and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 
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analysis were performed using the “clusterProfiler” R 

package to uncover the functional roles of the DEGs 

between the C1 and C2 rhythm-related subgroups. 

 

Construction and validation of risk model  

 

DEGs between the circadian-based subgroups implicated 

in the fibroblast-related signals were subjected to 

univariate Cox regression analysis to identify prognostic 

genes. Subsequently, the selected genes underwent 

further screening via Lasso and multivariate Cox 

regression analysis to establish a prognostic model. 

 

To validate the risk model, patients were categorized 

into high- and low-risk groups based on the median risk 

score. The overall survival (OS) was then compared 

between the two groups using the “survminer” R 

package. The prediction accuracy of the signature was 

assessed by constructing a time-dependent receiver 

operating characteristic (ROC) curve using the 

“survival” R package. Additionally, “FactoMineR” 

package was used to perform principal component 

analysis (PCA). Furthermore, a nomogram, integrating 

clinical characteristics and the risk score, was created 

using the “rms” R package to estimate the probability  

of OS in BLCA at 1, 3, and 5 years. 

 

Gene set enrichment analysis (GSEA) of the risk 

model 

 

GSEA analysis between the high- and low-risk groups 

was carried out using the GSEA 4.3.2 software. 

Discrepancies in pathways were analyzed using the 

Canonical Pathways gene sets (CP) which derived from 

the KEGG, Pathway Interaction Database (PID) and 

Reactome pathway databases. Variations in cell types 

were analyzed using the Curated Cancer Cell Atlas 

(3CA) metaprograms gene sets which consist of genes 

that are coordinately upregulated in subpopulations  

of cells within tumor [17], as well as the Cell Type 

Signature gene sets containing curated cluster markers 

for cell types identified in single-cell sequencing studies. 

Furthermore, specific genes were analyzed using the 

Oncogenic Signature gene sets and Transcription Factor 

Targets gene sets (TFT) [18, 19]. 

 

Tumor stromal score and immune landscape 

evaluation  

 

The stromal score and immune landscapes of TCGA-

BLCA were assessed using a variety of algorithms, 

including the ESTIMATE [20], CIBERSORT [21], EPIC 

[22], XCELLp [23], MCPCounter [24], QUANTISEQ 
[25] and TIMER [26]. Additionally, Tumor Immune 

Dysfunction and Exclusion (TIDE) scores of TCGA-

BLCA were downloaded from the official website 

http://tide.dfci.harvard.edu/download/. Differences of the 

stromal score, immune landscapes and checkpoint genes 

expression between the high- and low-risk groups were 

analyzed by the “limma” R package. 

 

Drug sensitivity prediction 

 

The Genomics of Drug Sensitivity in Cancer 2 (GDSC2) 

database were downloaded from the GDSC website 

(https://www.cancerrxgene.org/). Drug sensitivity of each 

BLCA patient was estimated using the “oncoPredict” R 

package [27]. The “oncoPredict” algorithm used the 

GDSC2 expression matrix and drug response data as 

training data to compute the inhibitory concentration 

(IC50) value for 198 chemotherapeutic agents, based on 

the RNA expression data from the samples provided by 

the users. 

 

Bioinformatic platforms  

 

The mutation and CNV alteration patterns of the 24  

core CCRGs in the TCGA-BLCA were analyzed via  

the cBioPortal platform (https://www.cbioportal.org). 

Correlation of FAM20C, TBX1 with exhausted T-cell  

and effector Treg cells was analyzed using the GEPIA2 

(http://gepia2.cancer-pku.cn). The correlated expression 

as well as the Kaplan-Meier curves of FAM20C, TBX1 

gene with CAFs were analyzed through the TIMER2 

(http://timer.comp-genomics.org/timer/). The correlation 

of FAM20C mRNA expression with OS in BLCA patients 

(including bladder [28, 29] and urothelial cancers [30] 

receiving ICB immunotherapy) was analyzed through the 

Kaplan-Meier plotter (https://kmplot.com).  

 

Statistical analysis 

 

R software version 4.2.2 (R Foundation for Statistical 

Computing, Vienna, Austria) (http://www.R-project.org) 

was used for data analysis. Continuous variables were 

presented as mean ± standard deviations and compared 

through Wilcoxon test. Cox proportional hazard model 

was applied to the independent prognostic factors 

analysis. Violin diagrams and boxplots were drawn by  

the “ggplot2” and “ggpubr” R packages. The correlated 

expression of the risk genes with the CCRGs was 

analyzed by the “corrplot” R packages. Statistical 

significance is defined as *p < 0.05, **p < 0.01, and ***p 

< 0.001. 

 

RESULTS 
 

Dysregulation of circadian rhythm genes in BLCA 

tissues 

 

The mutation rate of most CCRGs in bladder cancer 

tissues was less than 2%. Likewise, the frequency of 
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copy number variation (CNV) alterations is also low, 

with the majority being lower than 4% (Supplementary 

Figure 1). Given the low frequent genetic alterations, 

our focus shifted to the differentially expressed 

mRNA. Among the 24 CCRGs, three genes were 

found to be up-regulated and five genes were down-

regulated in tumors compared to normal tissues 

(Figure 1A, 1B).  

 

 
 

Figure 1. Differentially expressed circadian rhythm genes in BCLA. (A) Heatmap and (B) boxplot of the differentially expressed CCRGs 

mRNAs between BLCA tumors and normal tissues. (C) The correlation of CCRGs mRNAs with tumor stages. 
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Furthermore, the dysregulated expression of CCRGs was 

observed to be correlated with tumor stage. In comparison 

to low-stage tumors (stage I and II), ten CCRGs were up-

regulated and three CCRGs were down-regulated in the 

high-stage tumors (stage III and IV) (Figure 1C). These 

findings suggest a potential contribution of CCRGs to the 

malignant progression of BLCA. 

 

BLCA sub-clustering based on CCRGs expression  

 

The circadian clock exerts biological functions through 

regulating target genes expression. Therefore, the 

differentially expressed CCRGs may give rise to sub-

groups of tumors with distinct gene expression profiles. 

Based on the 13 differentially expressed CCRGs 

between low- and high-stage tumors (Figure 1C), the 

TCGA-BLCA patients were clustered into  

two subgroups (C1 and C2) (Figure 2A). C2 subgroup 

exhibited significantly worse OS compared to C1 (P 

<0.001, Figure 2B). In addition, the circadian-related 

subgroups were associated with clinicopathological 

features. The C2 subgroup included more patients in 

higher tumor stages (stage III and IV) and higher 

pathological T and N stage (Figure 2C). Moreover, the 

C2 subgroup demonstrated notably higher ESTIMATE, 

immune and stromal scores, but lower tumor purity 

 

 
 

Figure 2. The circadian rhythm-based subgroups of TCGA-BLCA. (A) The TCGA-BLCA was divided into two circadian rhythm-based 

subgroups via unsupervised clustering. (B) Kaplan-Meier analysis of the OS of C1 and C2 subgroups. (C) Association of the circadian rhythm-
related subgroups with stage and pathological T/M/N stages. (D) The ESTIMATE, stromal, immune score and tumor purity of the two 
circadian rhythm-related subgroups, *** p < 0.001. 
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(Figure 2D). These results suggested that the CCRGs- 

based BLCA subgroups have distinct TME profiles and 

prognostic outcomes. 

 

A substantial number (3426) of differentially expressed 

genes (DEGs) were found between the C1 and C2 

subgroup, with 2410 being up-regulated and 1016 being 

down-regulated in the C2 subgroup (Supplementary 

Figure 2A, 2B). GO analysis of these DEGs revealed  

a significant enrichment in epidermis development, 

intermediate filament organization, and keratinization, 

indicating differing cellular phenotypes between the  

two subgroups. Furthermore, GO terms related to  

TME constitution and immune cell infiltration, such as 

leukocyte migration, collagen-containing extracellular 

matrix, and receptor-ligand activity, were highly enriched 

in the C2 subgroup (Supplementary Figure 2C, 2D). 

Likewise, KEGG analysis also demonstrated a high 

enrichment of pathways relevant to TME constitution  

in the C2 subgroup, such as ligand-receptor inter- 

action, cytokine-cytokine receptor interaction, Calcium 

signaling pathway and cell adhesion molecules, etc. 

(Supplementary Figure 2E). Together, these results 

indicated that the circadian-based C2 subgroup exhibits 

a highly active TME and poor prognosis. 

 

Construction of a risk signature based on the 

different fibroblasts-related signals between the 

circadian-based subgroups 

 

In the Biological Processes (BP) of GO, the fibroblast 

growth factor signals and leukocyte migration process 

were highly enriched in the DEGs between C1 and  

C2 subgroup (Figure 3A). Consistently, in the Cellular 

Component (CC) and Molecular Function (MF) 

categories, collagen- and immune receptor-related terms 

were highly enriched (Figure 3A). Considering the 

pivotal role of fibroblasts in the immunosuppressive 

tumor microenvironment [31], we consequently directed 

our attention to the DEGs implicated in the fibroblast 

growth factor signals and leukocyte migration process. 

These DEGs were further selected based on their 

enrichment in more than one biological process (Figure 

3B). Ultimately, 31 DEGs were chosen for further 

investigation, and among them, 13 genes were identified 

as holding prognostic value (Figure 3C). After Lasso 

(Figure 3D, 3E) and multivariate Cox regression 

analysis, 5 genes (OTX2, FAM20C, CXCL13, TBX1, 
HYAL1) were ultimately selected to construct a risk 

model. The risk score was calculated based on the 

mRNA level and the weights of the selected genes as 

follows:  

 
Risk score = (0.4806) × OTX2 + (0.2076) × FAM20C + 

(−0.1431) × CXCL13 + (−0.1049) × TBX1 + (0.1385) × 

HYAL1. 

BLCA patients were then stratified into high- and low- 

risk groups according to the median risk score. A 

significant worse prognosis was observed along with 

gradually increasing risk score (Figure 3F). Kaplan-

Meier analysis revealed a notably lower overall survival 

rate in high-risk patients (Figure 3G). The ROC curves 

demonstrated that the area under the curve (AUC) of  

the risk score at 1, 3, and 5 years were 0.698, 0.705,  

and 0.722, respectively (Figure 3H). In addition, the 

PCA analysis illustrated a clear separation of the high-

risk group from the low-risk group along dimension 1 

(Figure 3I). 

 

Validation of the risk model 

 

Performance of the 5-gene risk model was validated in 

GSE32894 (n = 254) and GSE13507 (n = 164) BLCA 

cohorts. In both cohorts, PCA analysis demonstrated 

satisfactory separation of the two risk groups (Figure 

4A). High-risk patients displayed worse survival 

probability compared with low-risk patients (Figure 

4B). the AUC for predicting 1, 3 and 5-year overall 

survival were 0.697, 0.758, 0.782 in the GSE32894 

cohort, and 0.65, 0.615, 0.631 in the GSE13507 cohort 

(Figure 4C). These results underscore the prognostic 

capacity of the risk signature for BLCA. 

 

The risk model was found to be linked with disease 

severity. In TCGA-BLCA, the risk score exhibited  

a positive correlation with tumor stage. High-stage 

tumors (stage III-IV, T3-T4) displayed higher risk 

scores than low-stage tumors (stage I-II, T1-T2) (Figure 

4D). In GSE149582 (n = 26) dataset, the progressive 

muscle-invasive bladder cancer (MIBC), known for  

its heightened aggressiveness compared to de novo 

MIBC [32], displayed substantially higher risk scores 

(Figure 4E). In another BLCA cohort, GSE128192  

(n = 112), the risk score of conventional urothelial 

carcinoma (UC) was less than that of sarcomatoid 

carcinoma (Figure 4F). The latter is characterized by a 

mesenchymal phenotype with a pronounced propensity 

for regional and distant metastasis [33]. Together, these 

results indicate that the risk signature offers insight into 

a more aggressive phenotype. 

 

Gene set enrichment analysis (GSEA) between high- 

and low-risk groups 

 

Genes related to extracellular matrix, including matrix 

constituent, angiogenesis, ECM-receptor interaction, 

focal adhesion, integrin pathways and epithelial to 

mesenchymal transition were enriched in the high-risk 

group as shown in various gene sets (Supplementary 
Figure 3). The 3CA metaprograms and the single-cell 

sequencing gene sets unveiled elevated levels of 

fibroblasts and endothelial cells in the high-risk group 
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Figure 3. Construction of risk model based on fibroblast growth signal difference. (A) Bubble plot of GO enrichment of fibroblasts-

related DEGs between C1 and C2 subgroups. (B) GO chord diagram showed the potential biological processes of the DEGs. (C) Forest plot of 
the survival-related DEGs obtained by univariate Cox regression, p < 0.05. (D, E) The 13 prognostic DRGs were fed into Lasso regression 
model. (F) Expression profiles of the risk genes (up), distribution of risk score (middle) and survival status (down) of BLCA patients. (G) Kaplan-
Meier survival analysis of BLCA patients based on risk score. (H) ROC curves demonstrated the predictive prognostic value of risk score at 1, 3 
and 5 years. (I) PCA analysis map of the high- and low-risk groups. 

12318



www.aging-us.com 8 AGING 

(Figure 5A). Interestingly, the high-risk group exhibited 

heightened levels of glycosaminoglycan and chondroitin 

sulfate metabolism (Figure 5B). Further, in the oncogenic 

signature gene sets, mTOR, YAP, LEF1 and CYCLIN 

D1 were found to be activated in the high-risk group 

(Figure 5C). Finally, the TFT gene sets showed amplified 

levels of transcription factor potential for AP1, ATOH8, 

TEF1, and NFE2 within the high-risk group (Figure  

5D).  

 

Association of the risk model with the immune 

landscape  

 

Immune landscape analysis using diverse algorithms 

revealed elevated infiltration of both macrophages 

(Figure 6A–6F) and CAFs (Figure 6B, 6C, 6F) in the 

high-risk group. The behavior of CD8+T cells exhibited 

varying trends depending on the specific algorithm 

employed. CIBERSORT, EPIC and XCELL indicated  

a decrease in CD8+ T cell infiltration in high-risk  

group (Figure 6A, 6B, 6F). In contrast, TIMER 

demonstrated increased CD8+T cell infiltration in the 

high-risk group (Figure 6E). Meanwhile, MCPCounter 

and QUANTISEQ indicated no significant difference in 

CD8+T cell infiltration between the two groups (Figure 

6C, 6D). As for B cells, most algorithms suggested no 

discernible trend of change (Figure 6A–6D). Further, 

the expression of 38 routine immune checkpoint-related 

genes in high- and low-risk tumors was compared. 

Many of those genes, such as HAVCR2, TNFSF9, 

 

 
 

Figure 4. Association of the risk model with overall survival and disease severity. (A–C) The PCA analysis map, Kaplan-Meier 

survival analysis, and ROC curves of the high- and low-risk patients in GSE32894 (up) and GSE13507 (down) datasets. (D) Plot of risk score 
according to the stage (left) and T (right) in TCGA-BLCA dataset. (E) Patient’s risk score in de novo MIBC vs. progressive MIBC (left), and 
composition of the two disease states in high- and low-risk patients (right) in GSE149582 dataset. (F) Patient’s risk score in conventional UC 
vs. sarcomatoid carcinoma in GSE128192 dataset. 
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TNFSF4, PDCD1LG2, CD86, PVR, JAK1, etc., 

exhibited significant upregulation in high-risk tumors  

(p < 0.001). However, the most prominent immune 

checkpoint genes, PDCD1 (PD-1), CD274 (PD-L1), 

and CTLA4, showed no differential expression between 

the two groups (Figure 6G). These results indicate that 

high risk is associated with increased infiltration of 

CAFs and macrophages. 

 

 
 

Figure 5. GSEA enrichment between high- and low-risk groups. GSEA enrichment based on (A) the 3CA metaprograms and the cell 
type signature gene sets, (B) the canonical pathways gene sets derived from the KEGG, Reactome and WikiPathways pathway database,  
(C) the oncogenic signature gene sets and (D) the transcription factor targets (TFT) gene sets. 
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Figure 6. Immune-related association of the risk model. The difference of high- and low-risk groups in tumor immune landscape 
evaluated by (A) CIBERSORT, (B) EPIC, (C) MCP-Counter, (D) QUANTISEQ, (E) TIMER and (F) XCELL. (G) Differences in the immune checkpoint-
related genes expression between high- and low-risk groups. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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The risk score predicts efficiency of BLCA 

immunotherapy and chemotherapy 

 

Given that the TIDE score has the ability to predict 

cancer immunotherapy response [34], we then examined 

the correlation of the risk model with the TIDE scores. It 

showed that the high-risk group exhibited a higher T cell 

exclusion score (Figure 7A), while the T cell dysfunction 

score showed no significant difference between high- and 

low-risk groups. This is consistent with the elevated 

abundance of CAFs in high-risk group (Figure 6B–6D). 

As T cell exclusion is the major obstacle for efficient 

BLCA immunotherapy [30]. The risk score may hold 

predictive value for BLCA immunotherapy.  

Subsequently, the predictive effect of risk  

score for immunotherapy was evaluated. In the 

Imvigor210CoreBiologies cohort, the non-response 

patients (SD/PD) had higher risk scores than the 

response patients (PR/CR) (Figure 7B, 7C). The high-

risk group displayed significantly worse overall survival 

(OS) than the low-risk group (Figure 7D). However,  

in immunotherapy for other types of tumors, such  

as non-small cell lung carcinoma (GSE135222) and 

melanoma (GSE78220, GSE91061), the risk signature 

failed to predict outcomes (Supplementary Figure 4). 

 

To test the potential value of the risk signature 

predicting drug sensitivity, the predicted IC50 of 198 

 

 
 

Figure 7. Different immunotherapy response and chemotherapy sensitivity between high- and low-risk groups. (A) Differences 

of the TIDE score between high- and low-risk groups, *** p < 0.001. (B–D) Relationship of risk score with immunotherapy efficiency in 
IMvigor210 cohort. (B) Difference of risk score in different response groups. (C) Distribution of different response in high- and low-risk 
groups. (D) Kaplan-Meier curve of the high- and low-risk patients. (E) The estimated IC50 of chemotherapy drugs. 
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drugs were analyzed by the “oncoPredict” R package. 

The findings revealed that the high-risk group exhibited 

reduced sensitivity to a majority of traditional chemo-

therapy drugs, including oxaliplatin, gemcitabine and 

cytarabine. Similarly, anti-mitotic agents such as 

vinorelbine, vincristine, paclitaxel, camptothecin, and 

certain targeted agents, such as lapatinib (an ErbB2 

tyrosine kinase inhibitor) and afatinib (an EGFR 

inhibitor), displayed lower efficacy in the high-risk 

group. Conversely, certain types of inhibitors, such  

as BMS-754807 (an IGF1R inhibitor) and KU-55933 

(an ATM inhibitor), were found to be more effective in 

the high-risk group (Figure 7E). 

Nomogram construction  

 

The univariate and multivariate Cox regression analyses 

confirmed that the risk score was an independent 

prognostic factor for OS (Figure 8A). In multivariate 

ROC analysis, the risk score displayed a much more 

favorable performance than traditional prognostic 

factors in predicting 1-, 3-, 5-year OS (Figure 8B). To 

better forecast the prognosis of BLCA patients, a 

nomogram consisting of the risk score and clinical 

factors was constructed (Figure 8C). The calibration 

curve showed good performance for prediction of 1-, 3- 

and 5-year OS (Figure 8D). 

 

 
 

Figure 8. Construction of a nomogram. (A) Univariate Cox regression (left) and multivariate Cox regression (right) indicated the risk score 

as an independent prognostic factor. (B) ROC curves of the risk score and clinical characteristics. (C) Nomogram consisting of risk score and 
clinical factors. (D) Calibration curve for validation of the nomogram for estimating survival at 1-, 3- and 5-years. 
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Correlated expression of the risk genes with the 

CCRGs 

 

The risk signature was constructed based on the DEGs 

between CCRG-based subgroups. Therefore, expression 

of the risk genes is expected to be associated with the 

CCRGs. Then we analyzed the correlated expression  

of the risk genes with the CCRGs in TCGA-BLCA, 

GSE13507 and GSE32894 datasets. In the three data-

sets, the expression of risk genes was broadly correlated 

(positively and negatively) with the CCRGs (Figure 9A 

and Supplementary Figure 5A, 5B). Among the five  

risk genes, FAM20C and TBX1 displayed the most 

extensive correlation with the CCRGs. Interestingly,  

the correlation patterns of FAM20C and TBX1 with 

CCRG were exactly opposite. FAM20C was positively 

correlated with HLF and NFIL3, and negatively 

correlated with NPAS2 and BHLHE41(Figure 9B). On 

the contrary, TBX1 correlated with these CCRGs in the 

opposite direction to FAM20C (Figure 9C). Consistent 

with this result, a negative relationship between 

FAM20C and TBX1 was observed (Figure 9D). Similar 

results were obtained in GSE13507 and GSE32894 

datasets (Supplementary Figure 5C, 5D). These results 

indicated a regulatory network consisting of FAM20C, 

TBX1 and the CCRGs. 

 
FAM20C and TBX1 are associated with CAFs 

infiltration in opposite way 

 

To further identify the hub risk gene affecting the 

immunosuppressive microenvironment, we analyzed  

the correlation between the expression of individual  

risk genes and the infiltration of CAFs using the 

TIMER2. Among the five risk genes, FAM20C showed 

the strongest correlation with CAFs (Table 1). Multiple 

algorithms (EPIC, MCPcounter, TIDE and XCELL) 

affirmed a positive correlation between FAM20C and 

CAFs (Table 1 and Figure 10A). On the contrary, TBX1 

displayed a negative correlation with CAFs in EPIC, 

MCPcounter and TIDE (Table 1 and Figure 10B).  

 

Kaplan-Meier analysis revealed that high level of 

FAM20C or elevated CAFs could independently predict 

poor survival of BLCA patients. The coexistence  

of these two factors led to the most unfavorable  

survival outcomes. Conversely, the survival disadvantage 

associated with FAM20C was mitigated by low CAFs 

(Figure 10C). This highlights a collaborative function  

of FAM20C and CAFs in threatening survival. In 

contrast to FAM20C, TBX1 was linked to a survival 

benefit, which was attenuated by high CAFs infiltration 

(Figure 10D).  

 

The diametric association of FAM20C and TBX1 with 

immunosuppressive microenvironment was further 

supported by their associations with exhausted T-cell and 

effector Treg cells. FAM20C was positively correlated 

with exhausted T-cell and effector Treg cells (Figure 

10E). In contrast, TBX1 exhibited a negative correlation 

with these cell types (Figure 10F). Together, these results 

suggest that FAM20C and TBX1 may exert opposing 

effects on the immunosuppressive microenvironment, 

with CAFs possibly being the target of action. 

 

 
 

Figure 9. Correlation analysis of risk genes with the CCRDs. (A) Correlated expression of the risk genes with the CCRGs in TCGA-BLCA. 

(B) Correlated expression of FAM20C and (C) TBX1 with HLF, NFIL3, NPAS2 and BHLHE41. (D) FAM20C expression was negatively correlated 
with TBX1. Method = “Pearson”. 
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Table 1. Correlation of risk genes with CAFs infiltration in BLCA. 

Risk genes 
Cancer associated fibroblasts (CAFs) 

EPIC MCPcounter TIDE XCELL 

FAM20C rho (p-value) 0.66 (***) 0.76 (***) 0.72 (***) 0.48 (***) 

CXCL13 rho (p-value) 0.17 (***) 0.21 (***) 0.13 (*) 0.13 (*) 

HYAL1 rho (p-value) 0.19 (***) 0.24 (***) 0.22 (***) 0.17 (*) 

OTX2 rho (p-value) 0.05 (0.59) 0.01 (0.93) 0.00 (0.99) -0.02 (0.86) 

TBX1 rho (p-value) -0.10 (*) -0.14 (**) -0.14 (**) 0.00 (0.96) 

*p < 0.05, **p < 0.01, ***p < 0.001. 

FAM20C is an independent predictor for 

immunotherapy efficiency of BLCA 

 

Given the association of FAM20C and TBX1 with  

CAFs infiltration, we wonder whether they can predict 

the immunotherapy efficiency. We explore this issue 

through the Kaplan-Meier plotter. The results indicated 

that high FAM20C levels were indicative of poor 

survival in immunotherapy for bladder and urothelial 

carcinomas (Figure 11A). However, TBX1 failed to 

predict the immunotherapy efficiency. No significant 

survival difference between high- and low-TBX1 groups 

was observed (Figure 11B).  
 

DISCUSSION 
 

CAFs play significant roles in the tumor 

microenvironment and have a considerable impact  

on the efficacy of cancer treatment. Through the 

production of cytokines, chemokines, and exosomes

 

 
 

Figure 10. Correlation analysis of FAM20C and TBX1 with the immunosuppressive microenvironment. (A) Correlation of 
FAM20C or (B) TBX1 expression with infiltration of CAFs. The CAFs were estimated by EPIC, XCELL, MCPcounter and TIDE. (C, D) Kaplan-Meier 
plot of different groups as indicated. (E) Correlation of FAM20C or (F) TBX1 with exhausted T-cell and effector Treg cells. Exhausted T-cell 
signatures: HAVCR2, TIGIT, LAG3, PDCD1, CXCL13, LAYN; effector Treg cell signatures: FOXP3, CTLA4, CCR8, TNFRSF9. 
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containing non-coding RNAs, CAFs induce resistance 

to diverse anticancer treatments, encompassing chemo-

therapy, radiotherapy, and immunotherapy [35, 36]. 

Moreover, the desmoplastic reaction induced by CAFs 

can diminish therapeutic efficacy by impeding drug 

delivery and infiltration of immune cells [36]. 

Specifically in the context of immunotherapy, CAFs 

contribute to the increased stiffness/rigidity of the 

extracellular matrix, thereby obstructing the infiltration 

of effector T cells, ultimately leading to immunotherapy 

resistance [37]. Accordingly, depletion of CAFs has 

been demonstrated to disrupt the structural integrity of 

TME, rendering treatment-resistant cancers susceptible 

to subsequent anti-PD-1 immunotherapy [38]. Therefore, 

targeting the aberrant activation of CAFs represents  

an efficacious strategy for both chemotherapy and 

immunotherapy [31]. However, the complexity and 

heterogeneity of CAFs pose challenges for therapeutic 

approaches in cancers [39].  

 

Recent studies have demonstrated the enhancing impact 

of circadian rhythm disruption on the activation of 

fibroblasts [11]. The relevant studies have been 

predominantly focused on tissue fibrosis in a variety  

of organs, such as pulmonary fibrosis [40], atrial 

fibrillation and interstitial fibrosis in the heart blood 

vessel [41, 42], liver fibrosis [43, 44], kidney fibrosis 

[45], and adipose tissue fibrosis [46]. In these studies, 

distinct circadian genes, such as NR1D1(Rev-Erbα)  

[40, 43], CLOCK [42, 44], BMAL1 and CRY [46] have 

been shown to regulate the transition of fibroblasts  

to myofibroblasts, the latter represents the typical 

activated form of fibroblasts. These studies confirmed 

the relationship between circadian rhythms disruption 

and fibroblasts behavior. However, limited research has 

been reported in the context of CAFs. A recent study 

utilizing a genetic deletion mouse model has revealed 

that the deletion of BMAL1 exacerbates a fibrotic 

phenotype in colorectal, pancreatic and hepatocellular 

cancers [13]. Collectively, these findings underscore  

the significance of circadian rhythms in regulating 

fibroblasts activity.  

 

Given the critical contributions of CAFs to the 

malignant process of cancers, several CAFs-related  

risk signatures have been reported in BLCA [47,  

48]. Recently, by integrating scRNA-seq and bulk  

RNA sequencing datasets, an inflammatory CAFs-

related signature [49] and an CAFs subclusters- 

related signature [50] have been established. These 

signatures have potential to predict the survival and 

immunotherapy response of BLCA patients. In these 

studies, the CAFs-related risk genes were selected  

based on the subtyping of CAFs. Unlike these studies, 

we investigated the CAFs-related risk signatures from 

the perspective of circadian rhythm regulation. In this 

research, a risk model was established with genes 

implicated in the activation signals of fibroblasts  

within the circadian-related subgroups. This risk model 

effectively discriminated BLCA tumors with varying 

degrees of CAFs infiltration and distinct TME profiles. 

Firstly, the GSEA analysis revealed high enrichment of 

genes implicated in fibroblasts, endothelial cells, as well 

as TME constitutions in the high-risk group. Secondly, 

three CAFs-containing algorithms (EPIC, XCELL, and 

MCPCounter) revealed higher CAFs infiltration in the 

high-risk tumors. Thirdly, the TIDE score indicated 

augmented T cell exclusion immune phenotype in  

the high-risk group, which is mainly favored by the 

CAFs [31]. Therefore, the risk model is associated  

with CAFs infiltration in BLCA tumors. Consequently, 

the risk model can predict the efficacy of BLCA 

immunotherapy in the IMvigor210 cohort. High-risk 

patients exhibited significantly worse overall survival 

compared to low-risk patients. These findings suggest 

that the risk model is associated with CAFs abundance 

and holds promise for predicting the efficacy of BLCA 

immunotherapy. Additionally, the risk model was 

 

 
 

Figure 11. Association of FAM20C and TBX1 expression with immunotherapy efficiency. (A) Survival analysis of the indicative 

genes in the immunotherapy of BLCA (anti-PD-1) and (B) urothelial carcinomas (anti-PD-L1) through the Kaplan-Meier plotter platform. 
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associated with sensitivity to chemotherapy drugs such as 

oxaliplatin, gemcitabine, and cytarabine, among others. 

Currently, neoadjuvant cisplatin-based chemotherapy is 

recommended for eligible patients with muscle-invasive 

bladder cancer [51]. However, a subset of patients does 

not benefit from this neoadjuvant chemotherapy [52]. 

Considering the pivotal role of CAFs in chemotherapy, 

this fibroblasts-based risk model may be utilized to 

more effectively stratify patients who will benefit from 

chemotherapy. 

 

To further explore the regulatory nexus between the  

risk genes and the circadian rhythm, we conducted  

a correlation analysis between the risk genes and  

the CCRGs, in the TCGA-BLCA, GSE13507, and 

GSE32894 datasets. As expected, the expression of the 

risk genes exhibited broad correlations with CCRGs 

across the three datasets. Among the five risk genes, 

FAM20C and TBX1 were found to have the most 

extensive correlations with the CCRGs. What’s more, 

their correlations with CCRGs were diametrically 

opposite, suggesting the existence of a regulatory 

network involving FAM20C, TBX1, and CCRGs. 

Furthermore, we demonstrated that FAM20C and TBX1 

are associated with CAFs infiltration in contrasting 

manners, as FAM20C exhibited a positive correlation 

while TBX1 showed a negative correlation with CAFs. 

This highlights the predictive value of these two genes 

in the context of immunotherapy. Ultimately, our 

findings revealed that FAM20C can predict the efficacy 

of BLCA immunotherapy, whereas regrettably, TBX1 

failed to serve as a predictor of immunotherapy efficacy. 

 

FAM20C is a member of the Fam20 family known for 

its association with Raine Syndrome [53]. It assumes a 

pivotal role in phosphorylating numerous secreted 

proteins and multiple substrates, contributing to diverse 

biological functions [54]. The best characterized function 

of FAM20C is its kinase activity on mineralization 

proteins, such as the fibroblast growth factor 23 

(FGF23) [54]. FAM20C can phosphorylate FGF23 

post-translationally, leading it to FURIN (PCSK3)-

dependent proteolysis [55]. Beyond its involvement in 

mineralization, FAM20C participates in other processes 

across multiple organs, including wound healing, lipid 

homeostasis, adhesion and cell migration [54]. In cancer 

context, FAM20C has been implicated in enhancing  

the metastasis of several human cancers, making it a 

potential therapeutic target [56]. Notably, some small 

molecule inhibitors have already been reported in  

triple-negative breast cancer [57]. A recent study further 

revealed that FAM20C mediates the invasive growth  

of stem-like cells in glioblastoma [58]. Although 
FAM20C is well recognized as a pro-malignant factor, 

its association with immunotherapy has not been 

previously documented.  

In this study, FAM20C was identified as an independent 

predictor for survival, with high FAM20C expression 

correlating with poor overall survival. This detrimental 

effect of FAM20C may be attributed to its promotional 

impact on CAFs, supported by several reasons: (1) 

FAM20C gene expression exhibited a robust correlation 

with CAFs infiltration. (2) High FAM20C expression, 

combined with high CAF levels, resulted in the poorest 

survival outcomes. (3) The survival disadvantage 

associated with FAM20C was mitigated by low CAF 

levels. Our findings suggest a collaborative pattern 

between FAM20C and CAFs that detrimentally impacts 

survival. Supporting this notion, FAM20C displayed 

potential in predicting immunotherapy efficacy. Taken 

together, these results underscore the promoting effect 

of FAM20C on cancer malignant progression and 

indicate a collaborative pattern between FAM20C and 

CAFs that warrants further exploration. 
 

In conclusion, disruption of the circadian rhythm may 

impact the effectiveness of both chemotherapy and 

immunotherapy by bolstering CAFs activation. This 

study has identified a circadian-based risk signature  

for evaluating CAFs infiltration and forecasting  

the efficacy of chemotherapy and immunotherapy. 

Moreover, FAM20C emerged as a circadian-related gene 

with prognostic significance for BLCA immunotherapy. 

In addition, glycosaminoglycan and chondroitin sulfate 

metabolism, certain oncogenic genes (mTOR, YAP, LEF1, 

and CYCLIN D1), and specific transcription factors  

(AP1, ATOH8, TEF1, and NFE2) were notably enriched 

in the high-risk tumors. Comprehending these intricate 

interconnections will yield valuable insights for potential 

therapeutic approaches aimed at counteracting CAFs and 

ultimately improving cancer treatment outcomes. 
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Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Genetic alterations of the TCGA-BLCA. (A) Genetic mutations and (B) the copy number variation (CNV) of 
the 24 CCRGs were analyzed through the cBioPortal websites. 

 

 
 

Supplementary Figure 2. DEGs between the circadian rhythm-based subgroups. (A) Volcano plot of the DEGs between the C1 and 

C2 circadian-based clusters. (B) Heatmap plot of the top 40 DEGs. (C) Enrich-plot and (D) bubble charts of the GO enrichment terms of the 
DEGs. (E) Bubble charts of the KEGG enrichment terms. 

12332



www.aging-us.com 22 AGING 

 
 

 

Supplementary Figure 3. GSEA enrichment between high- and low-risk groups. GSEA enrichment based on (A) the GO, (B) KEGG,  

(C) HALLMARK, and (D) the PID (pathway interaction database) gene sets. 
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Supplementary Figure 4. Different immunotherapy response between high- and low-risk groups. Kaplan-Meier curve of the 

high- and low-risk patients in tumor immunotherapy cohorts of (A) non-small cell lung carcinoma (GSE135222), and (B) melanoma 
(GSE78220). (C) Relationship of risk score with immunotherapy response in melanoma cohort GSE91061. 

 

 
 

Supplementary Figure 5. Correlated expression of the risk genes and the CCRDs. (A, B) Corrplot of the correlated expression of the 

risk genes with the CCRGs in GSE13507 and GSE32894 datasets. (C, D) Correlation of the indicative genes in GSE13507 and GSE32894 
datasets. Method = “Pearson”. 
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