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INTRODUCTION 
 

Cellular senescence is a state of cell cycle arrest that 

occurs in response to various stressors, including DNA 

damage, and it involves functional and morphological 

alterations in the cell [1]. The double-strand DNA 

damage response (DDR) pathway, which controls  

the manifestation of the stress-induced senescence 

phenotype, canonically involves the activation of ataxia 

telangiectasia mutated kinase (ATM), which in turn 

phosphorylates histone H2AX and recruits proteins 

involved in DNA damage repair, such as 53BP1  

[2]. ATM activation also leads to the phosphorylation 

and stabilization of p53, which in its active form 

translocates to the nucleus, where it initiates the 

expression of proteins involved in cell cycle arrest,  

such as p21 [3]. Furthermore, nuclear p53 activates 

autophagy by inhibiting mTOR [4]. As a consequence of 

activation of the above-mentioned signaling pathways, 

senescent cells display structural and functional changes, 

including changes in nuclear architecture, which are  

at least partially mediated by the loss of high-mobility 

group box 1 (HMGB1) and lamin B1 (LMNB1). 

HMGB1 is an abundant DNA binding protein that 

regulates chromatin structure. When DNA is damaged, 

HMGB1 is translocated to the cytoplasm and released 

extracellularly as a proinflammatory molecule [5]. 

LMNB1 is an integral part of the nuclear envelope, and 
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ABSTRACT 
 

Cells may undergo senescence in response to DNA damage, which is associated with cell cycle arrest, altered 
gene expression and altered cell morphology. Protein palmitoylation is one of the mechanisms by which the 
DNA damage response is regulated. Therefore, we hypothesized that protein palmitoylation played a role in 
regulation of the senescent phenotype. Here, we showed that treatment of senescent human vascular smooth 
muscle cells (VSMCs) with 2-bromopalmitate (2-BP), an inhibitor of protein acyltransferases, is associated with 
changes in different aspects of the senescent phenotype, including the resumption of cell proliferation, a 
decrease in DNA damage markers and the downregulation of senescence-associated β-galactosidase activity. 
The effects were dose dependent and associated with significantly decreased total protein palmitoylation level. 
We also showed that the senescence-modifying properties of 2-BP were at least partially mediated by the 
downregulation of elements of DNA damage-related molecular pathways, such as phosphorylated p53. Our 
data suggest that cell senescence may be regulated by palmitoylation, which provides a new perspective on the 
role of this posttranslational modification in age-related diseases. 
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its downregulated expression following p53 activation 

is a reliable marker of senescence [6]. However,  

the most widely used marker of senescence is the 

activity of senescence-associated β-galactosidase (SA-

β-gal), which increases significantly with the buildup  

of β-galactosidase-rich lysosomal content in senescent 

cells [7]. 

 
Recently it has been shown that S-acylation, commonly 

referred to as S-palmitoylation or simply palmitoylation, 

may play a key role in the regulation of the DDR. 

Palmitoylation is a type of posttranslational modification 

of proteins mediated by protein acyltransferases (PATs) 

with zinc-finger and aspartate–histidine–histidine–

cysteine (DHHC) motifs that catalyze the reversible 

addition of palmitate to specific cysteine (Cys) residues 

of a protein. Cao et al. [8] showed that treatment  

of primary mouse embryonic fibroblasts (MEFs)  

with the irreversible nonselective PAT inhibitor 2-

bromopalmitate (2-BP) caused an aberrant response to 

DNA damage induced by doxorubicin. The global 

palmitoylation inhibition induced by 2-BP treatment 

abrogated cell cycle arrest and caused increased 

formation of DNA damage foci containing γH2AX  

and 53BP1. These phenotypic changes were mediated 

by defective ATM and p53 activation. The authors  

also found that ablation of zinc finger DHHC-type 

palmitoyltransferase 16 (ZDHHC16) produced similar 

results and revealed the link between palmitoylation and 

the DNA damage response [8]. Another elegant recent 

study showed that ZDHHC1 mediated the nuclear 

translocation of p53. Palmitoylation was necessary  

for p53 nuclear trafficking and subsequent pathway 

activation [3]. 

 
The important role of palmitoylation in the DNA 

damage response led us to speculate about the role of 

palmitoylation in the regulation of cellular senescence. 

Thus, we decided to investigate how the global 

inhibition of PATs with 2-BP affects different aspects 

of cellular senescence. To accomplish this, we used  

a model of DNA damage-induced cellular senescence 

that we have extensively studied [9]. In this model, 

adult human vascular smooth muscle cells (VSMCs)  

are treated with doxorubicin. By analyzing phenotypic 

changes at the structural, functional and molecular 

levels over time, we showed that the inhibition of 

palmitoylation may participate in the regulation of the 

senescence phenotype. We found that treatment with  

50 μM 2-BP before, but not after, the induction of 

doxorubicin-mediated DNA damage modified some 

aspects of the senescent phenotype. This effect was 

associated with decreased levels of phosphorylated  

p53. To our knowledge, this study is the first report to 

show a possible role played by palmitoylation in the 

regulation of cell senescence. 

RESULTS 
 

2-BP slows proliferation without inducing markers 

of senescence 

 

Since protein palmitoylation has been shown to  

play a role in the regulation of the DNA damage 

response [8], we sought to determine whether the  

potent palmitoylation inhibitor 2-BP could affect the 

senescence phenotype of human VSMCs. We first 

determined the influence of 2-BP on non-senescent 

VSMCs. To analyze the effects of palmitoylation 

inhibition in our model, we treated proliferating VSMCs 

with increasing doses of 2-BP and analyzed the protein 

level of palmitoylation, cellular proliferation, DNA 

synthesis, DNA damage and SA-β-gal activity. 

 

As expected, 2-BP treatment was associated with  

a dose-dependent decrease in the total protein 

palmitoylation level in whole-cell lysates compared to 

the control, as detected by an acyl-biotinyl exchange 

assay (ABE) followed by Western blotting (Figure 1A 

and Supplementary Figure 1). 

 

VSMCs are relatively fast proliferating cells that exhibit 

a gradually slowing of their proliferation rate within a 

few days of culture, which may result in the acquisition 

of some features of a senescent phenotype, such as  

the nonspecific activation of SA-β-gal. Therefore, we 

compared the results obtained in treated cells to those  

in untreated cells (CTRL) 48 h after seeding, when the 

cells retained a high proliferation rate. 

 

Treatment of VSMCs with 2-BP decreased the 

proliferation rate of the cells (Figure 1B, 1C). However, 

we did not observe any changes in the number of BrdU-

incorporating cells (Figure 1D, 1H), the expression of 

senescence markers, such as SA-β-gal activity (Figure 

1E, 1I) or the number of 53BP1 or γH2AX foci, (Figure 

1F, 1G, 1I), in 2-BP-treated cells. These results suggest 

that palmitoylation inhibition in growing cells does not 

induce permanent growth arrest. 

 

2-BP treatment affects the development of a senescent 

phenotype in VSMCs treated with doxorubicin 

 

The inhibition of protein palmitoylation with 2-BP has 

been shown to affect DNA damage-induced focus 

assembly/disassembly and to override cell cycle arrest 

in primary mouse embryonic fibroblasts [8]. Therefore, 

we hypothesized that 2-BP could influence the 

phenotypic transition from proliferating to senescent cells 

upon DNA damage caused by doxorubicin treatment. 

To prevent cytotoxicity in cultures co-treated with 

doxorubicin and 2-BP [8], we pretreated VSMCs with 

2-BP for 24 h. The 2-BP was removed by washing, and 
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fresh medium containing 1 μM doxorubicin (DOX) was 

added and left for 2 h to induce senescence according  

to our previously established protocol [9]. Three days 

after the initial 2-BP treatment, the levels of senescence 

markers were analyzed. We found that 2-BP partially 

released the inhibition of proliferation caused by 

doxorubicin (Figure 2A, 2B). Notably, the observed 

effect was dose dependent but not dose proportional. At 

least 24 palmitoyltransferases might be differentially 

affected by 2-BP treatment, which may result in an 

activity configuration-promoting response that is not 

necessarily proportional to the dose. 

 

The changes in proliferation were reflected by an increase 

in the number of BrdU-positive cells compared to 

doxorubicin-treated cells (Figure 2C). Treatment with 2-

BP was also associated with decreased activity of SA-β-

gal in DOX-treated cells (Figure 2D). The expression  

of DNA damage markers, such as 53BP1 and γH2AX, 

quantified by the number of foci per nucleus (Figure 2E, 

 

 
 

Figure 1. The influence of 2-BP treatment on cell proliferation and senescence. The graph shows the total protein palmitoylation 

normalized to the control after 24 h of 2-BP treatment (A). Analysis of the effects of different doses of 2-BP on the proliferation rate, as 
measured by growth rate calculations (B) and recording of cell numbers during a 4-day culture (C). Changes in the number of BrdU-positive cells 
(D), the level of SA-β-gal activity (E), and the number of DNA damage-associated 53BP1 foci (F) and γH2AX foci (G). Representative images of 
the measurements are shown in Panels (H) (BrdU incorporation) and (I) (SA-β-gal activity, 53BP1, γH2AX). The results are presented as the 
means ± SEMs from N=3 biological replicates. Statistical analysis was performed using one-way ANOVA or two-way ANOVA for (C),  
*p< 0.05, **p<0.01, ****p<0.0001. 
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2F), decreased significantly in 2-BP-treated cells 

compared to the number in cells treated with doxorubicin 

alone, regardless of the concentration of the inhibitor. 

Representative images of SA-β-gal activity analysis and 

53BP1, γH2AX, and BrdU immunostaining are shown  

in Figure 2G. We observed similar trends in the changes 

in the proliferation rate of doxorubicin-treated human 

fibroblasts upon 2-BP treatment, but these changes were 

not significant, which suggests that our findings are 

cell/dose specific (Supplementary Figure 2). 

 

The senescence-modifying activity of 2-BP is at least 

partially mediated by disruption of the DNA damage 

response 

 

It has been previously shown that 2-BP may affect the 

DNA damage response by blocking p53 activation  

and translocation to the nucleus [3, 9]. To determine 

whether the inhibition of senescence phenotype 

development by 2-BP is dependent on this mechanism, 

we treated cells with 50 μM 2-BP for 24 h before 

(pretreatment) or after (posttreatment) the induction  

of DNA damage with doxorubicin (Figure 3A). We 

hypothesized that cultured cells treated with 2-BP after 

the induction of DNA damage would not respond to 

phenotypic changes in the same way as the pretreatment 

variants because the DNA damage response pathway 

would already be initiated and p53 would be activated. 

We did not observe significant changes in the levels of 

DNA damage markers, such as the number of γH2AX 

and 53BP1 foci in the nuclei, or in the percentage  

of BrdU-positive cells in the posttreatment variant 

compared to doxorubicin-treated cells on day 3 or day 7. 

Cells pretreated with 2-BP before DOX treatment 

showed significantly fewer 53BP1 foci (day 7) and more 

BrdU-positive cells (day 3) compared to DOX-treated 

 

 
 

Figure 2. 2-BP treatment decreases the expression of senescence markers in doxorubicin-treated VSMCs. Cells were pretreated 
with increasing doses of 2-BP for 24 h (pretreatment), washed and induced to senescence by a 2 h treatment with doxorubicin (DOX). The 
proliferation rate during a 4-day culture measured every 2 h was used to calculate the growth rate (A, B). Changes in the number of BrdU-
positive cells (C), the level of SA-β-gal activity (D), and the number of DNA damage-associated 53BP1 (E) and γH2AX foci (F) 3 days after 
doxorubicin treatment in response to increasing doses of 2-BP. Green line marks the mean level of analyzed parameter in control, untreated 
cells. The results are shown as the means with SEM from N=3 or 5 biological replicates. Statistical analysis was performed using one-way 
ANOVA (comparison between DOX and 2-BP + DOX) or two-way ANOVA (for B), p≤ 0.05, **p≤0.01. Representative images of SA-β-gal activity 
and 53BP1 and γH2AX levels are shown in Panel (G). 
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cells (Figure 3B–3D, 3F). Notably, the level of activity  

of SA-β-gal decreased significantly in pretreated and 

posttreated cells on day 3 regardless of differences in the 

levels of DNA damage markers and BrdU incorporation 

in pre- and posttreated variants. However, the initial 

decrease in SA-β-gal activity was no longer observed on 

day 7 (Figure 3E, 3F). Western blot (WB) analysis 

revealed a significant decrease in the p-p53 protein level 

caused by 2-BP pretreatment of DOX-treated cells (Figure 

4A, 4D), but culturing the cells with 2-BP after DOX 

treatment (posttreatment variant) did not affect p-53 

phosphorylation (Supplementary Figure 3). 

 

As expected, we observed a significant decrease in 

HMGB1 and lamin B1 levels upon induction of 

senescence by doxorubicin treatment. However, the levels 

of these proteins remained unchanged upon treatment 

with 2-BP and doxorubicin (Figure 4B–4D). Similarly,  

2-BP alone did not influence HMGB1 or lamin B1 levels 

in posttreated cells (Supplementary Figure 3). 

Of note, doxorubicin treatment alone was associated 

with a decrease in the total protein palmitoylation 

level after 3 days. Notably, 2-BP and doxorubicin did 

not act synergistically in this regard (Supplementary 

Figure 4). 
 

DISCUSSION 
 

Here we show for the first time that the global inhibition 

of the protein palmitoylation with 2-BP is associated 

with attenuation of the DNA damage-induced senes-

cence phenotype of human VSMCs. Cells treated with 

2-BP for 24 h before the induction of senescence had 

significantly decreased SA-β-gal activity; lower levels 

of DNA damage markers, such as γH2AX and 53BP1 

foci and a partial reversal of cell cycle arrest. These 

changes were accompanied by decreased levels of 

phosphorylated p53, which is consistent with previously 

published results [9]. The lack of significant differences in 

the proliferation of cells treated with 2-BP after 

 

 
 

Figure 3. The senescence-modifying effect of 2-BP is detected only if cells are treated before senescence induction. VSMCs 
were treated with 2-BP for 24 h before (pretreatment) or after (posttreatment) doxorubicin (DOX)-mediated DNA damage induction. DNA 
damage was analyzed at different time points (3 and 7 days) following incubation with 2-BP. (A) Schematic representation of the 
experimental design. The graph shows the number of DNA damage-associated nuclear 53BP1 and γH2AX foci after doxorubicin treatment  
(B, C), the percentage of cells that incorporated BrdU (D), and SA-β-gal activity (E). The results are presented as the means ± SEMs from two 
separate experiments, each with N=3 biological replicates. Statistical analysis was performed using one-way ANOVA; *p< 0.05, **p<0.01. 
Representative images of SA-β-gal activity and 53BP1 and γH2AX levels are shown in Panel (F). 
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doxorubicin-induced senescence confirmed previously 

published results suggesting that palmitoylation  

is critical for the translocation of p53 to the nucleus [3]. 

Once p53 is translocated, it can no longer be affected by 

palmitoylation inhibition, which may explain the lack of 

significant changes in the levels of phosphorylated p53  

in the posttreatment variant of our study (Supplementary 

Figure 3A). Notably, SA-β-gal activity significantly 

decreased in a dose-dependent manner when 2-BP was 

applied both before and after doxorubicin induction. This 

finding suggests that SA-β- gal activity may be regulated 

independently of the ATM-p53 axis. Indeed, SA-β-gal is a 

lysosomal-β-galactosidase protein that exhibits increased 

activity during senescence, although it is not necessary  

for the development of the senescence phenotype [7]. 

However, the mechanism by which palmitoylation affects 

the activity of this enzyme is not clear. 2-BP treatment has 

been shown to disturb the vacuolar ATPase-dependent 

lysosomal acidification pump in neurons via inhibition of 

the palmitoylation of one of its subunits [10]. Since 

acidification of intracellular organelles is critical for the 

regulation of autophagy [11], SA-β-gal activity could be 

associated with changes in autophagy as a result of 2-BP 

treatment. 

 

In senescent cells pretreated with 2-BP, we observed a 

decrease in the number of γH2AX and 53BP1 foci.  

The lack of dose dependence of this effect suggests  

that it is sensitive to a very low level of palmitoylation 

inhibition. Our observations seem to contrast with those 

described in the report by Cao et al., in which 2-BP 

treatment was shown to increase the doxorubicin-induced 

number of γH2AX and 53BP1 foci [8]. However, due  

to multiple differences in the experimental setup, such as 

cell types (human VSMCs vs. MEFs), observation time 

windows (3-7 days vs. 0-24 h), duration of exposure to 

 

 
 

Figure 4. The influence of 2-BP treatment on the levels of senescence markers. The levels of p-p53 (A), HMGB1 (B), and lamin B1 

(C) in cell extracts from VSMCs treated for 24 h with 2-BP before doxorubicin (DOX) treatment (pretreatment) or treated with 2-BP alone for 
the indicated times were analyzed via Western blotting. Representative Western blots (the cutting line of the blot is shown in red) (D). The 
results are presented as the means ± SEMs from N=3 biological replicates. Statistical analysis was performed using one-way ANOVA; *p< 
0.05, **p<0.01, ***p<0.001. 

11801



www.aging-us.com 7 AGING 

doxorubicin (2 h vs. 24 h) and, most importantly, 

coincubation of doxorubicin with 2-BP (which we also 

found to be highly detrimental to cells even at a 50 µM 

concentration; results not shown), our data are not 

necessarily contradictory. 

 
Cell senescence is a dynamic process, and our study 

revealed the transient nature of the senescence 

phenotype-modifying properties of a palmitoylation 

inhibitor. Almost all parameters that reached statistical 

significance compared to the doxorubicin-treated 

control on day 3 of the experiment were no longer 

different on day 7. The transient nature of the effect 

may be the result of not only the exhaustion of 2-BP 

inhibitory activity but also the naturally occurring 

recovery from DNA damage in cells after treatment 

with doxorubicin alone, which was used as a reference. 

 
Regardless of the treatment regimen, 2-BP did  

not influence the expression of other markers of 

senescence, such as HMGB1 or lamin B1. Both of 

these proteins are directly engaged in sustaining the 

functional and structural integrity of the nucleus, 

which is compromised by doxorubicin treatment. 

However, the decrease in lamin B1 expression in 

senescent cells has been shown to be mediated by p53 

activation [6], which is downregulated by 2-BP. 

Perhaps the remaining activity of p53 was sufficient  

to induce a decrease in lamin B1 expression and a 

phenotypic shift. 

 

Our data provide important insight into the possible 

mechanisms underlying the recently reported senescence-

inducing effects of palmitate. Experiments using several 

in vitro models involving adipocytes [12], cardiac 

fibroblasts [13] and neurons [14] have shown that the 

treatment of cells with palmitate triggers a senescent 

phenotype. Palmitic acid is sourced partially from dietary 

intake [15]. Insulin also affects the palmitoylation of 

hundreds of proteins in human endothelial cells [16] and 

brain cells, which ultimately affects brain plasticity and 

memory [17]. Therefore, diet/hunger may have an 

important impact on the availability of palmitate and  

the extent to which proteins are regulated by the 

covalent attachment of this fatty acid. However, this 

process is poorly understood. Excess palmitate in the 

brain has negative consequences for cognition and  

may result in inflammation, astroglial and microglial 

activation, and tumor necrosis factor α (TNF-alpha) 

signaling [18]. In addition, a palm oil-rich diet was 

shown to affect the murine liver proteome and S-

palmitoylome, leading to palmitate accumulation [19]. 

Therefore, in the future, it would be interesting to study 

the effect of the interaction between palmitoylation  

and diet/hunger on lifespan in high-fat diet and caloric 

restriction models. 

Given the pioneering nature of our study, some 

limitations and multiple questions are unavoidable. First 

and foremost, we used 2-BP, which is a broad-spectrum 

inhibitor of PATs. Although the posttreatment variant in 

our study provides some evidence that the senescence-

modifying action of 2-BP is specific to certain 

molecular pathways, we do not know which PATs are 

involved in this process. Our data also revealed that 2-

BP treatment resulted in a significant and dose-

dependent decrease in the total protein palmitoylation 

level compared to the control group. However, 

doxorubicin itself also reduced the total protein 

palmitoylation level after 3 days to a level comparable 

to that achieved by treatment with 50 μM 2-BP. 

Notably, 2-BP and doxorubicin do not act syner-

gistically in this regard. These seemingly conflicting 

data may be explained by the fact that cells in different 

biological contexts may regulate protein function by 

downregulating and upregulating palmitoylation. The 

ABE method we employed in our study provides 

information about the average palmitoylation level of 

all proteins. However, as shown previously, the 

average palmitoylation level may not differ between 

treatment groups, but the palmitoylation levels of 

individual proteins may differ significantly [20]. 

Analysis of the palmitoylation levels of individual 

proteins in senescent cells and how they change upon 

senescence-modifying treatments could reveal possible 

molecular targets for the treatment of aging-associated 

diseases. 

 

CONCLUSIONS 
 

For the first time, the present study revealed a critical 

role for protein palmitoylation in the development of a 

DNA damage-induced senescence phenotype. Aging 

and age-related disorders affect a growing population of 

people worldwide and are among the major challenges 

of modern science and medicine [21]. Recently, 

senescent cells have become a very promising target for 

organism rejuvenation [22, 23]. The results presented 

here advance our understanding of the regulation of 

senescence and may contribute to the discovery of new 

molecular targets for senotherapy. 

 

MATERIALS AND METHODS 
 

Cell culture 

 

Human vascular smooth muscle cells (VSMCs) or 

human fibroblasts were purchased from ATCC 

(Manassas, VA, USA) (normal diploid cells derived 

from young males, at least from three different donors). 

VSMC were cultured in vascular cell basal medium 

(ATCC) supplemented as defined by the manufacturer 

and kept in a humidified atmosphere (37° C and 5% CO2 
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in the air). Cells were seeded at a density of 3000/cm2 

and passaged every 3-4 days. To induce senescence,  

24 h after seeding, the cells were treated with 1 µM 

doxorubicin for 2 h. After doxorubicin treatment, the 

cells were washed with warm PBS and cultured in fresh 

medium for 3 or 7 days. For experiments with 2-

bromopalmitate, cells were treated for 24 h with 10, 25 

or 50 μM 2-BP. 2-BP stock solutions, at concentrations 

of 10, 25 and 50 mM, were prepared in EtOH 

immediately before use and diluted to working solutions 

in the culture medium. Depending on the experimental 

variant, the cells were incubated with 2-BP before 

(pretreatment) or after (posttreatment) doxorubicin 

treatment. The 2-BP-treated cells were washed with 

warm PBS and cultured in fresh culture medium. 

 

Monitoring of proliferation 

 

We monitored the proliferation of unstained VSMCs or 

fibroblasts in different experimental groups using the 

IncuCyte SX1 Live-Cell Analysis System (Sartorius, 

Göttingen, Germany). The system allows bright field 

and fluorescence imaging of live cells in culture plates 

inside a standard incubator (37° C, 5% CO2 and 100% 

humidity). The system is equipped with algorithms 

allowing the stain-free analysis of cell proliferation by 

automatic cell counting. BF images of a 96-well plate 

were collected every 2 h. Integrated IncuCyte software 

was used to analyze the results. 

 

SA-β-gal staining and analysis 

 

The detection of SA-β-gal activity was performed 

according to Dimri et al. [24]. Briefly, cells were fixed 

with 2% formaldehyde and 0.2% glutaraldehyde in PBS, 

washed, and exposed overnight at 37° C to a solution 

containing 1 mg/ml 5-bromo-4-chloro-3-indolyl-b-D-

galactopyranoside, 5 mM potassium ferrocyanide, 5 mM 

potassium ferricyanide, 150 mM NaCl, 2 mM MgCl2, 

and 0.02 M phosphate buffer, pH 6.0. All of the agents 

used were purchased from Sigma Aldrich (St. Louis, 

MO, USA). For imaging, the cells were embedded in  

4 µl of mounting medium supplemented with DAPI 

(Abcam, Cambridge, UK) and mounted on glass slides. 

Images were taken at least 10 min after embedding the 

cells in the medium with transmitted light or fluorescence 

(excitation 340-380 nm, emission 435-485 nm), using  

a Nikon Eclipse Ti-U fluorescence microscope and 

Nikon Digital Sight DS-U3 camera (Nikon, Tokyo, 

Japan) with a 20x objective at a resolution of 2560 x 

1920 pixels and exposure set at 15 ms (BF images) with 

30% of the maximum lamp intensity. For SA-β-gal 

staining, we analyzed at least 100 cells from 3-5 
independent biological replicates using a previously 

described automatic method [25]. Briefly, BF (SA-β-

gal) and fluorescent (DAPI) images were analyzed 

using a Fiji-based platform developed and validated by 

us, which automatically selects areas of the image with 

blue, green, and red color intensities above the 

experimentally determined color threshold (Hue = 117-

185; Saturation = 80-255; Brightness = 0-255). The  

area and intensity of the SA-β-gal signal were used to 

calculate the integrated density. 

 

BrdU incorporation and staining 

 

The cells were treated with 10 μM BrdU for at least 18 h 

of culture then washed with PBS and fixed in ice-cold 

70% ethanol. Fixed cells were washed with 0.5% Triton 

X-100 (Sigma‒Aldrich, St. Louis, MO, USA) in PBS, 

incubated in 2 N HCl for 30 min, washed twice with 

PBS, incubated for 1 min in 0.1 M borax solution 

(Sigma‒Aldrich), washed twice in PBS again and 

incubated with primary anti-BrdU antibody (Becton 

Dickinson, Franklin Lakes, NJ, USA) diluted 1:120 in 

1% BSA 0.5% Tween-20 in PBS for 1 h. After 

incubation, the cells were washed twice with 0.5% 

Tween-20 in PBS and incubated with a secondary 

antibody conjugated to a fluorochrome (Thermo Fisher 

Scientific, Waltham, MA, USA). The stained cells were 

mounted on a microscope slide with mounting medium 

supplemented with DAPI (Abcam) and imaged under an 

Eclipse fluorescence microscope (Nikon, Tokyo, Japan). 

The number of BrdU-positive cells and the total cell 

number (based on DAPI staining) were calculated using 

ImageJ (National Institutes of Health, Bethesda, MD, 

USA). 

 

Immunostaining of γH2AX and 53BP1 

 

The cells were washed with PBS, fixed in 4% 

paraformaldehyde, permeabilized in 0.3% Triton X-

100 in PBS then blocked in PBS supplemented with 

2% BSA, 1.5% normal goat serum and 0.1% Triton X-

100 for 1 hour. Permeabilized cells were incubated 

with the following primary antibodies: anti-53BP1 

(NB100-304, Novus, USA), anti-γH2AX (ab26350, 

Abcam) diluted in blocking solution for 2 hours. The 

sections were then washed with PBS supplemented 

with 0.1% Triton X-100 and incubated with Alexa 

Fluor 488-conjugated anti-rabbit, Alexa Fluor 555-

conjugated anti-mouse or Alexa Fluor 594-conjugated 

anti-guinea pig secondary antibody in blocking solution 

for 1 h. The cells were mounted on a microscope slide 

with mounting medium supplemented with DAPI 

(Abcam). Images of cells stained for γH2AX and 

53BP1 were obtained with an Eclipse fluorescence 

microscope (Nikon, Tokyo, Japan). Images of cells 

stained for p62 were obtained using an Sp8 confocal 
(Leica, Wetzlar, Germany) microscope with an HPPL 

APO CS2 63x/1.4° oil objective, a laser-405 diode 

(Pico Quant, Berlin, Germany) and white light (NKT 
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Photonics, Birkerød, Denmark). The interval of the 

optical section was 0.5 μm, and the pixel section was 

0.180 μm. The γH2AX and 53BP1 foci were analyzed 

in each cell nucleus (based on DAPI staining). 

Analysis was performed using ImageJ (National 

Institutes of Health, Bethesda, MD, USA). 

 

Acyl-biotinyl exchange assay 

 
To analyze changes in protein palmitoylation levels,  

an acyl-biotinyl exchange (ABE) assay [26] was used. 

Cells were lysed and homogenized using a Dounce 

homogenizer in buffer containing 50 mM Tris HCl (pH 

7.5), 150 mM NaCl, 1 mM EDTA, 4% SDS and 1% 

Triton X-100. Proteins were reduced with 10 mM TCEP 

(tris(2-carboxyethyl)phosphine), and the samples were 

incubated for 16 h at 4° C with 50 mM N-ethylmaleimide 

(NEM) to block free thiol groups. Proteins were 

precipitated using ice-cold ethanol to remove unreacted 

NEM. The pellets were resuspended in the same buffer, 

and the samples were divided in half. Both halves  

were treated with 400 µM thiol-reactive biotinylation 

reagent HPDP-biotin (N-[6-(biotinamido)hexyl]-3’-

(2’-pyridyldithio)propionamide). One half was treated 

with 1 M hydroxylamine to cleave thioester-linked 

palmitoyl moieties and expose newly formed thiols to 

HPDP-biotin. The other half was treated with Tris 

buffer (pH 7.5) as a control to nonspecific binding of 

HPDP-biotin. Biotinylated proteins were analyzed 

with Western blotting. 

 
Western blotting 

 
Cultured cells were lysed in reducing sample buffer 

containing 125 mM Tris–HCl (pH 6.8), 4% SDS, 20% 

glycerol, 100 mM DTT, and 0.2% bromophenol blue  

and denatured for 10 min at 95° C. The total protein 

concentration was estimated using a bicinchoninic acid 

(BCA) protein assay kit, and 20 µg of each sample was 

loaded on a gel. Protein lysates were separated by SDS‒

PAGE using 4‒12% (w/v) Bis‒Tris gels. The separated 

proteins were transferred to nitrocellulose membranes 

(Amersham GE Healthcare, UK) and blocked in 5% 

non-fat powdered milk in TBS containing 0.1% Tween-

20 (TBST) for 1 h. The membranes were incubated 

overnight with primary antibodies against p-p53, p-

ATM, HMGB1, LMB-1 and GAPDH, washed in TBST, 

incubated with horseradish peroxidase (HRP)-

conjugated secondary anti-bodies (anti-mouse or anti-

rabbit, Dako Denmark A/S) at a 1:2000 dilution in 5% 

milk, washed and visualized with enhanced 

chemiluminescence (ECL) (Thermo Fisher Scientific). 

Signals were detected using X-ray film or ChemiDoc 

(Bio-Rad, Hercules, CA, USA) and analyzed with 

ImageJ (National Institutes of Health, Bethesda, MD, 

USA). 

Statistical analysis 

 
Statistical significance was analyzed using one-way 

ANOVA or two-way ANOVA, as indicated in the 

figure legends. All statistical tests were performed using 

GraphPad Prism 9 (GraphPad, San Diego, CA, USA). 

The data are presented as the means +/− SEMs. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Representative Western blot images of cell lysates from non-senescent human VSMCs analyzed 
24h after treatment with 2-BP at different doses. Inhibition of total palmitoylation level in VSMCs treated with 2-BP. Palmitoylation 
levels were analyzed using acyl-biotinyl exchange assay (ABE). 

 

 
 

Supplementary Figure 2. Normal human fibroblasts treated with 2-BP for 24h before doxorubicin (DOX) treatment. 
Proliferation rates during a 4-day culture were measured every 2h (A) and growth rate calculated based on proliferation data (B). Results are 
shown as mean with SEM from N=3 technical replicates. Data were analyzed using one-way ANOVA, no significant differences were revealed. 
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Supplementary Figure 3. The level of proteins associated with senescence phenotype. p-p53 (A), HMGB1 (B), lamin B1 (C) in 
VSMCs treated with 2-BP for 24h after (posttreatment) doxorubicin (DOX) mediated induction of DNA damage, analyzed 3 days after 
incubation with 2-BP. Results are shown as mean with SEM from N=3 biological replicates. Statistical analysis performed using one-way 
ANOVA, * significantly different from control cells cultured for 48 after seeding. (CTRL) (*p<0.05, **p<0.01, ***p<0.001). 

 

 
 

Supplementary Figure 4. Representative Western blot images of cell lysates from human VSMCs treated with 50 μM of 2-BP for 24h and 
then induced to senesce by treatment with 1 μM doxorubicin for 2h or treated with 1 μM doxorubicin for 2h alone (DOX) and harvested 48h 
after DOX treatment. Untreated control cells cultured for 48h (CTRL) were used as reference. Stain-free total protein visualization was used 
as a loading control. Lanes with samples that were not used for analysis were cut out from the membrane (the cutting line is shown in red). 
Graph presents quantification of the total protein palmitoylation level. Results are mean with SEM from N=3 biological replicates. Statistical 
analysis performed using Student’s t-test, * significantly different from CTRL (*p< 0.05). 
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