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INTRODUCTION 
 

Osteosarcoma is a skeletal system malignant tumor  

that occurs primarily in younger patients. Among 

adults, osteosarcoma is the third most common tumor 
after chondrosarcoma and chordoma. The global 

annual incidence rate of osteosarcoma is 3.4 cases  

per one million people [1], and the leading cause of 
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ABSTRACT 
 

The relationship between metastasis-associated protein 2 (MTA2) overexpression and tumor growth and 
metastasis has been extensively studied in a variety of tumor cells but not in human osteosarcoma cells. This 
study aims to elucidate the clinical significance, underlying molecular mechanisms, and biological functions of 
MTA2 in human osteosarcoma in vitro and in vivo. Our results show that MTA2 was elevated in osteosarcoma 
cell lines and osteosarcoma tissues and was associated with tumor stage and overall survival of osteosarcoma 
patients. Knockdown of MTA2 inhibited osteosarcoma cell migration and invasion by reducing the expression of 
urokinase-type plasminogen activator (uPA). Bioinformatic analysis demonstrated that high levels of uPA in 
human osteosarcoma tissues correlated positively with MTA2 expression. Furthermore, treatment with 
recombinant human uPA (Rh-uPA) caused significant restoration of OS cell migration and invasion in MTA2 
knockdown osteosarcoma cells. We found that ERK1/2 depletion increased the expression of uPA, facilitating 
osteosarcoma cell migration and invasion. Finally, MTA2 depletion significantly reduced tumor metastasis and 
the formation of lung nodules in vivo. Overall, our study suggests that MTA2 knockdown suppresses 
osteosarcoma cell metastasis by decreasing uPA expression via ERK signaling. This finding provides new insight 
into potential treatment strategies against osteosarcoma metastasis by targeting MTA2. 
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death in osteosarcoma is lung metastasis [2]. 

Osteosarcoma is characterized by the production  

of calcified osteoid matrix by tumor cells and a  

high propensity for lung metastasis [3]. Despite  

recent progress in treatment using a combination  

of chemotherapy and surgery, the prognosis for OS 

patients remains poor, and the 5-year survival rate  

is low [4]. The molecular mechanisms underlying 

osteosarcoma progression and drug resistance are still 

not fully understood. 

 
Tumor metastasis, the spread of cells from the primary 

tumor to other sites to form secondary tumors, is a 

major factor contributing to cancer-related mortality 

[5]. Metastasis-associated protein 2 (MTA2), a 

member of the metastasis-associated transcription 

regulator family, is a core component of nucleosome 

remodeling and histone deacetylation complexes [6]. 

Several studies suggest that MTA2 is highly expressed 

in human cancers and is directly associated with 

malignancy, metastasis, drug resistance, and a poor 

cancer prognosis [7]. Other studies have shown that 

MTA2 is overexpressed in a variety of cancers, 

including cervical [8], liver [9], breast [10], and lung 

[11]. The inhibition of MTA2 expression in human 

renal cancer cells decreases their invasiveness and 

metastasis through the miR-133b/MMP9 pathway [12]. 

Overexpression of MTA2 contributes to the growth, 

metastasis, and epithelial-mesenchymal transition 

(EMT) progression of esophageal squamous cell 

carcinoma through the EIF4E-Twist pathway [13]. 

Depletion of MTA2 suppresses oral cancer cell 

metastasis via the p-cofilin-1/LC3-II pathway [14]. 

Thus, mounting evidence suggests that MTA2 plays a 

crucial role in tumor progression and affects cancer 

prognosis. However, its role in osteosarcoma remains 

unclear and requires further investigation. 

 
Urokinase plasminogen activator (uPA) is a serine 

protease that catalyzes the conversion of plasminogen 

to its active form, plasmin. Plasmin then contributes 

to extracellular matrix (ECM) degradation, a process 

that is essential to tumor proliferation, metastasis,  

and angiogenesis [15, 16]. Elevated uPA expression  

is associated with poorer survival among patients  

with pancreatectomy [17], hepatocellular carcinoma 

[18], renal cancer [19] and glioma [20]. There is 

involvement of uPA expression in metastatic OS  

cells and in the osteosarcoma microenvironment  

[21]. Wu et al. found that COX2 knockdown in OS-

732 cells significantly inhibited uPA expression and 

their invasiveness [22]. Therefore, uPA expression 

plays an important role in osteosarcoma metastasis. 

However, the relationship between MTA2 and uPA 

expression and their effects on the metastatic behavior 

of osteosarcoma are unclear. 

The present study aims to determine whether MTA2 is 

overexpressed in human osteosarcoma tissues and cells 

and whether MTA2 expression levels correlate with 

clinical data and overall survival rates of osteosarcoma 

patients. Using a loss-of-function assay, we assess  

the effects of MTA2 depletion on osteosarcoma cell 

metastasis in vitro and in vivo with the goal of 

determining whether MTA2 is a potential therapeutic 

target for osteosarcoma. 

 

RESULTS 
 

Abnormal expression of MTA2 in osteosarcoma 

tissues and cell lines 

 

To examine the clinical significance of MTA2  

in human osteosarcoma patients, we analyzed  

MTA2 expression in a human osteosarcoma tissue 

array. Compared to normal tissues, MTA2 protein 

expression was upregulated in osteosarcoma tumor 

tissue (P < 0.01) (Figure 1A). Furthermore, MTA2 

expression was greater in osteosarcoma tissue of 

stages II (IIA+IIB) and III than in that of stage I  

(P < 0.01) (Figure 1B). Analysis of data in TCGA 

using the TNMplot software showed that the MTA2 

protein level was significantly higher in osteosarcoma 

tissue than in normal tissue (Figure 1C, P < 0.001). 

Notably, Kaplan–Meier analysis demonstrated that 

higher MTA2 levels correlated with poorer overall 

survival in human OS patients (Figure 1D; HR,  

1.62; P = 0.019). These findings indicate that  

MTA2 upregulation of may be important in human 

osteosarcoma progression.  

 

Effects of MTA2 knockdown on human osteo-

sarcoma cell growth, proliferation, migration, and 

invasion 

 

To investigate the biological role of MTA2 in human 

osteosarcoma progression, loss-of-function studies 

were conducted using HOS and 143B cells (Figure 

1E, 1F). Knockdown of MTA2 protein and mRNA 

expression in human HOS and 143B cells was 

confirmed by western blot and RT-qPCR assay, 

respectively (Figure 2A, 2B). Additionally, we 

explored the effects of MTA2 knockdown on in vitro 

cell growth and proliferation using the MTT and 

colony formation assays. The results show that MTA2 

knockdown did not have a significant influence on  

the growth or proliferation rate of HOS or 143B  

cells (Figure 2C, 2D. Notably, MTA2 knockdown 

significantly reduced the migration and invasion 

capabilities of both HOS and 143B cells (Figure 2E). 

Taken together, these findings show that MTA2 

inhibition resulted in a decrease in OS metastasis, 

independent of cell proliferation. 
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Figure 1. MTA2 overexpression in human osteosarcoma tissue and osteosarcoma cell lines is associated with poor prognosis 
in osteosarcoma patients. (A) Representative immunohistochemistry (IHC) results of MTA2 staining in normal and osteosarcoma 
specimens. Low: low expression of MTA2; High: high expression of MTA2. Scale bar: 50 µm. (B) Representative IHC results of MTA2 staining in 
human osteosarcoma specimens of different tumor stages. (C) Comparison of MTA2 expression between normal and tumor tissues from 
osteosarcoma patients using TNMplot from the TCGA database. (D) Kaplan–Meier analysis of overall survival in osteosarcoma patients with 
high and low MTA2 expression levels. (E, F) Protein and mRNA expression of MTA2 in 4 human osteosarcoma cell lines, as assessed using 
western blot and RT-qPCR assays. ** P < 0.01; # P < 0.05. 
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Inhibition of MTA2 reduced uPA expression and 

correlation between MTA2 and uPA levels with 

clinical OS tissues 

 

Screening of a human proteinase array containing 35 

protease proteins to identify MTA2-targeted proteins 

showed that lower MTA2 expression correlated with 

lower uPA expression in HOS cells (Figure 3A). This 

result was supported by RT-qPCR and western blot 

analysis results showing decreased uPA mRNA and 

protein expression in MTA2-knockdown-143B and 

HOS cells compared with shLuc-143B and -HOS cells 

(Figure 3B, 3C). Using TNMplot software to screen  

the TCGA database, we observed that uPA expression 

was elevated in human osteosarcoma tissues compared 

to that of normal tissues (P = 1.13e-41) (Figure 3D).  

 

 
 

Figure 2. Knockdown of MTA2 inhibits human osteosarcoma cell migration and invasion. (A, B) Stable MTA2 knockdown in HOS 
and 143B cells was ascertained by western blot and RT-qPCR assay. (C) Cell growth ability of shLuc- and shMTA2- osteosarcoma cells by MTT 
assay. (D) Proliferation rates of shLuc- and shMTA2- osteosarcoma cells as assessed by colony formation assay. (E) In vitro migration and 
invasion assays to evaluate the effect of MTA2 knockdown on the migratory and invasive abilities of HOS and 143B cells. ** P < 0.01. 
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Additionally, we found a positive correlation between 

uPA and MTA2 expression in OS patient tissues  

(R = 0.15; P = 0.015) by using the GEPIA database 

(Figure 3E). Overall, these findings suggest that uPA 

may be a biomarker for osteosarcoma and that 

involved in the molecular mechanism underlying of 

the involvement of MTA2 in human osteosarcoma 

metastasis. 

Effect of recombinant uPA treatment on cell 

migration and invasion in human osteosarcoma cells 

with MTA2 knockdown 

 

The action of uPA as a proteinase is proven to 

sequentially degrade the extracellular matrix, thereby 

triggering tumor cell metastasis [15]. Our results show 

that treatment with recombinant uPA (Rh-uPA) protein  

 

 
 

Figure 3. MTA2 depletion inhibits human osteosarcoma metastasis by decreasing uPA expression. (A) shLuc and shMTA2 

osteosarcoma cells were extracted, collected, and detected using a human proteinase array. (B, C) The mRNA and protein expression of uPA 
in both osteosarcoma cell lines by RT-qPCR and western blot assay. (D) Analysis of MTA2 expression between normal and tumor tissues from 
osteosarcoma patients using the TNMplot database. (E) Correlation analysis between MTA2 and uPA expression in human osteosarcoma 
tissues using GEPIA software. ** P < 0.01. 
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increased osteosarcoma cell migration (HOS cells, 

298.5% increase; 143B cells, 234.2% increase) and 

cell invasive ability (HOS cells, 220.2% increase; 

143B cells, 204.1% increase), compared with shLuc-

OS cells (Figure 4). Inhibiting MTA2 expression 

significantly reduced cell migration (shMTA2-HOS 

cells, 85.2% decrease; 88.8% decrease in shMTA2-

143B cells) and invasion (shMTA2-HOS cells,  

87.5% decrease; shMTA2-143B cells, 80.2% decrease) 

(Figure 4). Treatment with Rh-uPA protein restored 

the osteosarcoma cell migration (shMTA2-HOS  

cells, 167.3% increase; shMTA2-143B cells, 114.5% 

increase) and invasion (shMTA2-HOS cells, 141.2% 

increase; shMTA2-143B cells, 122.5% increase) by 

MTA2 depletion, compared with shMTA2-OS cells 

(Figure 4). These results indicate that uPA is involved 

in the MTA2-induced promotion of osteosarcoma 

metastasis.  

 

ERK1/2 is essential for MTA2/uPA-mediated 

migration and invasion ability of human osteo-

sarcoma cells  

 

Considering the importance of the ERK1/2 pathway  

in osteosarcoma metastasis [23], we next focused  

on the molecular mechanism of ERK1/2 in human 

osteosarcoma cells. Western blot assay results show that 

MTA2 knockdown induced ERK1/2 phosphorylation in 

both osteosarcoma cell lines, with no change in the total 

ERK1/2 protein level (Figure 5A). Using siRNA-ERK 

to block endogenous ERK1/2 expression in HOS cells, 

we observed a decrease in the increased expression of 

uPA induced by MTA2 depletion (Figure 5B). MTA2 

knockdown led to a significant decrease in the migration 

and invasive ability of HOS cells, whereas silencing 

ERK reversed the cell migration and invasion inhibited 

by MTA2 depletion (Figure 5C). 

 

MTA2 knockdown mitigated osteosarcoma metastasis 

in vivo  

 

To determine the effect of MTA2 on the progression  

of metastasis in osteosarcoma in vivo, we introduced 

MTA2-depleted 143B cells with lentiviral infection  

into mice. We observed that MTA2 depletion led to a 

reduction in lung metastasis (Figure 6A) and a decrease 

in lung nodules compared with luciferase knock- 

down (shLuc) control mice (Figure 6B). Importantly, 

there was no noticeable difference in body weight 

between the shLuc and shMTA2 mice (Figure 6C). 

Immunohistochemical assay revealed that significantly 

decreased the Ki-67 and MTA2 expression in MTA2 

depletion mice, compared with luciferase knockdown 

(shLuc) control mice (Figure 6D). Taken together, our 

findings suggest that MTA2 plays a critical role in 

human osteosarcoma metastasis. 
 

DISCUSSION 
 

While osteosarcoma comprises malignant osteo- 

genic cells, no well-defined molecular markers are  

presently known to effectively predict osteosarcoma  

progression. An increasing number of studies suggest 

the involvement of aberrant MTA2 expression in tumor 

 

 
 

Figure 4. Effect of uPA treatment on migratory and invasive capabilities in human MTA2-depleted osteosarcoma cells. 
Treatment with or without Rh-uPA (200 ng/mL) in shLuc and shMTA2 osteosarcoma cells for 24 h, followed by the assessment of cell 
migration and invasion ability using the in vitro Boyden chamber migration and invasion assay. ** P < 0.01, compared with shLuc cells; # P < 
0.05, compared with shMTA2 cells.  
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proliferation, metastasis, and chemotherapeutic agent 

resistance and indicate that MTA2 expression levels 

correlate with tumor characteristics such as size, grade, 

and lymph node metastasis in a variety of cancers  

[24, 25]. Our previously published results show that 

MTA2 serves as a prognostic factor for human cervical 

cancer [8], renal cancer [12], and hepatocellular 

carcinoma [9]; however, less is known about the 

clinical significance of MTA2 in human osteosarcoma  

patients. The present study is the first to report the  

 

 
 

Figure 5. ERK1/2 is involved in MTA2-mediated regulation of human osteosarcoma cell migration and invasion. (A) The 

expression of activated ERK1/2 in shLuc and shMTA2 cells by western blot assay. (B) Transfection of si-Con or si-ERK in shLuc and shMTA2 
osteosarcoma cells for 24 h, followed by the western blot and (C) in vitro Boyden chamber migration and invasion assay. ** P < 0.01, 
compared with shLuc cells; # P < 0.05, compared with shMTA2 cells.  
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overexpression of MTA2 in osteosarcoma tissues, and 

its correlation with tumor stage and survival rates of 

osteosarcoma patients. Moreover, our in vitro study 

results revealed high levels of MTA2 expression in 

osteosarcoma cells. Therefore, our findings indicate  

that MTA2 overexpression promotes osteosarcoma 

progression. 

 

We observed elevated levels of MTA2 expression in  

4 osteosarcoma cell lines. MTA2 knockdown in  

HOS and 143B cells decreased cell migration and 

invasion, independent of cell growth. In vivo animal 

experiments revealed that MTA2 depletion reduced 

the metastatic potential of osteosarcoma cells, as 

indicated by a decrease in the number of metastatic 

nodules. These results are consistent with previous 

reports of MTA2 involvement in the metastasis of 

other cancers, including cervical cancer [26], 

esophageal squamous cell carcinoma [13], and 

nasopharyngeal carcinoma [27]. These findings 

suggest that MTA2 is a key factor in the metastatic 

progression of osteosarcoma.  

 

To further understand the molecular mechanism 

underlying the role of MTA2 in osteosarcoma 

metastasis, we performed human proteinase analysis  

in MTA2-depleted osteosarcoma cells. UPA protein 

expression was significantly downregulated in MTA2-

depleted cells, and uPA overexpression restored the  

migration and invasive ability of MTA2-depleted cells. 

Accumulating evidence indicates that excess uPA 

degrades the extracellular matrix, which is associated 

with the metastatic process in a variety of solid tumors, 

including breast, uterine cervix, pancreas, ovary, and 

 

 
 

Figure 6. MTA2 depletion inhibits osteosarcoma metastasis in vivo. (A) shLuc- and shMTA2-143B cells (1 × 106 /0.1mL) were injected 

into the tail vein of C.B17-SCID mice for ten weeks; mice were then sacrificed and the lung tissues removed, shLuc and shMTA2 143B lung 
tumor excised from C.B17-SCID mice. (B) Number of nodules in lung tumors and (C) body weight among shLuc and shMTA2 mice. (D) H&E 
staining for tissue morphology and IHC staining for Ki-67 and MTA2 in shLuc and shMTA2 mice. Scale bar: 100 μm. (E) Depiction of the role 
and biological function of the control of uPA expression by MTA2 in human osteosarcoma metastasis. 
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glioma [28, 29]. Endo-Munoz et al. reported that  

the conversion of malignant osteosarcoma cells to  

a metastatic state is characterized by activation  

of the uPA/uPAR system [21]. We found that  

uPA expression was higher in osteosarcoma tissues 

than in normal tissue and correlates positively  

with MTA2 expression, suggested that uPA may be 

useful as a predictive or prognostic biomarkers for 

osteosarcoma progression. Ghasemi et al. discovered 

that the RhoA/ROCK signaling pathway affects the 

migration and invasion of ovarian cancer cells by 

modulating uPA expression [30]. In breast cancer 

cells, the inhibition of TIPE3 expression significantly 

decreased uPA expression through activation of  

the AKT/NF-κB pathway [31]. Silencing of uPA 

expression reduced MDA-MB-231cells migratory, 

invasive, and adhesive ability and modulated the  

EMT by down-regulating Oct-4 expression [32].  

Our study findings are consistent with these other 

studies, suggesting that MTA2 depletion decreased 

the metastatic capacity of osteosarcoma cells by 

inhibiting uPA expression. 

 
The extracellular signal-regulated kinase (ERK)1/2 

pathway is involved in the regulation of a variety of 

cancers and is thus of interest for potential therapeutic 

development. Most of this research is focused on 

inhibiting ERK to reduce cell migration and invasion 

in tumor cells [33]. For instance, in gallbladder cancer, 

EMP3 inhibition activates the ERK1/2 pathway, 

leading to the inhibition of cell proliferation and 

metastasis [34]. In a study of osteosarcoma, LCN2 

depletion promoted cell migration and invasion by 

modulating the MEK-ERK pathway [35], and the MEK 

inhibitor U0126 significantly decreased osteosarcoma 

tumor invasion and metastasis in vivo [36]. However, 

ERK activation is not always associated with cell 

survival and proliferation. Recent studies report that 

ERK activation is associated with senescence and  

cell death signaling [37]. Thus, the MAPK/ERK 

signaling pathway is a double-edged sword in tumor 

progression.  

 
To investigate whether ERK1/2 signaling acts 

downstream of MTA2, we first examined the role of 

ERK1/2 activation in MTA2-depleted osteosarcoma 

cells. Our result revealed that MTA2 inhibited 

osteosarcoma metastasis via activation of ERK1/2-

inhibited uPA signaling. The possible transcription and 

translation mechanisms underlying ERK-mediated 

metastasis of osteosarcoma cells inhibited by MTA2 

are under investigation. We also must consider 

whether the uPA receptor (uPAR) is regulated by 

MTA2; accordingly, further studies will investigate 

the regulatory roles of the uPA/uPAR/ERK signaling 

pathway in osteosarcoma progression.  

CONCLUSIONS 
 

In summary, MTA2 depletion decreased osteosarcoma 

cell migration and invasion by inducing the ERK1/2 

phosphorylation-mediated uPA pathway (Figure 6E). 

This finding suggests that the MTA2/uPA axis may  

be a potential target for therapeutic agents against 

osteosarcoma.  

 

MATERIALS AND METHODS 
 

Antibodies, chemicals and reagent 

 

Antibodies against MTA2, uPA, and GAPDH  

were purchased from Santa Cruz Biotechnology  

(Santa Cruz, CA, USA). siRNA-ERK was designed 

and synthesized by GenePharma (Shanghai, China). 

Human osteosarcoma tissue array (OS802c) was 

purchased from US Biomax (Derwood, MD, USA). 

The human protease array kit (ARY021B) was 

purchased from R&D Systems, Inc. (Minneapolis, 

MN, USA). Recombination-human uPA was from 

SinoBiological (Beijing, China). 

 

Cell lines and culture condition 

 

The HOS (60308), 143B (60439), MG63 (60279) and 

U2OS (60187) human osteosarcoma cell line were 

obtained from the Bioresource Collection and Research 

Center (BCRC) (Hsinchu, Taiwan). These osteosarcoma 

cells were maintained with MEM medium containing 

10% fetal bovine serum (FBS), 0.1 mM non-essential 

amino acids (NEAA), 1.0 mM sodium pyruvate and  

100 U/mL penicillin–streptomycin (Invitrogen Life 

Technologies, Carlsbad, CA, USA). The cell cultures 

condition was maintained in a humidified incubator 

under at 37° C with 5% CO2. 

 

Stable expressing shRNA-MTA2 osteosarcoma cell 

line  

 

The shMTA2 (clone ID: TRCN0000232200) was 

purchased from the RNA Technology Platform and Gene 

Manipulation Core Facility (RNAi core) of the National 

Core Facility (Taipei, Taiwan). The MTA2 targeting 

sequences are 5’-AGGGAGTGAGGAGTGAATTAA-

3’, the pLKO.1-Luc as scrambled control. For MTA2 

knockdown, HEK-293T cells were co-transfected  

with pCMV∆R8.91, pMD.G, and the pLKO.1-puro-

expressing vector using Lipofectamine 3000 transfection 

reagent and incubated for 6 h. After changing the 

medium, the cells were incubated for 48 h and the viral 

supernatant collected and filtered through a 0.45-μm 

filter. Human osteosarcoma cells were then infected 

with the shLuc and shMTA2 for 24 h in the presence of 

polybrene (8 μg/mL). MTA2 expression in osteosarcoma 
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cells was assessed by western blot analysis and RT-

qPCR assay.  
 

Cell proliferation assays 
 

Colony formation assay was performed to assess the 

cell proliferative rate. The shLuc- and shMTA2-

osteosarcoma cells (1×103/well) were seeded in 6-well 

plate and incubated for 7 days, then stained with 

crystal violet reagent (1:20) for 30 mins. The number 

of colonies in shLuc- and shMTA2-osteosarcoma cells 

was counted under the microscope. Colony formation 

efficiency (%) = (numbers of shMTA2 cell colonies/ 

number of shLuc cell colonies) × 100%.  
 

Boyden chamber cell migration and invasion assay 
 

To assess the effects of MTA2 knockdown and uPA 

overexpression on cell migration and invasion in human 

osteosarcoma cells in vitro, we used a Boyden chamber 

migration assay with or without Matrigel coating. The 

MTA2 knockdown and uPA-overexpressing OS cells  

(4 × 105/mL) were seeded into the upper part of the 

Boyden chamber (Neuro Probe, Cabin John, MD, USA). 

To the lower chamber was added culture medium  

with 20% FBS. The cells were incubated at 37° C for  

18 h (migration assay) or 24 h (invasion assay). The 

migrated cells were fixed and stained with Giemsa 

reagent (1:20) for 30 mins and then counted in 5 fields 

of vision under a light microscope. 
 

Human protease array 
 

Human Protease Array contained the 35 different 

proteinase proteins. The shLuc and shMTA2-HOS cells 

were lysed with Lysis Buffer 17 supplemented with 10 

μg/mL Aprotinin/Leupeptin/10 μg/mL and Pepstatin A 

35 μg/mL, rock the lysates gently at 4° C for 20 

minutes, then incubated the membranes and blocking 

for 1 h. Next, Protease Detection Antibody was added 

to each sample for 1 h at room temperature. Finally, the 

1X Streptavidin-HRP reagent was added into membrane 

and detected the specific protein expression. 
 

Recombinant uPA protein assay 
 

Treatment with or without 200 ng/ml Recombinant uPA 

(Rh-uPA) protein in shLuc and shMTA2-osteosarcoma 

cells for 24 h was done, then measured the cell migration 

and invasion abilities by in vitro cell migration and 

invasion assay. 
 

RT-qPCR assay of MTA2 and uPA mRNA 

expression 

 

Total cellular RNA was extracted using TRIzol reagent 

(Thermo Fisher Scientific, Waltham, MA, USA) 

according to the manufacturer's protocol. The GoScript 

reverse transcription mix kit (Promega, Madison, WI, 

USA) was used to reverse transcribe the RNA (1 µg) into 

cDNA. Specific cDNAs were amplified using the GoTaq 

qPCR Master Mix reagent (Thermo Fisher Scientific) 

using specific PCR primers for MTA2, uPA, and 

GAPDH with the following sequences: MTA2-Forward, 

5’- TGTACCGGGTGGGAGATTAC-3’; MTA2-

Reverse, 5’-TGAGGCTACTAG AAATGTCCCTG-3’; 

uPA-Forward, 5’-CCGCTTTCTTGCTGGTTGTC-3’; 

uPA-Reverse, 5’- TATTGTCGTTCGCCCTGGTG-3’; 

GAPDH-Forward, 5’-CATCATCCCTGCCTCTACTG -

3’; GAPDH-Reverse, 5’-GCC TGCTTCACCACCTTC-

3’. These primer sequences were purchased from Mission 

Biotech company (Taipei). These gene expression was 

assessed by the 2−ΔΔCT relative quantitative method using 

GAPDH as the reference control. 

 
Western blotting 

 
After cell lysis in NETN lysis buffer, samples of total 

protein (20 µg) were electrophoresed for 1 h and 

transferred to a PVDF membrane for 1 h. The 

membrane was incubated in blocking buffer for 10 min, 

followed by incubation with primary antibody against 

MTA2 (1:1000), p-ERK1/2 (1:1000), t-ERK1/2 (1:1000), 

uPA (1:1000), or GAPDH (1:10000) at 4° C overnight. 

The membrane was treated with chemiluminescent 

substrate to quantify protein expression levels. 

 
Data collection 

 
The Cancer Genome Atlas (TCGA) and TARGET data-

bases in TNMplot (accessible at https://tnmplot.com/ 

analysis/; accessed June 1, 2023) provided us with 

MTA2 and uPA mRNA expression data and clinical 

data from 1109 normal samples and 4608 OS tumor 

samples. The overall survival of human OS patients 

(n=259) was determined using the Kaplan–Meier plotter 

database (accessed at https://kmplot.com/analysis/, 

accessed on 13 September 2023). The correlation 

between MTA2 and uPA expression was determined 

using data in the GEPIA database (accessible at 

http://gepia.cancer-pku.cn/, accessed on 2017). 

 
In vivo lung metastasis mouse model 

 
The in vivo metastasis assay was performed as 

published [38]. The animal research was approved by 

the Animal Ethics Committee of Chung Shan Medical 

University (IACUC number: 2771). Experimental 

procedures followed the Guidelines of Animal Use  

and Care of the Chung Shan Medical University. The 

shLuc- or shMTA2-143B cells (1 × 106/0.1 mL) were 

injected into the tail veins of five weeks old male 

C.B17-SCID mice (n = 5 mice per group) for 2 months. 
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After ten weeks, the mice were weighed and sacrificed, 

and the lung tissues were removed. Lung tissue  

sections were fixed, deparaffinized, and rehydrated. The 

expression of Ki-67 and MTA2 in the lung tissue sections 

was determined using immunohistochemical analysis. 
 

Statistical analysis 
 

The statistical analysis was conducted using GraphPad 

Prism 6 (GraphPad Inc, San Diego, CA, USA). Student’s 

t-test or one-way analysis of variance (ANOVA) was 

exerted to evaluate the prominent distinctions between 

groups. P < 0.05 was considered a significant difference. 
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