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INTRODUCTION 
 

Glycolysis is a prevalent characteristic of the tumor 

microenvironment and is crucial to tumor progression 

[1]. The primary mechanism by which oncogenic 

signaling increases the activity of glycolytic enzymes is 

through post-translational modifications or expression 

enhancements. Aerobic glycolysis converts glucose to 

lactate, a byproduct that facilitates multiple mechanisms 
of tumor growth and metastasis [2]. Additionally, 

glycolysis affects the tumor immune microenvironment, 

wherein tumor cells proliferate in a hypoxic setting 

while immune cells are inhibited, thereby facilitating 

the tumor cells’ evasion of the immune system [3]. As a 

result, glycolysis and the immune microenvironment are 

intricately intertwined. Long-stranded noncoding RNAs 

(lncRNAs) are transcripts exceeding 200 nucleotides in 

length and failing to encode proteins [4], which can 

influence the tumor immune microenvironment and 

modulate the epigenetic, transcriptional, and post-

transcriptional mechanisms of genes in numerous 

pathological processes [5, 6]. Proliferation, metastasis, 
and an unfavorable prognosis all correlate with lncRNA 

expression in clear cell renal carcinoma (ccRCC) [7, 8]. 

By deciphering the molecular mechanisms of lncRNA 

in the development and progression of ccRCC, new 
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ABSTRACT 
 

Background: Clear cell renal carcinoma is a common urological malignancy with poor prognosis and treatment 
outcomes. lncRNAs are important in metabolic reprogramming and the tumor immune microenvironment, but 
their role in clear cell renal carcinoma is unclear. 
Methods: Renal clear cell carcinoma sample data from The Cancer Genome Atlas was used to establish a new 
risk profile by glycolysis-associated lncRNAs via machine learning. Risk profile-associated column-line plots 
were constructed to provide a quantitative tool for clinical practice. Patients with renal clear cell carcinoma 
were divided into high- and low-risk groups. Clinical features, tumor immune microenvironments, and 
immunotherapy responses were systematically analyzed. We experimentally confirmed the role of LINC01138 
and LINC01605 in renal clear cell carcinoma. 
Results: The risk profile, consisting of LUCAT1, LINC01138, LINC01605, and HOTAIR, reliably predicted survival in 
patients with renal clear cell carcinoma and was validated in multiple external datasets. The high-risk group 
presented higher levels of immune cell infiltration and better immunotherapy responses than the low-risk 
group. LINC01138 and LINC01605 knockdown inhibited the proliferation of renal clear cell carcinoma. 
Conclusions: The identified risk profiles can accurately assess the prognosis of patients with clear cell renal 
carcinoma and identify patient populations that would benefit from immunotherapy, providing valuable 
insights and therapeutic targets for the clinical management of clear cell renal carcinoma. 
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therapeutic targets for ccRCC can be identified. An 

increasing number of studies have demonstrated the 

regulatory functions of lncRNAs in the immune micro-

environment and metabolic reprogramming of tumor 

cells. However, no reports have been found of lncRNA 

associated combinations affecting ccRCC. Using 

machine learning and multi-omics, we identified 

glycolysis-associated lncRNAs (GRLs) and developed a 

prognostic signature to evaluate their utility in 

predicting treatment response and prognosis in patients 

with ccRCC. Additionally, we established that two 

HRLs (LINC01138 and LINC01605) substantially 

affected the proliferation of ccRCC cells. In summary, 

our research indicates that GRLs have the capability to 

forecast prognostic risk, chemotherapeutic and 

immunotherapeutic efficacy, and their involvement in 

tumor immune infiltration among patients with ccRCC. 

 

MATERIALS AND METHODS 
 

Data sources 

 

From the TCGA database (https://portal.gdc.cancer.gov/) 

[9], we extracted transcriptomic data, clinical data, and 

somatic mutation data of ccRCC patients; patients with 

inadequate information or unknown survival status were 

excluded. A collection of lncRNAs exhibiting differential 

expression in hypoxia and glycolysis experiments was 

obtained from PubMed. By intersecting these lncRNAs 

with those expressed in TCGA patients, 357 GRLs were 

obtained (Supplementary Figure 1). 

 

Bioinformatics analysis 

 

Differential analysis of ccRCC and surrounding normal 

tissues was performed using the R package “limma” 

with a cutoff of log2 fold change (logFC) >1 and an 

adjusted false discovery rate (FDR) <0.05 [10]. 

Heatmaps were visualized using the R package 

“pheatmap” [11]. The R packages “rms” and “regplot” 

were used to plot column line plots and calibration 

curves. 

 

Risk model construction and validation 

 

A 3:7 ratio was employed to arbitrarily divide all TCGA 

samples between a validation dataset (n=156) and a 

training dataset (n=374). In order to forecast the 

prognosis of ccRCC patients, a prognostic model based 

on GRLs was constructed utilizing the training dataset. 

The model was validated using the validation dataset in 

accordance with the risk score formula utilized in the 

training dataset. Then, four GRLs with the most 

accurate prognostic values were obtained, and 

multivariate Cox analysis, last absolute shrinkage and 

selection operator (LASSO), and univariate Cox 

regression were used to construct the GRL model. For 

each sample, the risk score formula was as follows: 

Coefficient (lncRNA1) × Expr(lncRNA1) + Coefficient 

(lncRNA2) × Expr(lncRNA2) +...... + Coefficient 

(lncRNAn) × Expr(lncRNAn) = risk score. In the 

context where Expr(lncRNA) denotes the expression of 

lncRNA and Coef(lncRNA) signifies the regression 

coefficient of lncRNA. 

 

Immunomicroenvironment analysis 

 

For each sample, the stroma score, ESTIMATE score, 

and immune cell score were computed utilizing the R 

package “ESTIMATE” [12]. Using the CIBERSORT 

algorithm (https://cibersort.stanford.edu/), the proportion 

of 22 forms of immune infiltrating cells was computed 

[13]. The algorithm known as Single Sample Gene Set 

Enrichment Analysis (ssGSEA) was implemented in 

order to determine the proportion of infiltrating immune 

cells. Additionally, immunoglobulin correlation analysis 

was conducted utilizing the software applications 

CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, 

and EPIC. 

 

Gene mutation analysis 

 

We calculated the tumor mutation burden (TMB) of 

each patient and compared it between high-risk and 

low-risk groups, and then plotted a waterfall plot using 

the R package “Maftools”. We also analyzed the top 20 

mutated genes in the high-risk and low-risk groups for 

mutual exclusion and synergy. 

 

Chemotherapy response and immunotherapy 

response 

 

We downloaded gene expression data of cancer cells to 

various drugs from the Tumor Pharmacogenetic Multi-

Omics (GDSC) database (https://www.cancerrxgene.org/) 

[14] and calculated IC50 values to assess the patients’ 

response to chemotherapeutic drugs. 

 

Construction of a competitive endogenous RNA 

network 

 

The miRNAs associated with ccRCC were initially 

identified using the HMDD online tool [15] accessible at 

http://www.cuilab.cn/hmdd/. Then, HRL was combined 

with potential target miRNAs for prediction with the 

restriction of miRNA using the DIANA-LncBase  

online web tool (https://diana.e-ce.uth.gr/lncbasev3/home)  

[16]. Species: Homo sapiens; Conf. Level: High. 

miRTarBase [17], an online web tool accessible at 
https://mirtarbase.cuhk.edu.cn/, was subsequently utilized 

to forecast the miRNAs. This prediction was restricted  

to potential target mRNAs of miRNAs with a minimum 
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of three validation techniques. Additionally, the RNA-

binding protein (RBP) of HRL was predicted  

by employing the ENCORI online instrument 

(https://starbase.sysu.edu.cn/) [18]. In conclusion, 

ceRNA networks were developed utilizing the 

Cytoscape software. 

 

Cell counting Kit-8 (CCK8) cell activity assay 

 

Take cells in good growth condition to prepare a 

certain concentration of cell suspension, 100ul per 

well was added into 96-well cell culture plate. Take 

10ul CCK-8 solution and add it to 96-well cell culture 

plate, continue incubation in 37° C incubator for 0.5-4 

hours. Absorbance was detected at a single wavelength 

of 450 nm. 

 

Statistical analysis 

 

Survival curves were plotted using the Kaplan-Meier 

method to compare the differences in survival between 

the two groups, and receiver operating characteristic 

(ROC) curves, one-way and multifactorial Cox analyses 

were used to evaluate the prognostic value of the 

characteristics. Spearman correlation analysis was used 

to assess correlation. p-value ≤ 0.05 was considered 

statistically significant. All statistical analyses were 

performed with R. 

 

Data availability statement 

 

All data utilized in this study are included in this article 

and all data supporting the findings of this study are 

available on reasonable request from the corresponding 

author. 

 

RESULTS 
 

Association of risk assessment models with prognosis 

and clinical features of ccRCC 

 

ccRCC-expressed mRNAs were initially isolated from 

the TCGA database using lncRNAs; in total, 4873 

lncRNAs were screened. We subsequently compiled 

differentially expressed lncRNAs [19, 20] in PubMed 

for glycolysis experiments. By measuring the inter-

section of the two, 357 GRLs were obtained. The risk 

model incorporated four GRLs (LUCAT1, LINC01138, 

LINC01605, and HOTAIR) that were derived via 

univariate Cox analysis, Lasso analysis, and 

multivariate Cox analysis, respectively (Figure 1A, 

1B). 

 

We randomized ccRCC patients in a 3:7 ratio between 

a validation dataset (n=156) and a training dataset 

(n=374), after excluding patients without survival 

data. Using the model equation, patients with ccRCC 

were classified into high-risk and low-risk groups. 

The training dataset revealed a notable disparity in the 

overall survival rate between patients in the low-risk 

and high-risk groups. Specifically, as the risk score 

increased, there was a corresponding rise in the 

number of patient fatalities. As shown in Figure 1C, 

the area under the curve (AUC) of the risk score 

utilized by the ROC curve to predict the survival of 

ccRCC patients one, three, and five years from now 

was 0.777, 0.729, and 0.745, respectively. The results 

presented earlier were verified using the validation 

dataset (Figure 1D). The examination of clinical 

biomarkers associated with ccRCC and their 

correlation with risk scores revealed statistically 

significant variations in risk scores across the patient 

strata labeled STAGE (Figure 1E), T (Figure 1F), M 

(Figure 1G), and N (Figure 1H). The correlation 

between risk profiles generated by GRLs and clinical 

characteristics of ccRCC suggests that they can 

accurately predict the prognosis of ccRCC patients. 

 

Risk score as an independent risk factor for ccRCC 

patients 

 

Univariate and multivariate Cox regression analyses 

were employed to examine the correlation between 

clinical characteristics and overall survival. According 

to the findings of the multivariate Cox analysis, age, 

tumor grade, stage, and risk score were identified as 

distinct prognostic factors in patients with ccRCC 

(Figure 2A, 2B). A column-line graph was generated 

using the obtained results, with the majority of the 

total score’s values represented by the risk score 

(Figure 2C). The column-line diagrams for the 1-, 3-, 

and 5-year calibration curves demonstrated that the 

predicted values corresponded precisely to the 

observed survival probability (Figure 2D). We further 

subdivided the clinical characteristics into distinct 

subgroups in order to determine whether HRL 

characteristics among distinct subgroups of ccRCC 

patients had prognostic value. The findings of the 

analysis indicated that patients aged 60 years or older 

and those in the HRL group had a markedly 

unfavorable prognosis (p<0.05). Within the gender 

subgroups, an analysis of the survival curves for 

males revealed a significant disparity between the 

high-risk and low-risk groups (p<0.05), whereas no 

statistically significant distinction was observed in 

overall survival between the two groups (p>0.05) for 

females. In the subgroups T1-2 rather than T3-4 and 

stage I-II compared to stage III-IV, patients with 

higher risk scores had a worse prognosis (p0.05) 
(Figure 2E). Furthermore, the survival curves between 

tumor grades, specifically the N and M subgroups, 

were examined (Supplementary Figure 2). 
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High risk score suggests high immune infiltration 

 

The tumor immune microenvironment is correlated with 

the prognosis of patients diagnosed with ccRCC [21]. 

The present study investigated the correlation between 

the ccRCC risk score and the immune microenvironment 

as measured by the ESTIMATE score. The findings 

revealed that tumors with a high risk score exhibited 

reduced purity (Figure 3A). Furthermore, there was a 

significant positive correlation between the risk score and 

the stromal score (Figure 3B), immune score (Figure 3C), 

and ESTIMATE score (Figure 3D) (p<0.05). The 

ssGSEA algorithm was utilized to estimate immune cell 

infiltration; the heatmap (Figure 3E) revealed that the 

 

 
 

Figure 1. Association of risk assessment models with prognosis and clinical features of ccRCC. (A) Lasso regression analysis 
identifying the most robust HRLs. (B) Forest plot of the four GRLs in the multifactor Cox regression model. Kaplan-Meier curves, survival 
status and ROC curves between high and low risk groups in the training dataset (C) and validation dataset (D). Differences in risk scores 
between different stage (E), T (F), M (G) and N (H) strata in the training dataset. 
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high-risk group exhibited a significantly greater degree of 

immune infiltration in comparison to the low-risk group. 

In addition, we computed the correlation between  

risk scores and immune cells using seven software 

algorithms; the results indicated that the majority of 

immune cells exhibited a positive correlation with risk 

scores (Figure 3F). Furthermore, immunosuppressive 

cells (including regulatory T cells, follicular helper 

 

 
 

Figure 2. Risk score as an independent risk factor for ccRCC patients. (A, B) Forest plots of univariate and multivariate Cox regression 

analysis. (C) Column line plot created based on age, tumor stage and risk score. (D) Calibration curves at 1, 3, and 5 years for the column-line 
plots. (E) Kaplan-Meier curves for high- and low-risk patients between subgroups of ccRCC patients by age, sex, clinical stage, and T. 

11959



www.aging-us.com 6 AGING 

T cells, and M0-type macrophages) were found to be 

extensively infiltrated in the high-risk group, as indicated 

by the CIBERSORT algorithm (Figure 3G). High risk 

scores are indicative of low tumor purity and high 

immune infiltration, according to these findings, which 

suggest a correlation between risk profiles and immune 

infiltration. 

 

Immunotherapy 

 

Following the exploration of the correlation between 

immune checkpoint inhibitors (ICIs) and risk 

stratification, immunotherapy emerged as a promising 

therapeutic approach in the treatment of cancer. A 

considerable proportion of immune checkpoint 

expression exhibited a statistically significant increase in 

the high-risk group relative to the low-risk group 

(p<0.05) (Figure 4A). Patients with low PD-L1 

expression and a low risk score had a significantly 

improved prognosis than those with a high risk score and 

low PD-L1 expression (Figure 4B). Survival was longer 

for patients in the low-risk group with high PD-L1 

expression compared to those in the high-risk group with 

high PD-L1 expression (Figure 4B). In a similar fashion, 

 

 
 

Figure 3. High risk score suggests high immune infiltration. Relationship between risk scores and tumor purity (A), stroma score (B), 

immune score (C), and ESTIMATE score (D). (E) Heatmap of the abundance of immune cells in the high-risk and low-risk groups. (F) Risk score 
and immune cell correlation. Different colors represent different algorithms. (G) Proportion of immune cells in the high-risk and low-risk 
groups. *p < 0.05, **p < 0.01, ***p < 0.001. 
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the expression levels of the immune checkpoints PD-1 

and CTLA4 varied significantly, with the high-risk 

group exhibiting a diminished overall survival rate 

(Figure 4C, 4D). The findings of our correlation 

analysis between the main immune checkpoints and the 

risk score indicated that the risk score was negatively 

correlated with VTCN1 and TNFRSF4, while the 

majority of the immune checks exhibited a positive 

correlation (Figure 4E). The application of the TIDE 

scoring algorithm revealed that the high-risk group 

exhibited a notably elevated TIDE score, indicating that 

immunotherapy yielded suboptimal outcomes for 

patients in this group as compared to those in the  

low-risk group (Figure 4F). Co-blockers of PD1 and 

CTLA4 achieved higher scores in the high-risk group 

(Figure 4G). According to these findings, risk scores are 

significantly correlated with immunotherapy in patients 

with ccRCC. 

 

 
 

Figure 4. Immunotherapy. (A) Proportion of common immune checkpoints between high- and low-risk groups. patient survival curves 

between HRL characteristics and PD-L1 (B), PD-1 (C), and CTLA4 (D) stratification. (E) Correlation of immune checkpoint genes with risk 
scores. (F) TIDE scores in the high-risk and low-risk groups. (G) IPS scores for PD-1 and CTLA4 co-blockers in the high-risk and low-risk groups. 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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LINC01138 and LINC01605 are associated with 

clinical staging and immune infiltration 

 

We selected two risky HRLs (LINC01138 and 

LINC01605) in our model to further investigate the role 

of HRLs in ccRCC. patients with high expression of 

LINC01138 and LINC01605 had a poorer prognosis 

(Figure 5A). Correlation analysis of the expression levels 

of HIF1A and LINC01138 and LINC01605 in ccRCC 

tissue samples revealed that the two GRLs were 

significantly correlated with HIF1A, LINC01138 was 

negatively correlated with HIF1A, and LINC01605 was 

positively correlated with HIF1A (Figure 5B). In 

addition, we also found that LINC01138 and LINC01605 

were significantly correlated with ccRCC clinical stage, 

and both HRLs had significantly elevated expression at 

stage III- IV, both of which predicted the prognosis and 

clinical progression of patients (Figure 5C). 

 

 
 

Figure 5. LINC01138 and LINC01605 are associated with clinical staging and immune infiltration. (A) Kaplan-Meier curves of 

LINC01138 and LINC01605 expression in ccRCC patients. (B) Correlation between LINC01138 and LINC01605 expression levels and HIF1A 
expression levels in ccRCC sample tissues. (C) Relationship between LINC01138 and LINC01605 expression and clinical stage. (D) Proportion of 
tumor purity, immune score, stroma score and ESTIMATE score at different LINC01138 and LINC01605 expression levels. (E) Proportion  
of immune cells at different LINC01138 expression levels. (F) Proportion of immune cells at different LINC01605 expression levels. *p < 0.05, 
**p < 0.01, ***p < 0.001. 
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In the tumor immune microenvironment, high expression 

of LINC01138 and LINC01605 showed low tumor 

purity, high immune score, high stromal score and high 

ESTIMATE score (Figure 5D). We assessed the ratio of 

immune cells in the high and low expression groups of 

the two HRLs by the CIBERSORT algorithm, in which 

the LINC01138 high expression group had elevated 

levels of CD8 T-cells and reduced levels of M2-type 

macrophages (Figure 5E). In contrast, the LINC01605 

high expression group had significantly lower levels of 

CD8 T cells and significantly higher levels of M2 type 

macrophages (Figure 5F). 

Analysis of the molecular mechanisms of LINC01138 

and LINC01605 

 

We identified the ceRNA networks of LINC01138 and 

LINC01605 using bioinformatics in order to investigate 

further the role of GRLs in the pathogenesis of ccRCC. 

We compiled ccRCC miRNAs and RBPs and 

hypothesized that LINC01138 and LINC01605 play 

interrelated functions. Following the anticipation of 

potential target mRNAs for miRNAs, the ceRNA 

networks associated with LINC01138 and LINC01605 

were assembled (Figure 6A, 6B). GO enrichment 

 

 
 

Figure 6. Analysis of the molecular mechanisms of LINC01138 and LINC01605. The ceRNA network maps of LINC01138 (A) and 

LINC01605 (B). mRNA enrichment analysis of LINC01138 (C) and LINC01605 (D) predicted mRNAs. GSEA analysis of differential genes 
between high LINC01138 (E) and LINC01605 (F) expression groups. 
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analysis revealed that mRNAs that targeted LINC01138 

were associated with transcriptional activation, 

glycolytic response, oxidative stress, and DNA trans-

cription factor binding (Figure 6C). As shown in Figure 

6D, the mRNA targeting LINC01605 was linked to 

oxidative stress, DNA transcriptional activation, and 

proliferation of epithelial cells. Following this, GSEA 

analysis was conducted on the groups exhibiting high 

LINC01138 and LINC01605 expression. The results 

revealed that the high LINC01138 expression group 

exhibited enrichment in the interferon-α signaling 

pathway, E2F, IL6-JAK-STAT3, and inflammatory 

response (Figure 6E). In the group with high 

LINC01605 expression, the glycolytic pathway, E2F, 

EMT, IL6-JAK-STAT3 signaling pathway, and 

inflammatory response were enriched (Figure 6F). 

LINC01138 and LINC01605 may be involved in the 

regulation of the E2F and IL6-JAK-STAT3 signaling 

pathways in a glycolytic environment, according to 

these findings. 

Knockdown of LINC01138 and LINC01605 inhibits 

renal clear cell carcinoma cell proliferation 

 

We designed siRNAs for LINC01138 and LINC01605 to 

silence the expression of LINC01138 and LINC01605 in 

human renal clear cell carcinoma cell lines 769-P and 

786-O cells to investigate the roles of LINC01138 and 

LINC01605 in renal clear cell carcinoma. CCK8 

experiments were performed by transfecting 769-P and 

786-O cells with si-LINC01138 and si-LINC01605, 

respectively. The results of CCK8 experiments showed 

that the proliferative capacity of 769-P and 786-O cells in 

the si-LINC01138 and si-LINC01605 groups was 

significantly lower than that of the NC group at 24, 48, 

and 72 h (Figure 7A, 7B). 

 

DISCUSSION 
 

Glycolysis is an important anticancer defense 

mechanism and therapeutic target, and the combined 

 

 
 

Figure 7. Knockdown of LINC01138 and LINC01605 inhibits renal clear cell carcinoma cell proliferation. Knockdown of 

LINC01138 and LINC01605 inhibited the proliferation ability of renal clear cell carcinoma cells. (A, B) CCK8 viability assay of 769-P and 786-O 
cells after transfection of si-LINC01138 and si-LINC01605. Note * p < 0.05, **p < 0.01, ***p < 0.001. 
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action of its inducers and immune checkpoint inhibitors 

substantially improves the therapeutic outcome for 

tumor patients, according to a growing body of research. 

Based on data from a public database, we constructed a 

risk signature for four GRLs (LUCAT1, LINC01138, 

LINC01605, and HOTAIR). In patients with ccRCC, 

prognosis and immunotherapy outcomes can be reliably 

predicted through the utilization of risk profiles. To 

ascertain the correlation between risk profiles and 

ccRCC, we initially employed gene set enrichment 

analysis to identify a strong association between the 

high-risk group and immune cells (e.g., CD8+ T cells, 

NK cells, and B cells). Then, using the CIBERSORT, 

ESTIMATE, and ssGSEA algorithms, we determined 

that patients in the high-risk group did, in fact, exhibit 

elevated levels of immune infiltration. By comparing the 

expression levels of the majority of common immune 

checkpoints, MHA molecules, cytokines, and receptors 

in the high-risk profile group to those in the low-risk 

profile group, we also discovered that these factors were 

significantly upregulated in the high-risk profile group. 

Furthermore, TMB and MSI are significant predictive 

factors in patient immunotherapy. Additionally, elevated 

levels of TMB and MSI were identified in the high-risk 

profile cohort. High immune cell infiltration and 

immune checkpoint expression may be “hot” tumor 

characteristics that are amenable to immunotherapy, 

according to the findings of the present study. The risk 

profile is formulated by incorporating four genes, 

HOTAIR, LUCAT1, LINC01138, and LINC01605. 

These genes have progressively demonstrated regulatory 

functions in glycolysis. For instance, LUCAT1 

facilitates glycolysis and metastasis of lung adeno-

carcinoma cells by functioning as a competing 

endogenous RNA that regulates the miR-4316/VEGFA 

axis [22]. The lncRNA LINC01138 functions as an 

oncogenic driver; its silencing inhibits aerobic glycolysis 

via regulation of the microRNA-375/SP1 axis, thereby 

decreasing glioma cell proliferation [23]. In triple 

negative breast cancer cell lines, LINC01605 

knockdown prevented tumor formation and migration in 

vivo by inhibiting aerobic glycolysis via lactate 

dehydrogenase A [24]. Knockdown of HOTAIR in 

hypoxia-treated hepatocellular carcinoma cells inhibits 

glycolysis via regulation of miR-130a-3p and HIF1A 

[25], a novel glycolysis mechanism in hepatocellular 

carcinoma. Through in vitro experiments, we confirmed 

that LINC01138 and LINC01605 depletion significantly 

inhibited ccRCC proliferation. In addition, small-

molecule inhibitors that target lncRNAs associated with 

glycolysis represent a potential therapeutic approach for 

modulating the glycolytic process and enhancing the 

immunotherapeutic effects on tumor cells. While the risk 
profile we have developed exhibits high accuracy in 

predicting chemosensitivity and immunotherapeutic 

efficacy, in addition to ccRCC prognosis, it can also be 

utilized to forecast the prognosis and immunotherapeutic 

efficacy of numerous other types of cancer. However, 

this study has some limitations. First, we acquired the 

data used in our analysis from publicly accessible 

databases, which could potentially introduce bias into 

the process of case selection. Future in vivo and in vitro 

investigations are required to validate the precise 

molecular mechanisms by which genes that construct 

risk profiles for the progression of renal clear cell 

carcinoma operate. 

 

CONCLUSIONS 
 

In this study, we identified four glycolysis-associated 

lncRNAs (LUCAT1, LINC01138, LINC01605, and 

HOTAIR) by comprehensive multi-omics analysis and 

in vitro experiments and, based on these, developed a 

ccRCC prognostic characterization model, which 

predicts the prognostic risk of patients with ccRCC, the 

efficacy of immunotherapy and chemotherapy, and the 

role of lncRNAs tumor immune infiltration. The risk 

profile identified in this study not only reveals the role 

of the combination of lncRNAs that synergistically 

regulate glycolysis and immunotherapeutic efficacy in 

ccRCC, but also accurately evaluates patient prognosis 

in ccRCC and identifies patient populations that would 

benefit from immunotherapy, providing valuable 

insights and therapeutic targets for the clinical 

management of ccRCC. 
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Supplementary Figure 1. The technology roadmap for this study. 
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Supplementary Figure 2. (A–D) QPCR verified the mRNA expression level of LINC01138 and LINC01605 in 769-P and 786-O cells after 
transfection with siRNA. 
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