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INTRODUCTION 
 

Ischemic stroke (IS) represents the primary cause of 

disability and mortality on a global scale [1], accounting 

for 10% of disability-adjusted life-years lost and 5% of 

deaths each year [2]. The identification of fundamental 

risk factors and protective elements is crucial in 

developing effective prevention strategies for stroke, 
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ABSTRACT 
 

Background: Aging is a complex biological process that may be accelerated in certain pathological conditions. 
DNA methylation age (DNAmAge) has emerged as a biomarker for biological age, which can differ from 
chronological age. This research peels back the layers of the relationship between fast-forward aging and 
ischemic stroke, poking and prodding the potential two-way causal influences between stroke and biological 
aging indicators. 
Methods: We analyzed a cohort of ischemic stroke patients, comparing DNAmAge with chronological age to 
measure age acceleration. We assessed variations in age acceleration among stroke subtypes and between 
sexes. Using Mendelian randomization, we examined the causal links between stroke, aging biomarkers like 
telomere length, and age acceleration's effect on stroke risk. 
Results: Our investigation reveals a pronounced association between ischemic stroke and age acceleration, 
most notably in patients with cardioembolic strokes, who exhibited a striking median difference of 9 years 
between DNAmAge and chronological age. Furthermore, age acceleration differed significantly across stroke 
subtypes and was higher in women than in men. In terms of causality, MR analysis indicated a modest negative 
effect of stroke on telomere length, but no causal effect of age phenotypes on stroke or its subtypes. However, 
some indication of a potential causal effect of ischemic stroke on PhenoAge acceleration was observed. 
Conclusion: The study provides insight into the relationship between DNAmAge and ischemic stroke, particularly 
cardioembolic stroke, and suggests possible gender differences. These insights carry profound clinical 
significance and set stage for future investigations into the entwined pathways of stroke and accelerated aging. 
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given its increasing global impact. This is emphasized 

in literature [3]. The preeminent risk factor for 

ischemic stroke is chronological age, although the 

mechanisms responsible for this association are not yet 

fully understood [4]. Gaining a more profound 

comprehension of this variability may provide 

significant perspectives into the causes of stroke, 

thereby enabling the creation of remedial measures that 

can alter and potentially avert age-related health hazards 

[5]. 

 

Epigenetic clocks utilize mathematical models that 

incorporate the DNA methylation (DNAm) state of 

Cytosine-phosphor-guanine (CpG) dinucleotides to 

forecast certain aspects of chronological age and clinical 

phenotype. Certain CpG sites exhibit a significant 

association with actual age [6]. Although biological age, 

as determined by DNA structures at specific CpG sites, 

may differ from chronological age, empirical data 

suggests a correlation between accelerated epigenetic 

modification aging (i.e., when biological age surpasses 

chronological age) and heightened susceptibility to 

mortality and age-related ailments [7]. Epigenetic 

clocks are utilized as inheritable markers of biological 

aging that rely on DNAm data. These clocks are 

generated through assessments of DNAm levels at 

particular CpG loci that encompass unique epigenetic 

aging characteristics [8]. The initial versions of genetic 

chronometers, such as HannumAge [9] and Intrinsic 

HorvathAge [10], were developed by utilizing DNAm 

levels obtained from various groups of age-associated 

CpG loci that demonstrate a robust association with 

chronological age. The HannumAge model was 

formulated utilizing 71 age-associated CpGs that were 

detected in blood [9]. On the other hand, the Intrinsic 

HorvathAge model was constructed using 353 CpGs 

that were found to be related to age across various body 

tissues and cell types. Furthermore, this model was 

adjusted to account for blood cell counts [10]. During 

the period of 2018-2019, novel genomic detectors were 

developed, namely PhenoAge [11] and GrimAge [12], 

which belong to the second generation of such 

detectors. These detectors were designed to forecast the 

likelihood of mortality and morbidity that are linked to 

the process of ageing. The PhenoAge dataset comprises 

information collected from 513 CpG and 9 clinical 

parameters, including albumin, alkaline phosphatase,  

C-reactive protein, creatinine level, hemoglobin 

transportation dimension, mean hemoglobin quantity, 

bloodstream glucose, lymphoid proportion, and white 

blood cell count, which are associated with mortality 

[11]. On the other hand, GrimAge dataset incorporates 

data from 1,030 CpG and 7 plasma proteins that are 
linked to smoking. The proteins in question are cystatin 

C, β-2-microglobulin, tissue-associated protease 1, 

adrenomedullin, development division protein 15, and 

fibrin stimulation inhibitor 1 (PAI-1) [12]. The 

evaluation of accelerated ageing encompassed the 

development of DunedinPACE, a third-generation 

biomarker for DNA methylation that calculates the pace 

of ageing through epigenomic means. The Dunedin 

Longitudinal Study Cohort was utilized to measure 19 

markers across multiple bodily systems (including 

cardiovascular, metabolism, liver, kidneys, immune, 

periodontal, and pulmonary) in a continuous manner 

among individuals aged 26, 32, 38, and 45 years old. 

This information was documented in a previous study 

[13]. The information yielded a model for ageing rate 

that is based on a specific DNA methylation biomarker, 

which captures age-related changes across various 

biological systems. 

 

HannumAge and Intrinsic HorvathAge exhibit superior 

predictive capabilities for actual age owing to their 

distinct composition, while PhenoAge and GrimAge 

demonstrate exceptional performance in forecasting 

health and longevity, as reported in literature [14]. The 

acceleration of HannumAge, Intrinsic HorvathAge, 

PhenoAge, and GrimAge has been found to be 

associated with age-related illnesses, as per previous 

research [7]. The results suggest a potential positive 

correlation between DNAm Age and age-related disease 

prevalence, although the findings exhibit some 

variability. Comparisons that are specific to diseases 

pose a challenge due to the significant heterogeneity of 

outcomes, even within disease categories. Two studies 

pertaining to ischemic stroke were conducted with 

differing objectives. One study aimed to determine the 

incidence of ischemic stroke [15], while the other 

focused on assessing the severity of ischemic stroke 

outcomes during follow-up [16]. Despite variations in 

study populations and outcomes, with the exception of 

one study, all studies arrived at the conclusion that an 

increase in DNAm Age is indicative of heightened risk 

for future illnesses. These findings are consistent with 

mortality and offer further evidence for the potential of 

DNAm Age as a global biomarker for biological aging 

and health. 

 

Furthermore, telomeres, as repetitive sequences at the 

ends of chromosomes, gradually shorten with cell 

division. Telomere length is considered a marker of 

cellular aging and regenerative capacity. Studies have 

found that telomere shortening is closely associated 

with the occurrence of various chronic diseases, 

including cardiovascular diseases and ischemic stroke 

[17, 18]. Telomere shortening may lead to cellular 

dysfunction and inflammatory responses, which are 

important mechanisms in the occurrence of stroke [19]. 
 

Integrating studies on DNA methylation and telomere 

length can provide a comprehensive perspective, 
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revealing their joint mechanisms in the occurrence of 

ischemic stroke. Changes in DNA methylation may 

affect telomere length by regulating gene expression, 

thereby influencing cellular aging and function. 

Additionally, environmental and lifestyle factors may 

jointly influence stroke risk by affecting DNA 

methylation status and telomere length [20, 21]. By 

studying these two biomarkers, we can better 

understand the pathological mechanisms of ischemic 

stroke and develop more effective predictive and 

preventive strategies. 

 

The strength of the association between accelerated 

methylation age and age-related diseases is found to 

vary depending on the methylation clock, as per recent 

findings. The correlation between epigenetic age 

velocity and age-related ailments, such as tumors, 

appears to be notably stronger when determining 

biological age using second-generation clocks 

(PhenoAge and GrimAge) as opposed to first-

generation clocks (HannumAge and Intrinsic 

HorvathAge) [22]. The lack of agreement among 

genetic clocks could be attributed to the diversity in 

their research designs and the differences in the 

techniques employed, which may also indicate distinct 

physiological senescence mechanisms. This 

heterogeneity may contribute to the variability observed 

in the results [7]. Despite the consensus among 

researchers, the causal relationship between DNA 

methylation and age-related disease risk remains 

uncertain. It is yet to be determined whether DNA 

methylation serves as a predictive biomarker without 

any causal effect. 

 

Mendelian randomization is an epidemiological tech-

nique that employs genetic variations as instruments to 

establish correlation between a risk factor (exposure) 

and an outcome of interest, subject to specific 

assumptions. This technique holds significant value in 

the field [23]. The MR method relies on three basic 

assumptions: (I) the instrumental variables (i.e., SNPs) 

are closely related to the exposure factors (e.g., DNA 

methylation); (II) the instrumental variables affect the 

outcome only through their influence on the exposure 

factors; (III) the instrumental variables are independent 

of confounding factors [24]. However, measurement 

biases and differences in data formats across platforms 

need to be corrected through standardization and 

normalization processes. To this end, we utilized 

various bioinformatics tools and software packages, 

such as EasyQC and METAL, to ensure data 

consistency and accuracy [25]. To ensure that the 

instrumental variables influence the outcome only 
through the exposure factors, we conducted sensitivity 

analyses, such as MR-Egger regression and weighted 

median estimation, to assess potential pleiotropy 

(i.e., the instrumental variables affecting the outcome 

through other pathways) [26]. 
 

The findings of a meta-analysis conducted on genome-

wide association studies (GWAS) indicate that there are 

137 genetic regions that are associated with methylation 

age acceleration. These regions were estimated using 

six regulation indicators and can be utilized in the MR 

framework [27]. The current study investigated the 

causal relationship between epigenetic age acceleration 

and stroke, including ischemic stroke subtypes such as 

cardioembolic stroke, large-artery atherosclerosis 

stroke, and small-vessel disease stroke, through a two-

sample bidirectional Mendelian randomization analysis. 

In addition, our study examined the causal impact of 

stroke and its various subtypes on diverse indicators of 

epigenetic age acceleration. The study’s results offer 

new perspectives on the intricate connection between 

the process of biological aging and the likelihood of 

experiencing a stroke. These insights may have 

significant implications for developing strategies aimed 

at preventing and treating strokes. 

 

METHODS 
 

Data collection and in silico DNA methylation 

analysis  

 

The methylation status of 353 CpG sites related to age 

was analyzed in silico through the utilization of 

Illumina BeadChip450K methylation array data to 

determine the DNA methylation condition [10]. The 

methylation levels of these sites are significantly 

correlated with age. The selection of these sites is based 

on their consistency and stability across different tissues 

and cell types, ensuring the model’s applicability and 

accuracy across different individuals [9, 10]. Existing 

research indicates that many age-related CpG sites are 

not only markers of biological age but are also 

associated with various age-related diseases, such as 

cardiovascular diseases and neurodegenerative diseases 

[28, 29]. 
 

A cohort of 185 patients diagnosed with ischemic stroke 

underwent whole-genome methylation sequencing of 

whole blood using the Illumina HumanMethylation450 

BeadChip (HumanMethylation450_15017482), from 

which data was collected. The NCBI Gene Expression 

Omnibus Database (GEO accession number: GSE69138 

[30–32]) revealed that among the patients with available 

samples, there were 109 cases of atherothrombotic 

stroke, 18 cases of cardioembolic stroke, and 58 cases 

of small-vessel stroke. The demographic and clinical 
characteristics of each patient were documented, 

encompassing factors such as age, gender, and the 

subtype of stroke. 
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Methylation clock analysis 

 

We employed Horvath’s methylation clock model to 

calculate the DNA methylation age (DNAm Age) for 

each patient, an estimation of their physiological age. 

We determined age acceleration by comparing DNAm 

Age with chronological age, using two distinct 

measures: Relevant calculation formula: Age 

Acceleration Diff = DNAm Age - Chronological Age. 

 

Age Acceleration Residual = residuals (lm(as.numeric 

(df$DNAm Age)~as.numeric(df$Age), subset= df)). 

Age Acceleration Diff, calculated as DNAm Age minus 

chronological age, and Age Acceleration Residual, 

derived from the residuals of a linear regression model 

(using the lm function in R) with DNAm Age as the 

dependent variable and chronological age as the 

independent variable. Age Acceleration Diff directly 

reflects the disparity between DNA methylation age 

and chronological age. If the Age Acceleration Diff is 

positive, it indicates that the biological age is greater 

than the chronological age, which may imply an 

accelerated aging process; conversely, a negative value 

suggests a slower aging process. In statistical analyses, 

this metric helps identify individuals with accelerated 

biological aging and explore its association with stroke 

risk [10, 11]. Age Acceleration Residual, after 

adjusting for the effect of age on DNA methylation 

age, more accurately reflects the degree to which an 

individual’s biological age deviates from its expected 

value. In statistical analyses, Age Acceleration 

Residual is used to assess the potential relationship 

between abnormal acceleration of biological age and 

stroke risk, excluding the confounding effect of 

chronological age [20]. The F test was utilized to figure 

out the correlation that exists between locus-by-locus 

variation in DNA methylation and stroke longevity or 

age of beginning, as well as to assess the erroneous 

discovery rate in order to produce an adjusted q-value 

that corrects for multiple comparisons. The F-test can 

effectively detect significant variance differences 

between groups, thereby helping to identify potentially 

important DNA methylation sites [33]. The coefficient 

of correlation of Pearson was applied to estimate the 

causal connection among DNAm age-acceleration and 

stroke longevity or age of onset. Using linear 

regression, it was determined whether the correlation 

matches a linear model. For each CpG site (cg IDs), 

differences between the mean mutation estimates of the 

contrasted diagnosis groups (Δβ-values) and the values 

of P were determined. For statistical evaluation, the 

Kolmogorov-Smirnov test was utilized to confirm 

normal distribution. In all instances where a normal 
distribution was observed, a Student’s t-test in 

Benjamini and Hochberg adjustment was used to 

compare paired groups. In all cases, significance 

criteria were P < 0.05. Additionally, we validated the 

reliability of the methylation clock in aging outcomes 

by collaborating with Andrew E. Teschendorff [34] and 

Jamaji C. Nwanaji-Enwerem [35], using EpiTOC2 to 

measure DNAm changes related to mitotic activity. 

 

Mendelian randomization study design 

 

To further explore their causal relationship, we 

performed two-sample bidirectional MR of this study. 

In short, we utilized GWAS data of DNA methylation 

to explore the causal relationship between age-related 

phenotype and stroke and its subtypes. 

 

Data sources for epigenetic age acceleration 

 

The present study obtained condensed genetic 

correlation estimates for intrinsic environmental age 

acceleration, specifically HannumAge, PhenoAge, and 

GrimAge, from a recent meta-analysis of GWAS 

pertaining to biological aging. The meta-analysis 

encompassed a sample of 34,710 individuals of 

European descent and 6,195 individuals of African 

American descent [27]. Furthermore, the selection of 

DNAm PAI1 levels was based on its stronger 

correlation with cardiovascular and metabolic disorders 

when compared to epigenetic modification clocks [12]. 

Additionally, granulation cells proportion was chosen 

due to its significant interactions across several 

epigenetic timers, including GrimAge and PhenoAge 

[11, 12]. The primary source offers a comprehensive 

account of the methodologies employed. Age-adjusted 

DNAm estimates were computed using the Horvath 

genetic age estimator program (https://dnamage. 

genetics.ucla.edu) or autonomous scripts. Individuals 

whose circadian methylation estimates deviated by 

more than 5 standard deviations from the mean were 

excluded from subsequent analysis. Single nucleotide 

polymorphisms (SNPs) have been identified and 

differentially calculated for each cohort in the 

conducted meta-analysis. The genotypes in all cohorts, 

except for the Sister Study and the Genetics of Lipid 

Lowering Drugs and Diet Network Study, were imputed 

using either the HRC or 1000 Genomes Project Phase 3 

reference panels. The Sister Study lacked estimated data 

at the time of the study, while the Genetics of Lipid 

Lowering Drugs and Diet Network Study utilized 

whole-genome sequencing data. GWAS summary 

statistics were obtained from each population through 

the utilization of multiplicative linear regression models 

that took into consideration sex and genomic principal 

components. The statistics were processed and 

standardized using the ‘EasyQC’ R package, followed 
by conducting ascertained-effect systematic reviews 

using the METAL program [25]. Moreover, short 

telomere length is a well-established trigger of 
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replicative senescence [36], we further obtained genetic 

association estimates for epigenetic telomere length 

from UK Biobank which consisted of 472,174 

participants. We followed the method outlined by 

Sudlow, C., et al. for the measurement and processing 

standards of epigenetic telomere length in the UK 

Biobank (UKB) data [25, 37, 38]. 

 

Data sources for stroke 

 

We derived stroke, ischemic stroke and common 

etiological subtypes of ischemic stroke include large-

artery atherosclerotic stroke (LAS), cardioembolic 

stroke (CES), and stroke caused by small-vessel disease 

(SVS) from a multiancestry genome-wide-association 

meta-analysis in 521,612 individuals (67,162 cases and 

454,450 controls) [39]. The original publication 

expounded upon the comprehensive analytical 

approach. The studies included in the analysis employed 

genotypes that were attributed to no less than the 1000G 

phase 1 multiancestral reference panel. Statistical 

analyses were conducted using logistic regression (or 

Cox regression analyses for long-term population-based 

cohort studies) for five stroke characteristics. All 

determined and imputed variations in genes were used 

in dosage format, and appropriate programs were 

utilized under a combined genetic model with at least 

sex and age as covariates. 

 

Genetic instruments 

 

In order to assess the linkage disequilibrium (LD) 

among SNPs, the researcher identified SNPs that 

exhibited a significant association with stressors at the 

genetic sequence-wide significance level (P < 5 × 

10−8). Subsequently, a clumping process was 

performed (R2 < 0.001, window size = 10000kb) 

utilizing data from the European population that was 

collected for the 1000 genomes project. Using the 

PLINK command, identify SNPs within the set window 

that have an R2 greater than the threshold with the seed 

SNP, and retain only the most significant SNP. The 

purpose of this step is to identify SNPs within the set 

window with an R² greater than the threshold using the 

PLINK command and retain only the most significant 

SNPs. This method helps reduce issues related to 

multiple comparisons, simplifies the analysis process, 

and enhances statistical power [40–42]. In instances 

where the instrumental SNP associated with the degree 

of exposure was not detected in the resulting dataset, we 

either replaced it with a suitable proxy SNP (r2 > 0.8) or 

removed it altogether. In order to assess sensitivity and 

identify any potential breaches of the presumption of 
relevance, we conducted an analysis by calculating F-

statistics (F= (β/se)2) for all measurements of genetic 

generation progression, with the exception of the 

experimental variable (F < 10), which was deemed to be 

weak. The SNP genotypes were standardized across 

studies and palindromic SNPs with unclear allele 

frequencies were eliminated.  

 

Statistical analysis 

 

The study employed exponentially random impact 

inverted variation weighted (IVW) Mendelian 

randomization (MR) to investigate the association 

between accelerated epigenetic age and stroke risk 

across genetic variants [43]. Several alternative methods 

for MR have been proposed to address the issue of 

directional pleiotropy. These methods include MR-

Egger, Weighted median, Weighted mode, and Simple 

mode. The Cochran Q test was employed in the context 

of the instrumental variable analysis to ascertain the 

presence or absence of horizontal pleiotropy. The study 

employed the MR-Egger, MR-Pleiotropy Residual Sum, 

and Outlier methods to examine horizontal pleiotropy 

[44, 45]. A significant Egger intercept indicates the 

presence of directional and unbalanced horizontal 

pleiotropy. The calculation of the effect estimate 

involves the utilization of MR-Pleiotropy Residual Sum 

and Outlier methodology, which entails the 

identification and subsequent exclusion of outlier SNPs, 

also known as putative pleiotropic variations. The study 

employed a “leave-one-out” sensitivity analysis to 

identify potentially significant SNPs by iteratively 

conducting MR while excluding each SNP. The R2 

values were computed by augmenting the EAF values 

with 2 × EAF × (1 - EAF) × β2. The statistical 

software R was utilized to execute the studies, 

employing the programs “TwoSampleMR,” 

“Mendelian randomization,” and “MRPRESSO.” 

Statistical significance was determined by P-values < 

0.05. We used G × Power software to calculate the 

statistical power with an expected medium effect size 

(Cohen’s d = 0.5), significance level (α = 0.05), 

ensuring power exceeding 80% [46]. Based on existing 

studies associating biological aging and stroke risk, 

along with data from 34,710 samples of European 

descent and 6,195 samples of African American 

descent, we conducted sample size calculations to 

ensure detection of associations of medium effect size 

[47]. To address the complexity of the relationship 

between epigenetics and disease, we employed multiple 

testing correction methods (such as Benjamini-

Hochberg correction) to control the false positive rate 

due to multiple comparisons [48]. 

 

Data availability statement 

 
The article/Supplementary material contains the original 

contributions made to the study. Corresponding authors 

can be contacted for more information. 
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RESULTS 
 

Age acceleration in ischemic stroke patients 

 

The findings of the study suggest a possible association 

between age acceleration and ischemic stroke, as DNAm 

Age was observed to surpass chronological age in  

the cohort of individuals with ischemic stroke. The 

dissimilarity between methylation age and chronological 

age was most evident in individuals with cardioembolic 

stroke, with a median difference of 9 years. Conversely, 

the difference was least pronounced in those with 

atherothrombotic stroke, as depicted in Figure 1A–1D. 

Additionally, Andrew E. Teschendorff [34] and Jamaji 

C. Nwanaji-Enwerem [35], et al. used epiTOC2 to 

estimate the intrinsic stem cell proliferation rates in 

various normal tissue types, (Pearson correlation = 0.92, 

R² = 0.85, P = 3e−6), validating the association between 

methylation and the epigenetic mitotic clock. 

 

Divergent age acceleration among stroke subtypes 

 

The analysis of stroke subtypes has revealed significant 

diversity in age acceleration. The study findings 

indicate that patients diagnosed with cardioembolic 

stroke demonstrated the most significant age 

acceleration, while those with small-vessel and 

atherothrombotic stroke exhibited a lower degree of age 

acceleration (as illustrated in Figure 1E–1H). 

 

Sex disparities in age acceleration 

 

In general, there was a statistically significant difference 

in age acceleration between females and males. The 

observed disparity in gender was predominantly 

ascribed to individuals who had suffered from 

cardioembolic stroke. There were no statistically 

significant variations between sexes in residual-based 

age accelerations, as illustrated in Figure 2A–2H. 

 

The causal effect of stroke on age 

 

Eight SNPs related to stroke were identified as robust 

genetic instruments with high confidence. The results 

presented in Figure 3A–3D demonstrate that the IVW 

revealed a negative causal relationship between stroke 

and telomere length (OR = 0.927 (95% CI, 0.876–

0.981), P = 0.08). These findings suggest that both 

stroke and ischemic stroke may have a detrimental 

effect on telomere length. The study yielded comparable 

findings for ischemic stroke (OR = 0.934 (95% CI, 

0.882–0.989), P = 0.019) as depicted in Figure 4A, 4E–

4G. Nonetheless, no causal relationship was established 

between LAS, CES, and SVS and telomere length, as 

illustrated in Supplementary Figures 1–8. The sole 

statistical method that demonstrated a favorable causal 

impact of ischemic stroke on PhenoAge was the 

Weighted Median (OR = 1.838 (95% CI, 1.004–

03.362), P = 0.048) (Figure 4B–4D). This suggests that 

ischemic stroke may potentially hasten the process of 

aging as measured by PhenoAge. No significant causal 

relationship was observed between stroke and its 

subtypes with intrinsic epigenetic age acceleration, 

including HannumAge, PhenoAge, GrimAge, and 

PAI1. 

 

The causal effect of age on stroke 

 

A reverse Mendelian randomization analysis was 

conducted to provide additional elucidation on the 

causal impact of age on stroke, with age serving as the 

exposure and stroke as the outcome. The study’s 

findings indicate that there is no discernible causal 

relationship between age phenotypes and the incidence 

of stroke, ischemic stroke, LAS, CES, and SVS. 

 

DISCUSSION 
 

Epigenetic age acceleration, which refers to the variance 

between DNAm Age and chronological age, serves as a 

surrogate for biological aging and has been associated 

with various age-related illnesses [49]. Furthermore, it 

has been shown that methylation markers exhibit 

considerable potential in forecasting telomere length, 

which serves as a molecular indicator of cellular aging 

[50, 51]. The correlation between epigenetic age 

acceleration and the risk of ischemic stroke, with 

regards to stroke subtypes and gender-specific 

variations, has not been extensively investigated, 

despite the emergence of supporting evidence [15, 16]. 

 

The present study furnishes empirical support for the 

correlation between epigenetic age acceleration and 

ischemic stroke, with the most notable disparities being 

discerned in individuals afflicted with cardioembolic 

stroke. Cardioembolic strokes are typically caused by 

heart diseases such as atrial fibrillation, which can lead 

to systemic inflammatory responses. Systemic 

inflammation can accelerate biological aging by 

affecting DNA methylation and other epigenetic 

mechanisms through various pathways. Inflammatory 

markers such as C-reactive protein (CRP) and 

interleukin-6 (IL-6) have been shown to be associated 

with accelerated epigenetic aging [29, 52]. 

Cardioembolic strokes typically involve thrombus 

formation in the systemic blood circulation, suggesting 

that their impact may not be limited to the cerebral 

vascular system but also involve epigenetic changes in 

multiple organs and systems throughout the body 

[28, 53]. This systemic impact may manifest epigenetic 

aging acceleration more prominently than localized 

vascular lesions. The pathological mechanisms of large 

11975



www.aging-us.com 7 AGING 

artery atherosclerotic stroke and small vessel disease 

stroke differ from those of cardioembolic stroke. Large 

artery atherosclerotic stroke is mainly due to plaque 

formation and rupture in large vessels, whereas small 

vessel disease stroke is due to pathology in cerebral 

small arteries. Although these pathological processes 

also affect epigenetics, their effects may differ in 

manner and degree from cardioembolic stroke [54]. 

 

 
 

Figure 1. An analysis of a data set pertaining to ischemic stroke. The scatter graphs presented in the top row (A–D) of the Ischemic 

stroke data sets depict the relationship between DNAm age (x-axis) and chronological age (y-axis). A represents a cardioembolic stroke and 
is colored red, B represents a small-vessel stroke and is colored blue, while C represents an atherothrombotic stroke and is colored black. 
The line of regression through IS is represented by the black line. The vertical distance to the black regression line corresponds to the effect 
of age acceleration for each subject. Although there is a strong correlation between chronological age and DNAm age, it has been observed 
that Red, Blue, and Black Alphabet tend to exhibit accelerated aging effects as they lie above the black line. The lowermost tier (E–H) 
depicts the correlation among chronological age, DNAm age, Age Acceleration Diff, Age Acceleration Residual, and the presence or absence 
of Ischemic Stroke Disease. The bar graphs’ titles comprise the P-value obtained from a nonparametric group comparison test, specifically 
the Kruskal-Wallis test. 
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In addition, our study revealed the presence of gender-

based differences in age acceleration, with females 

displaying a significantly greater degree of age 

acceleration in comparison to males. This discrepancy 

was mainly attributed to cardioembolic stroke. The 

Mendelian randomization analysis conducted in our 

study has indicated a negative causal impact of stroke 

on telomere length. This finding suggests that stroke 

may be a contributing factor to the reduction of 

telomere length. Nevertheless, the study did not identify 

any causal relationships between age phenotypes and 

the risk of stroke. The correlation between methylation 

age acceleration and ischemic stroke, with a specific 

focus on female patients and those with cardioembolic

 

 
 

Figure 2. The graphical representation of Age Acceleration Diff (y-axis) in correlation with Sex for All stroke, cardioembolic stroke, small-vessel 

stroke, and atherothrombotic stroke can be observed in panels (A–D). Panels (E–H) illustrate the associations between Age Acceleration 
Residual (depicted on the y-axis) and Sex across All stroke, cardioembolic stroke, small-vessel stroke, and atherothrombotic stroke. 
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Figure 3. The impact projections 6 DNA epigenetic modification-estimated traits (DNA epigenetic modification-estimated 
granulation cells dimensions, methylation of DNA GrimAge speed, DNA the methylation process Hannum age speed, 
Fundamental epigenetic modification age acceleration, which is DNA epigenetic regulation-estimated plasminogen 
stimulating activator inhibitor-1 levels, and DNA the methylation process PhenoAge acceleration) in stroke. (A) Examination 
of the relationship between an increase in exposure to Stroke and the risk of DNA epigenetic regulation-estimated characteristics and 
Telomere length utilising Inverse variance weighed, MR Egger, Simple mode, Weighted mode and Weighted median estimates. (B) A scatter 
plot showing distinct SNP effects and predictions from various MR techniques regarding the impact of Stroke on Telomere duration. 
(C) Funnel illustrations of Telomere length and Stroke. (D) Leave-one-out research graphs for the effect of Stroke on Telomere duration. 
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Figure 4. In ischemic stroke, the effect estimates 6 DNA methylation-based phenotypes and telomere length. (A) Examination 

of the association between an increase in ischemic stroke exposure and the risk of DNA histone modifications-estimated phenotypes and 
Telomere length, utilising Inverse variance weighed, MR Egger, Simple mode, Weighted mode and Weighted median estimates. (B) Scatter 
plots showing distinct SNP effects and approximations from various MR methods to investigate the effect of stroke caused by ischemic 
stroke on the acceleration of DNA methylation PhenoAge. (C) funnel Diagram of Ischemic Stroke on accelerated DNA methylation 
PhenoAge. (D) Leave-one-out regression diagrams for Ischemic Stroke and accelerated DNA methylation PhenoAge. (E) Scatter plots 
illustrating distinct SNP effects and estimates from various MR techniques depicting the influence of Ischemic Stroke on Telomere duration. 
(F) Ischemic Stroke funnel plots on Telomere length. (G) Leave-one-out evaluation plots for the effect of Ischemic Stroke on Telomere length. 
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stroke, underscores the significance of incorporating 

biological age into stroke risk factor research, alongside 

chronological age. Further investigations are necessary 

to comprehend the underlying mechanisms that 

contribute to sexual dimorphism in stroke risk and out-

comes, specifically regarding sex-specific differences in 

age acceleration. 

 

The objective of our study was to employ a two-sample 

bidirectional Mendelian randomization approach to 

establish the causal association between different 

measures of epigenetic age acceleration and stroke, 

along with its subtypes. In general, our findings do not 

provide robust evidence to establish a causal 

relationship between age acceleration and stroke, or the 

reverse. Nonetheless, it was noted that there may be a 

plausible causal relationship between ischemic stroke 

and the acceleration of PhenoAge. This finding 

necessitates additional research to be conducted. The 

paucity of evidence substantiating a causal association 

between epigenetic age acceleration and stroke could be 

ascribed to various factors. The potential insufficiency 

of sample sizes in the available GWAS data may have 

hindered the detection of weak causal effects. 

Furthermore, the study’s methodology may have 

potentially introduced survivorship bias, given that 

solely those individuals who survived until the age of 

stroke ascertainment were incorporated. In addition, 

despite the implementation of various MR techniques to 

ensure the reliability of the analysis and to address the 

possibility of pleiotropy, it is plausible that our findings 

may have been affected by unmeasured or residual 

confounding. Finally, it should be noted that our 

analysis was centered on stroke and its prevalent 

subtypes, and therefore, it is not possible to completely 

eliminate the likelihood of causal associations within 

particular, more limited stroke subcategories that were 

not investigated in this research. 

 

The potential causal effect of ischemic stroke on 

PhenoAge acceleration, as found by our study, warrants 

further attention. The PhenoAge clock has demonstrated 

a stronger correlation with disease and mortality risk in 

comparison to other epigenetic clocks, as evidenced by 

previous studies [55]. The observed correlation could 

potentially be attributed to biomarkers that are linked to 

both stroke and expedited aging. Individuals with 

accelerated PhenoAge have been shown to exhibit 

higher levels of inflammation, which is a recognized 

risk factor for stroke [56, 57]. Additional investigation 

is warranted to examine the common biological 

mechanisms that underlie both stroke and accelerated 

aging. DNA methylation is associated with the 

regulation of cell apoptosis and repair mechanisms. 

Accelerated DNA methylation age may lead to 

increased cell apoptosis and reduced repair capacity, 

thereby increasing the risk of stroke [6]. Additionally, it 

is important to explore the potential ameliorative impact 

of lifestyle modifications and pharmacological inter-

ventions on this association. 

 

The main findings of this study revealed a significant 

association between DNA methylation estimated 

phenotype and telomere length with the risk of ischemic 

stroke. Identifying DNA methylation sites and telomere 

length associated with the risk of ischemic stroke 

facilitates the development of new screening tools. 

These epigenetic markers can be used for early 

detection of high-risk individuals, thereby implementing 

preventive measures. For instance, combining 

Horvath’s methylation clock model with telomere 

length measurements could introduce epigenetics-based 

screening methods into routine medical examinations 

[6]. This helps identify individuals who have not yet 

shown obvious symptoms but have a higher risk of 

stroke. Based on the screening results of epigenetic 

markers, personalized prevention strategies can be 

developed. For instance, for individuals at high risk due 

to accelerated DNA methylation age and shortened 

telomeres, more frequent health monitoring and early 

interventions such as blood pressure control, lipid-

lowering medication, and lifestyle changes can be 

recommended [58]. 

 

The principal advantage of our investigation is the 

implementation of a two-sample MR analysis, which 

permits the examination of reciprocal causal 

associations while mitigating the potential confounding 

influences frequently encountered in observational 

research. Nonetheless, our research encountered certain 

constraints. As previously stated, it is possible that the 

sample sizes and outcome measures utilized in the study 

were not adequately detailed or inclusive enough to 

account for more subtle causal impacts. Furthermore, the 

limited representation of non-European samples in the 

subject matter may restrict the generalizability of our 

results. Our two-sample MR analysis yielded insufficient 

evidence to establish a causal relationship between 

methylation age acceleration and stroke, indicating the 

need for further inquiry utilizing larger sample sizes and 

more precise biological age assessments. Enhancing our 

understanding of stroke pathophysiology necessitates a 

comprehensive comprehension of the interplay between 

chromosomal age acceleration and stroke risk, which 

may pave the way for the emergence of innovative stroke 

prevention and treatment modalities.  

 

CONCLUSION 
 

The study’s results suggest that Epigenetic age 

acceleration may play a role in the risk of ischemic 

stroke, particularly in relation to subtype-specific 
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associations and gender disparities. The findings of this 

study suggest the need for further investigation into the 

biological mechanisms that underlie the associations 

between age acceleration, stroke subtypes, and sex. This 

could potentially lead to the use of methylation-based 

age biomarkers in stroke risk stratification and 

prevention strategies. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Examination of the association between an increase in Cardioembolic stroke exposure and the 
risk of DNA histone modifications-estimated phenotypes and Telomere length, utilising Inverse variance weighed, MR 
Egger, Simple mode, Weighted mode and Weighted median estimates. 
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Supplementary Figure 2. Examination of the association between an increase in Large-artery atherosclerosis stroke 
exposure and the risk of DNA histone modifications-estimated phenotypes and Telomere length, utilising Inverse variance 
weighed, MR Egger, Simple mode, Weighted mode and Weighted median estimates. 
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Supplementary Figure 3. Examination of the association between an increase in Small-vessel stroke exposure and the risk 
of DNA histone modifications-estimated phenotypes and Telomere length, utilising Inverse variance weighed, MR Egger, 
Simple mode, Weighted mode and Weighted median estimates. 
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Supplementary Figure 4. Analysis of the association between DNA methylation-estimated phenotypes and Telomere 
length exposure and the risk of Cardioembolic stroke using Inverse variance weighed, MR Egger, Simple mode, Weighted 
mode and Weighted median estimates. 
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Supplementary Figure 5. Analysis of the association between DNA methylation-estimated phenotypes and Telomere 
length exposure and the risk of Large-artery atherosclerosis stroke using Inverse variance weighed, MR Egger, Simple 
mode, Weighted mode and Weighted median estimates. 
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Supplementary Figure 6. Analysis of the association between DNA methylation-estimated phenotypes and Telomere 
length exposure and the risk of Small-vessel stroke using Inverse variance weighed, MR Egger, Simple mode, Weighted 
mode and Weighted median estimates. 
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Supplementary Figure 7. Analysis of the association between DNA methylation-estimated phenotypes and Telomere 
length exposure and the risk of Stroke using Inverse variance weighed, MR Egger, Simple mode, Weighted mode and 
Weighted median estimates. 
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Supplementary Figure 8. Analysis of the association between DNA methylation-estimated phenotypes and Telomere 
length exposure and the risk of Ischemic stroke using Inverse variance weighed, MR Egger, Simple mode, Weighted mode 
and Weighted median estimates. 
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