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INTRODUCTION 
 

Colorectal cancer (CRC) is the second leading cause of 

cancer-related death worldwide, with high morbidity 

and mortality [1]. With the development of economy, 

the incidence and death rate of CRC are gradually 

increasing, especially in individuals under 50 years of 

age [2]. Treatment options for CRC are complex, 
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ABSTRACT 
 

Purpose: The intratumoral microorganisms participates in the progression and immunotherapy of colorectal 
cancer (CRC). However, due to technical limitations, the impact of microorganisms on CRC has not been fully 
understood. Therefore, we conducted a systematic analysis of relationship between bacterial lipopolysaccharide 
(LPS)-associated genes and immune cells to explore new biomarkers for predicting the prognosis of CRC. 
Methods: The single-cell RNA sequencing data and the Comparative Toxicogenomics Database were used to 
screen T cells-associated LPS-related genes (TALRGs). Then, we established and validated the TALRGs risk 
signature in The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) cohort and GSE39582 cohort. 
Besides, we compared the differences in tumor-infiltrating immune cell types, immunotherapeutic response, 
somatic mutation profiles, and tumor mutation burden (TMB) between high-risk group and low-risk group. In 
addition, the immunotherapeutic cohort (Imvigor210) treated with an anti-PD-L1 agent was performed to 
explore the potential value of the TALRGs signature on immunotherapy. 
Results: Five prognostic TALRGs were identified and selected to build the prognostic model. The high-risk group 
had poor prognosis in both TCGA-COAD cohort (P < 0.0001) and GSE39582 cohort (P = 0.00019). The areas 
under the curves (AUCs) of TALRGs signature were calculated (TCGA-COAD cohort: 0.624 at 1 years, 0.639 at 
3 years, 0.648 at 5 years; anti-PD-L1 cohort was 0.59). The high-risk group had advanced pathological stages and 
higher TMN stages in both TCGA-COAD cohort and GSE39582 cohort. The high-risk group had the higher 
infiltration of immunosuppressive cells, the expressions of immune checkpoint molecules, the IC50 values of 
chemotherapy drugs, and TP53 mutation rate (P < 0.05). In addition, patients with high TMB had worse 
prognosis (P < 0.05). Furthermore, the Imvigor210 also showed patients with high-risk scores had poor 
prognosis (platinum-treated cohort: P = 0.0032; non-platinum-treated cohort: P = 0.00017). 
Conclusions: Microorganisms are closely related to the tumor microenvironment to influence the progression 
and immune response of CRC via stimulating T cells through LPS-related genes. The TALRGs signature 
contributed to predict the prognosis and immunotherapy of CRC, and became new therapeutic targets and 
biomarkers of CRC. 
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usually with surgery as the primary treatment, 

radiotherapy, chemotherapy, targeted therapy, and 

combination therapy as adjuvant treatments [3]. 

Unfortunately, not all patients benefit from these 

treatments, and there is also an increased rate of 

treatment failure due to high recurrence rates and 

resistance to anti-cancer drugs, which is closely 

associated with the heterogeneity of the CRC tumor 

microenvironment (TME) [4, 5]. Therefore, predicting 

the prognosis and determining the best treatment for 

poor prognosis of CRC from the perspective of TME is 

of great significance for improving the survival time 

and quality of patients. 

 

The role of microorganisms in the occurrence, 

diagnosis, prognosis and treatment of cancer has been 

increasingly recognized. Some studies have found that 

the infections of gut microbiota may be associated with 

the development of CRC [6]. For example, a potential 

association between streptococcal infections and 

gastrointestinal tumors was discovered as early as 1950s 

[7]. In addition, gut and intratumoral microorganisms 

affected the immune infiltrating cells of TME via their 

derived metabolites, genotoxins, and antigens, thereby 

regulating the antitumor immune response [8, 9]. For 

instance, the immunogenic intestinal bacteria 

(Helicobacter hepaticus) inhibited tumor growth of 

colon adenocarcinoma (COAD) by activating CD4+ T 

cells- and B cells-associated anti-tumor immunity [10]. 

Bacterial lipopolysaccharides (LPS) are present in both 

cancer cells and immune cells of TME [11], which can 

bind to the TLR4 of monocytes, causing them to 

differentiate into an immunosuppressive M2 phenotype 

[12, 13]; and can also promote the recruitment  

of CD11b+Gr-1+ myeloid-derived suppressor cells 

(MDSCs) and CD1d+CD5+ regulatory B (Breg) cells on 

tumor cells, which together inhibit the local anti-tumor 

T cells response [14]. Actually, unlike gut microbes,  

the comprehensive characterization of intratumoral 

microorganisms’ signatures related to immune 

responses is still in its infancy due to technical 

limitations. Therefore, through immune infiltrating cells 

in TME, we can explore the role of major pathogenic 

components of intratumoral microorganisms on the 

occurrence, development, prognosis and treatment of 

cancer, laying a foundation for the clinical prevention 

and treatment of cancer. 

 

In this study, we aim to identify a T cells-associated 

LPS-related gene (TALRG) signature as a biomarker 

for the diagnosis and prognosis of CRC. We first 

obtained differentially expressed genes (DEGs) in T 

cells from the single-cell RNA sequencing (scRNA-seq) 
data and LPS-related genes from the Comparative 

Toxicogenomics Database (CTD). Then, TALRGs were 

obtained by making the intersection of DEGs in T cells 

and LPS-related genes. Subsequently, Univariate and 

multivariate Cox analyses were used to identify a 

prognostic 5-TALRGs signature. This study revealed 

TALRGs’ clinical value in CRC and provided 

recommendations for finding new treatment options of 

CRC. 

 

METHODS 
 

Acquisition and processing of data 

 

The scRNA-seq dataset GSE200997 was obtained  

from the Gene Expression Omnibus (GEO, 

https://www.ncbi.nlm.nih.gov) database, which 

included 16 CRC samples and 7 adjacent samples of 

normal colon tissue. There was a total of 49,859 cells in 

all samples, including 31,586 cells from tumor samples 

and 18,273 cells from normal samples. A total of 5286 

LPS-related genes were downloaded from CTD 

database (http://ctdbase.org/). 
 

The Cancer Genome Atlas Colon Adenocarcinoma 

(TCGA-COAD) cohort was downloaded from UCSC 

Xena platform (https://xenabrowser.net/datapages/), 

which is used to construct the prognosis model, 

including the mRNA expression data, clinical 

information (gender, age, microsatellite status, overall 

survival (OS), pathological stage, TNM stage), and 

mutation profiling data. The detailed information was 

shown in Supplementary Table 1. The validation dataset 

(GSE39582) was downloaded from the GEO database, 

and the detailed information was shown in Sup-

plementary Table 2.  
 

According to the published report [15], we gained an 

immunotherapeutic cohort (IMvigor210), which was 

treated with atezolizumab (anti-PD-L1 agent). Based  

on the guideline on http://research-pub.gene.com/ 

IMvigor210CoreBiologies, the IMvigor210Core-

Biologies R package was used to acquire Expression 

sets and clinical information of this cohort [16]. The 

samples were divided into platinum-treated cohort and 

non-platinum-treated cohort based on whether or not 

they received platinum-based chemotherapy. 

 

scRNA-seq dataset analysis and TALRGs 

identification 

 

The cell filtration criteria in the scRNA-seq dataset 

(GSE200997) were consistent with previous study 

[17]. According to the previous report [17], the filtered 

data was used to reduce the dimensionality of the 

features. The cells were then clustered using the 
FindNeighbors and FindClusters functions. The t-

distributed stochastic neighbor embedding, and uniform 

manifold approximation and projection (UMAP) 
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algorithms were used to reduce the dimensionality and 

visualize clustering classification based on the first 20 

principal components selected. Then, we used SingleR 

package of R software to annotate the cell types of 

clusters, with “HumanPrimaryCellAtlasData” as 

reference [18]. Subsequently, we identified DEGs 

between tumor and normal cells in T cells using the 

FindMarkers function with logfc.threshold = 0.585. 

Moreover, the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analyses of DEGs in T 

cells were conducted using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) 

database (https://david.ncifcrf.gov/conversion.jsp). 

Finally, we selected the intersection of DEGs in T cells 

and bacterial LPS-related genes to obtain TALRGs. 

 

Development and validation of the TALRGs 

prognostic model 

 

TCGA-COAD cohort was used to recognize the 

prognostic TALRGs and established a prognostic risk 

model. Univariate Cox analysis was used to screen  

the prognostic signature using Survival R package.  

Kaplan–Meier analysis was performed to evaluate the 

relationship between mRNA expression of prognostic 

TALRGs and overall survival (OS). According to the 

each TALRG’ coefficients (which obtained from the 

multivariate Cox results), the risk score was calculated 

by the following formula [17]: 

 

1

n

i

risk score Cox coefficient of gene i

scaled expression value of gene i





=

= 
 

 

Kaplan–Meier analysis and time-dependent receiver 

operating characteristic (ROC) curve were applied to 

validate the predictive ability of the TALRGs 

prognostic model using the survminer R package and 

survivalROC R package, respectively. To further 

confirm the prediction model, we introduced a 

validation dataset: GSE39582. The prediction ability of 

the model was verified by the above method. 

 

Assessment of clinicopathological characteristics 

 

TCGA-COAD cohort and GSE39582 dataset were 

performed to validate the prognostic capability of 

TALRGs prognostic model. According to the 

constructed risk scoring model, the dataset was divided 

into high-risk group and low-risk group. Kruskal-Wallis 

test and Wilcoxon test were used to investigate the 

relationship between TALRGs prognostic model and 

clinicopathological characteristics, including pathological 

stage and TNM stage. 

Establishment of nomogram 

 

Nomogram is a multivariate regression analysis based 

on clinicopathological information and risk score. 

Based on the risk score and clinical factors such as age, 

sex, microsatellite status, and pathological stage, the 

nomogram was constructed using the TCGA-COAD 

cohort using rms R package. The calibration curve was 

employed to evaluate the suitability of clinical use. 

 

Estimation of immunological properties of TALRGs 

signature 

 

Similar to the previous approach [16], we employed 

CIBERSORT algorithm to evaluate the infiltration of  

22 types of tumor-infiltrating immune cells [19]. The 

Wilcoxon test was applied to compare to the 

proportions of immune cells between low- and high-risk 

groups (P-value < 0.05). Then, we employed unpaired t-
test and Wilcoxon test to assess the difference of the 

mRNA levels of immune checkpoints and IC50 value of 

chemotherapy drugs between the two risk groups, 

respectively. 

 

Analysis of mutation characteristics of TALRGs 

signature 

 

We employed the maftools R package to analyze and 

visualize the somatic mutation profiles. Subsequently, 

the correlation between the mutation status of gene and 

OS was evaluated. The value of tumor mutation burden 

(TMB) was calculated and visualized by the maftools R 

package. The Kruskal-Wallis test was performed to 

compare the TMB value between the two risk groups. 

The surv_cutpoint algorithm of survival R package was 

used to determine the optimal cutoff value of TMB, and 

then all samples were divided into high-TMB group and 

low-TMB group. Kaplan–Meier analysis was used to 

evaluate the relationship between TMB values and OS. 

P < 0.05 was considered statistically significant. 

 

The role of the TALRGs signature in immunotherapy 

 

Similar to the previous study [16], we validated the 

constructed TALRGs signature using platinum-treated 

cohort and non-platinum-treated cohort, respectively. 

Secondly, patients with complete response (CR) or 

partial response (PR) were classified as responders and 

compared with non-responders (stable disease (SD) or 

progressive disease (PD)), and the risk score for each 

patient was calculated according to the built risk score 

model. Kaplan–Meier analysis and ROC curve were 

applied to assess predictive ability of the risk model. 
Finally, we employed the Wilcoxon test to compare the 

tumor mutation load and neoantigen load between the 

two risk groups. 
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RESULTS 
 

scRNA-seq analysis of CRC and identification of 

TALRGs  

 

In all, 47,958 high-quality cells were obtained after 

strict quality control (Figure 1A), including 30,341 

tumor cells and 17,617 normal cells. The dimensionality 

reduction by principal component analysis (PCA) 

showed that tumor cells and normal cells were 

significantly different (Figure 1B). Subsequently, 22 

distinct cell subgroups were identified and visualized by 

using UMAP method (Figure 1C). Through the 

annotation of 22 cell subgroups, a total of 6 major cell 

types were identified, mainly including T cells, B cells, 

NK cells, endothelial cells, hepatocytes, and monocytes 

(Figure 1D). Subsequently, we compared and analyzed 

the genes between tumor and normal cells in individual 

T cell clusters. T cells revealed 82 DEGs between tumor 

and normal cells (Supplementary Table 3). KEGG 

enrichment analysis showed that DEGs in T cells are 

mainly involved in “Antigen processing and 

presentation”, “Intestinal immune network for IgA 

production”, “Staphylococcus aureus infection” and 

“Cell adhesion molecules” (Figure 1E), which are 

correlative signaling pathways of bacterial LPS-related 

genes. A total of 5,286 bacterial LPS-related genes were 

obtained from the CTD database. Then LPS-related 

genes overlapped with DEGs of T cells, and 44 

TALRGs were obtained (Figure 1F). 

 

Establishment and validation of TALRGs signature 

 

We further studied the association of TALRGs with 

prognosis, and 5 optimal prognosis-related TALRGs 

with P < 0.05 were identified using univariate Cox 

analysis (Table 1), namely HSPA1A, HSPB1, 

SERPINA1, SLC2A3, and TIMP1. Compared with 

normal samples, the expressions of HSPA1A, HSPB1 

and SERPINA1 were down-regulated in tumor samples, 

while TIMP1 was up-regulated in tumor samples. 

SLC2A3 expression had no significant difference 

 

 
 

Figure 1. TALRGs identification from scRNA-seq data and CTD. (A) The quality control of scRNA-seq data. (B) The dimensionality of 
tumor cells and normal cells was reduced by PCA. (C) UMAP distribution of the 22 cell clusters. (D) The cell clusters were annotated into 
6 main cell types. (E) KEGG analysis of DEGs in T cells. (F) The Venn diagram of DEGs in T cells and LPS-related genes. 
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Table 1. The detailed information on the identified prognostic TALRGs. 

TALRGs HR HR.95L HR.95H P-value 

HSPA1A 1.234564836 1.089886942 1.398448111 0.0009216 

HSPB1 1.233081483 1.030951791 1.474840973 0.02180952 

SERPINA1 0.869881952 0.771966563 0.980216822 0.022142324 

SLC2A3 1.173886946 1.020513968 1.350310341 0.024818267 

TIMP1 1.304391157 1.060403191 1.604518267 0.011901692 

 

between normal and tumor samples (Figure 2A). 

Furthermore, Kaplan–Meier survival analyses 

demonstrated that patients with increased HSPA1A 

(P = 0.018, Supplementary Figure 1A), SLC2A3 

(P = 0.0073, Supplementary Figure 1D), and TIMP1 

(P = 0.0031, Supplementary Figure 1E) showed poor 

survival, while patients with increased SERPINA1 

indicated favorable survival (P = 0.02, Supplementary 

Figure 1C). There was no significant relationship 

between HSPB1 expression and OS (P = 0.28, 

Supplementary Figure 1B). Subsequently, multivariate 

Cox analysis established a TALRGs signature based on 

the TCGA-COAD cohort, and the hazard ratio of each 

gene was shown in Figure 2B. All patients were then 

divided into high- and low-risk groups based on the 

median risk score. The formula for the risk score model 

was as follows: risk score = (0.15872 × expression  

value of HSPA1A) + (0.04431 × expression value of 

HSPB1) + (−0.19961 × expression value of SERPINA1) 

+ (0.0404 × expression value of SLC2A3) + 

(0.22075 × expression value of TIMP1). The Kaplan–

Meier analysis manifested low-risk patients had a better 

survival advantage (P < 0.0001, Figure 2C). In addition, 

the area under the curve (AUC) of the TCGA-COAD 

cohort was 0.624 (at 1-years), 0.639 (at 3-years), and 

0.648 (at 5-years), respectively (Figure 2D). The model 

was validated in the GSE39582 cohort. The OS rate of 

the low-risk group was higher than that of the high-risk 

group (P = 0.00019, Figure 2E). The AUC of anti-PD-

L1 cohort was 0.59 with P = 0.0366463 (Figure 2F). 

These results suggested that TALRGs prognostic model 

is effective in predicting the prognosis of CRC patients. 

 

 
 

Figure 2. Construction and validation of the TALRGs signature. (A) Comparison of the TALRGs expression between tumor and 

normal samples. (B) The multivariate Cox analysis. (C) Kaplan–Meier analysis of the TALRGs signature in TCGA-COAD cohort. (D) ROC curve 
analysis of the TALRGs signature in TCGA-COAD cohort. (E) Kaplan–Meier analysis of the TALRGs signature in GSE39582 cohort. (F) ROC 
curve analysis of the TALRGs signature in anti-PD-L1 cohort. 
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Evaluation of clinicopathological characteristics  

 

To explore the relationship between prognostic values 

and clinicopathological characteristics of CRC patients, 

clinical traits in TCGA-COAD and GSE39582 cohorts 

were analyzed. The CRC patients with more advanced 

clinical stages in TCGA-COAD cohort, such as 

advanced pathological stage (P = 0.00022, Figure 3A), 

later T stage (P = 0.0032, Figure 3B), later M stage 

(P = 0.0042, Figure 3C), and later N stage (P = 0.0017, 

Figure 3D) had higher risk scores, indicating patients 

with low-risk scores have a better prognosis. 

Analogously, there were differences in the risk scores of 

different pathological stages (P = 0.018, Figure 3E) and 

different T stages (P = 0.0051, Figure 3F) in GSE39582 

cohort, suggesting that risk scores were correlated with 

pathological stages and T stages. Besides, the risk score 

in M1 was not significantly different from M0 

(P = 0.26, Figure 3G), while the risk score in N2/N3 

was significantly higher than N0/N1 (P = 0.00045, 

Figure 3H). These results indicated that TALRGs 

signature has good clinical performance. 

 

Construction of a nomogram 

 

As shown in Figure 4A, age (≤ 60), stage III and IV, 

and risk score were observably associated with OS 

(P < 0.05), while gender, microsatellite status, stage I 

and II were not (P > 0.05). Then, we constructed a 

nomogram plot to ameliorate the accuracy of TALRGs 

signature and provided a quantitative and intuitive way 

to predict 1-, 3-, and 5-years survival probabilities for 

CRC patients (Figure 4B). We can determine the total 

score based on the individual score and thus predict the 

probability of survival of the patient at 1-, 3-, and 5-

years. In addition, the calibration curves of the model 

showed that the predicted curves are close to the ideal 

curves, indicating that the nomogram has a good 

prediction performance (Figure 4C–4E). 

 

Immune infiltrate analysis and efficacy prediction of 

TALRGs signature 

 

Given that the characteristics of tumor immune 

infiltrating cells are associated with tumor development 

and progression and may affect the prognosis of CRC, 

we used the CIBERSORT method to compare the 

immune infiltration of 22 immune cells in different risk 

groups. The results showed B cells, plasma cells, resting 

CD4+ T cells, activated CD4+ T cells, and resting 

dendritic cell (DC) cells were more abundant in the 

low-risk group, while CD8+ T cells, T regulatory cells 

(Tregs), and M0/M1/M2 macrophages were more 

abundant in the high-risk group (Figure 5A). In 

addition, we analyzed correlations between the risk 

model and CD274 (PDL1), PDCD1 (PD1), CTLA4, 

HAVCR2 (TIM3), LAG3, and TIGIT. We found 

observably higher expressions of all immune checkpoint 

molecules in the high-risk group (Figure 5B), indicating 

that immune function is suppressed in high-risk 

patients. Moreover, we discovered the IC50 of 

dactinomycin, docetaxel, mitoxantrone, vinorelbine, 

camptothecin, and teniposide was higher in the high-

risk group, while the IC50 of rapamycin was higher 

 

 
 

Figure 3. Analysis of clinicopathological characteristics. The Kruskal-Wallis test was used to analyze the relationship between risk 

score and (A) advanced pathological stages, (B) T stages, (C) M stages, and (D) N stages in TCGA-COAD cohort. The Kruskal-Wallis test was 
used to analyze the relationship between risk score and (E) advanced pathological stages and (F) T stages in GSE39582 cohort. The 
Wilcoxon test was performed to analyze the relationship between risk score and (G) M stages and (H) N stages in GSE39582 cohort. 
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in the low-risk group (Figure 5C–5J), suggesting that 

patients in the high-risk group are more resistant to 

most chemotherapy drugs. 

 

Mutation analysis of TALRGs signature 

 

Genetic alteration analysis showed that APC, TP53, 

TTN, KRAS, SYNE1, MUC16, PIK3CA, FAT4, RYR2 

and OBSCN were the mutation rates of the top 10 genes 

in CRC patients (Figure 6A). The mutant profiles of 

high-risk and low-risk patients were shown in 

Supplementary Figure 2A, 2B, respectively. Besides, 

patients in the high-risk group had a higher median 

number of mutations than those in the low-risk group 

(118 vs. 110). In the high-risk group, single nucleotide 

polymorphism (SNP) was the most variant type, 

missense mutation was the most common SNP 

classification, and C > T was the main single nucleotide 

variants (SNV) class, and TTN, APC, MUC16, SYNE1, 

TP53, RYR2, DNAH11, ABCA13, KRAS, PIK32CA 

were the top 10 mutated genes in patients in the high-

risk group (Figure 6B). Except for the top 10 mutated 

genes (TTN, APC, MUC16, SYNE1, TP53, FAT4, 

KRAS, OBSCN, PIK3CA, ZFHX4), the mutation 

profiles of the low-risk group were similar to that of  

the high-risk group (Figure 6C). Moreover, the mutation 

rate of TP53 in the high-risk group was significantly 

higher than in low-risk group (P = 0.0257, Supplemen-

tary Figure 2C). The mutation status of TP53 didn’t 

affect patients’ OS (P = 0.183, Supplementary Figure 

2D), while TP53 combined with mutations in other 

genes (e.g. LRP18, SYNE1, TTN) significantly reduced 

survival time (Figure 6D). In addition, the median TMB 

value was 2.22/Mb in CRC patients (Supplementary 

Figure 2E), and there was no significant difference in 

TMB value between low-risk group and high-risk group 

(P = 0.8, Supplementary Figure 2F). However, patients 

with lower TMB had better prognosis (P = 0.028, 

Figure 6E). 

 

Effect of immunotherapy on prognosis 

 

In order to evaluate the predictive effect of TALRGs 

signature on immunotherapy, we further validated 

constructed risk score model using the platinum-treated 

cohort and the non-platinum-treated cohort. The results 

exhibited patients with low-risk scores had significantly 

longer survival times (platinum-treated cohort: 

P = 0.0032, Figure 7A; non-platinum-treated cohort: 

P = 0.00017, Figure 7B). The AUCs of constructed 

model in anti-PD-L1 cohorts were 0.639 (platinum-

treated cohort, Figure 7C) and 0.627 (non-platinum-

treated cohort, Figure 7D), respectively. The clinical 

benefit of immunotherapy was not significant in 

patients receiving platinum therapy (P = 0.27, Figure 

7E), while patients receiving non-platinum therapy 

 

 
 

Figure 4. Construction and validation of a nomogram. (A) The forest map demonstrated the association between risk score, clinical 

characteristics, and OS. (B) Nomogram based on risk score and clinical characteristics in predicting 1-, 3-, and 5-years OS. Calibration curves 
were used to predict the probability of 1-year (C), 3-year (D), and 5-year (E) OS. 
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marked clinical benefits from immunotherapy in the 

low-risk score group compared to those with a high-risk 

score group (P = 0.023, Figure 7F). In addition, higher 

tumor mutation load and higher neoantigen burden in 

platinum-treated patients was not significantly 

associated with risk score (P = 0.29, Figure 7G; P =  

0.94, Figure 7H), while non-platinum-treated patients 

were associated with a low-risk score (P = 5.1e-06, 

Figure 7I; P = 1.7e-05, Figure 7J). These findings 

demonstrated that TALRGs signature is effective in 

predicting the prognosis of immunotherapy patients. 

 

DISCUSSION 
 

Microorganisms play an important role in cancer 

occurrence, diagnosis, prognosis and treatment, 

especially CRC [20, 21]. Our previous research has 

identified 2 pathogenic microorganisms that can be used 

as biomarkers for COAD diagnosis and prediction [22]. 

However, due to technical limitations, the types of 

microorganisms in CRC and the depth of their role are 

not fully understood. Considering that microorganisms 

in tumors drive tumor progression by promoting 

immune tolerance [23], we applied bioinformatics tools 

for the first time to identify TALRGs based on LPS-

related genes and T cells, and establish the prognostic 

risk model and nomogram for CRC. Then, the 

performance of TALRGs signature and its effect on 

immunotherapy were examined in multiple cohorts. 

 

For this study, the prognostic 5-TALRGs genes 

HSPA1A, HSPB1, SERPINA1, SLC2A3, and TIMP1 

were obtained. HSPA1A is a member of the heat shock 

protein group A (HSP70), which plays an important role 

in regulating the correct folding of proteins and 

maintaining protein homeostasis [24]. HSPA1A protects

 

 
 

Figure 5. Immune infiltrate analysis and efficacy prediction of TALRGs signature. (A) The Wilcoxon test was applied to compare 

the proportions of immune cells between low- and high-risk groups. (B) Comparing the difference of the mRNA levels of immune 
checkpoints unpaired between the two risk groups using unpaired t-test. (C–J) Comparing the difference of IC50 value of chemotherapy 
drugs between the two risk groups using Wilcoxon test. 
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Figure 6. Analysis of mutation characteristics of TALRGs signature. (A) The mutation profiles of CRC patients. (B) The summary 

information of high-risk patients’ mutation profiles. (C) The summary information of low-risk patients’ mutation profiles. (D) Kaplan–Meier 
analysis of the two genes mutation status. (E) CRC patients with higher TMB values had poor OS. 

 

 

 
 

Figure 7. Effect of immunotherapy on prognosis. Kaplan–Meier analysis of the TALRGs signature in the platinum-treated cohort 

(A) and non-platinum-treated cohort (B). ROC curve analysis of anti-PD-L1 cohort in the platinum-treated cohort (C) and non-platinum-
treated cohort (D). Comparing the difference of the risk score between responders group and non-responders group in the platinum-
treated cohort (E) and non-platinum-treated cohort (F). Comparing the difference of the tumor mutation load and neoantigen load 
between low- and high-risk groups in the platinum-treated cohort (G, H) and non-platinum-treated cohort (I, J). 
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cell membrane integrity from bacterial LPS stimulation 

[25]. HSPA1A was down-regulated in CRC compared 

to adjacent nontumor tissues, which was consistent with 

other findings [26]. Additionally, Guan et al. [26] 

reported that increased HSPA1A in CRC was related to 

poor prognosis, which was consistent with our study. 

These findings indicated that HSPA1A may be related 

to progression rather than tumorigenesis of CRC. 

Besides, HSPB1 (also called human HSP27) as a 

member of HSPs, is involved in regulating molecular 

chaperones of cytoskeletal tissue [27] or stabilizing 

abnormally folded proteins to prevent aggregation [28]. 

LPS caused endothelial barrier dysfunction by 

promoting phosphorylation of HSPB1 [29]. HSPB1 is 

associated with the progression of CRC and can 

influence the response of CRC to different treatments 

[30]. SERPINA1 gene encodes alpha1-antitrypsin 

(A1AT), in which A1AT knockdown aggravates LPS-

induced inflammation and cell death in human 

bronchial epithelial cells [31]. A1AT has been reported 

to bind complement components, which regulate T cell 

function [32]. Furthermore, SERPINA1 was reported to 

affect the CRC prognosis by regulating Th17 cells’ 

infiltration [33], which is considered as a biomarker of 

CRC diagnosis and prognosis [34]. SLC2A3, a member 

of the glucose transporter superfamily, was significantly 

up-regulated in LPS-induced human umbilical vein 

endothelial cells compared with control [35]. Gao and 

his team showed that elevated SLC2A3 is associated 

with poor survival of CRC [36], which is same as our 

study. Interestingly, SLC2A3 expression was positively 

related to CD4+ T cells and CD8+ T cells in COAD, 

respectively [36]. TIMP1 is a natural inhibitor of matrix 

metalloproteinases (MMPs), and increased LPS 

stimulation of macrophages during hepatitis C virus 

infection can lead to MMP/TIMP1 imbalance [37]. 

TIMP1 was markedly correlated with poor prognosis of 

CRC with its high expression [38]. Our results lead to a 

similar conclusion where TIMP1 is the prognostic 

biomarker for CRC. Meanwhile, TIMP1 expression was 

positively associated with CD8+ T cells in CRC [39]. 

From the findings above, the biological function of 

these 5-TALRGs were influenced by LPS and may 

affect the progression and immune response of CRC by 

modulating immune cells, especially T cells.  

 

We constructed a prognostic model with high accuracy 

based on the combination of 5 prognostic TALRGs. 

Unlike other previous LPS-related prognostic models 

[40, 41], our 5-TALRGs signature contained the 

smallest number of genes and was relatively easy to 

apply clinically. As with other good prognostic 

signatures [42, 43], we also established a nomogram 
with better accuracy to contribute to predicting the 

prognosis of CRC using age, sex, microsatellite status, 

pathological stage, and risk score. Besides, TALRGs 

signature had a good performance in understanding 

immunological properties for CRC. For example, in the 

terms of immune cells infiltration, low-risk group had 

the higher infiltration of B cells, plasma cells, CD4+  

T cells and DC cells, as well as lower infiltration of 

immunosuppressive cells, such as macrophages and 

Tregs. Studies have shown that the infiltration of B cells 

is associated with good prognosis of patients [44], 

which has anti-tumor effects for CRC [45]. 

Additionally, B cells are a major component and 

initiator of tertiary lymphoid structures (TLS), and 

tumors with mature TLS, high density of B cells and 

plasma cells typically have good clinical outcomes and 

respond to immunotherapy [46]. Besides, CD4+ T cells 

acted as an antitumor factor to provide clinical benefit 

to patients [47]. Furthermore, Tregs can promote 

chemotherapy resistance in CRC patients via FOXO1/ 

CEBPB/NF-κB signaling pathway [48]. Therefore, the 

infiltration of different immune cells in different risk 

populations affects the response of colon cancer patients 

to immunotherapy.  

 

Recent studies have shown that immunotherapy and 

chemotherapy can be used as adjunctive therapy for 

tumor patients [49], and have important implications for 

the treatment of colon cancer. In this study, risk 

stratification based on the TALRGs signature has been 

shown to help predict immune and chemotherapy 

responses. We found that patients with high-risk score 

had higher expression of immune checkpoint molecules 

and no sensitivity to multiple chemotherapy drugs of 

CRC, meaning that high-risk patients are more suitable 

for immunosuppressive therapy and chemotherapy 

drugs are more beneficial to low-risk patients. SNP is 

the most common variant type in the human genome 

[50]. Our study found SNP was the most variant type in 

both high-risk and low-risk patients, with the most 

missense mutations in the common SNP classification 

and C > T being the main SNV class, which is similar to 

previously study [17]. Missense mutation can be 

associated with a number of pathological conditions and 

can affect susceptibility to disease and drug treatment 

[51]. These findings suggested that the molecular 

mechanism of mutational effects can be revealed to 

understand the occurrence and development of CRC in 

order to improve the prognosis and clinical treatment of 

patients. In addition, immunotherapy efficacy is 

connected with TMB, usually MHC I molecules with 

high mutation load of tumors can produce more peptide 

neoantigens, which are recognized as “non-self”, thus 

triggering T cells to activate and kill tumor cells [52]. 

However, we found patients with lower TMB had better 

prognosis. The main mechanism of immune response of 
TMB is still being explored. More importantly, 

TALRGs signature was also significantly associated 

with OS in patients treated with anti-PD-L1. Similar to 
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previous results [16], we speculated that patients with 

low-risk scores may be more sensitive to immune 

checkpoint inhibitor therapy. Briefly, based on the 

TALRGs signature, we can assign more reasonable 

treatment plans to patients, resulting in improving the 

survival rate of CRC patients. 

 

CONCLUSIONS 
 

In conclusion, TALRGs signature constructed by the 

combination of T cells and LPS-related genes has a 

good performance in predicting prognosis and immune 

response of CRC, providing a promising strategy for 

guiding individualized therapy and improving prognosis 

prediction. This could aid in our understanding of the 

important role of microorganisms-mediated immune 

responses in the progression and prognosis of CRC. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Kaplan–Meier analysis of each TALRG mRNA expression, including HSPA1A, HSPB1, SERPINA1, SLC2A3, and 

TIMP1 (A–E). 
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Supplementary Figure 2. Differences in mutation profiles between high- and low-risk groups. Waterfall plot of the top 20 

mutated genes in high- (A) and low-risk groups (B). (C) Comparison of the mutation rate between the high- and low-risk groups. (D) Kaplan–
Meier analysis of TP53 mutation status. (E) The TMB profiles of CRC patients. (F) Comparison of TMB values between the high- and low-risk 
groups. 
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Supplementary Tables 
 

Supplementary Table 1. The detailed information of TCGA-COAD cohort. 

 Tumor Normal Overall 

(N = 432) (N = 39) (N = 471) 

Factor (Gender)    

Female 200 (46.3%) 20 (51.3%) 220 (46.7%) 

Male 232 (53.7%) 19 (48.7%) 251 (53.3%) 

Factor (Age)    

≤60 136 (31.5%) 9 (23.1%) 145 (30.8%) 

>60 296 (68.5%) 30 (76.9%) 326 (69.2%) 

Factor (microsatellite_status)    

 8 (1.9%) 3 (7.7%) 11 (2.3%) 

Indeterminate 3 (0.7%) 0 (0%) 3 (0.6%) 

MSI-H 72 (16.7%) 9 (23.1%) 81 (17.2%) 

MSI-L 72 (16.7%) 6 (15.4%) 78 (16.6%) 

MSS 277 (64.1%) 21 (53.8%) 298 (63.3%) 

Factor (Stage)    

I 73 (16.9%) 4 (10.3%) 77 (16.3%) 

II 166 (38.4%) 21 (53.8%) 187 (39.7%) 

III 122 (28.2%) 6 (15.4%) 128 (27.2%) 

IV 60 (13.9%) 7 (17.9%) 67 (14.2%) 

Missing 11 (2.5%) 1 (2.6%) 12 (2.5%) 

Factor (T)    

T1 11 (2.5%) 0 (0%) 11 (2.3%) 

T2 75 (17.4%) 5 (12.8%) 80 (17.0%) 

T3 296 (68.5%) 28 (71.8%) 324 (68.8%) 

T4 49 (11.3%) 6 (15.4%) 55 (11.7%) 

Missing 1 (0.2%) 0 (0%) 1 (0.2%) 

Factor (M)    

M0 318 (73.6%) 25 (64.1%) 343 (72.8%) 

M1 60 (13.9%) 7 (17.9%) 67 (14.2%) 

MX 47 (10.9%) 6 (15.4%) 53 (11.3%) 

Missing 7 (1.6%) 1 (2.6%) 8 (1.7%) 

Factor (N)    

N0 254 (58.8%) 27 (69.2%) 281 (59.7%) 

N1 100 (23.1%) 7 (17.9%) 107 (22.7%) 

N2 78 (18.1%) 5 (12.8%) 83 (17.6%) 
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Supplementary Table 2. The detailed information of GSE39582 cohort. 

 
Alive Death Overall 

(N = 369) (N = 187) (N = 556) 

Factor (Sex)    

Female 175 (47.4%) 74 (39.6%) 249 (44.8%) 

Male 194 (52.6%) 113 (60.4%) 307 (55.2%) 

Factor (Age)    

≤60 115 (31.2%) 42 (22.5%) 157 (28.2%) 

>60 254 (68.8%) 145 (77.5%) 399 (71.8%) 

Factor (Stage)    

0 3 (0.8%) 1 (0.5%) 4 (0.7%) 

1 27 (7.3%) 5 (2.7%) 32 (5.8%) 

2 183 (49.6%) 75 (40.1%) 258 (46.4%) 

3 136 (36.9%) 67 (35.8%) 203 (36.5%) 

4 20 (5.4%) 39 (20.9%) 59 (10.6%) 

Factor (T_stage)    

N/A 8 (2.2%) 12 (6.4%) 20 (3.6%) 

T0 1 (0.3%) 0 (0%) 1 (0.2%) 

T1 10 (2.7%) 1 (0.5%) 11 (2.0%) 

T2 36 (9.8%) 8 (4.3%) 44 (7.9%) 

T3 249 (67.5%) 111 (59.4%) 360 (64.7%) 

T4 63 (17.1%) 54 (28.9%) 117 (21.0%) 

Tis 2 (0.5%) 1 (0.5%) 3 (0.5%) 

Factor (M_stage)    

M0 340 (92.1%) 134 (71.7%) 474 (85.3%) 

M1 20 (5.4%) 40 (21.4%) 60 (10.8%) 

MX 1 (0.3%) 1 (0.5%) 2 (0.4%) 

N/A 8 (2.2%) 12 (6.4%) 20 (3.6%) 

Factor (N_stage)    

N/A 8 (2.2%) 12 (6.4%) 20 (3.6%) 

N+ 1 (0.3%) 5 (2.7%) 6 (1.1%) 

N0 214 (58.0%) 81 (43.3%) 295 (53.1%) 

N1 91 (24.7%) 40 (21.4%) 131 (23.6%) 

N2 52 (14.1%) 46 (24.6%) 98 (17.6%) 

N3 3 (0.8%) 3 (1.6%) 6 (1.1%) 
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Supplementary Table 3. Gene set from T cells comparison between the tumor and normal cells. 

gene-ID myAUC avg_diff power avg_log2FC pct.1 pct.2 

JUNB 0.676 0.540385 0.352 0.779611 0.907 0.703 

NR4A2 0.668 0.69728 0.336 1.005962 0.667 0.377 

CD55 0.649 0.61498 0.298 0.887228 0.628 0.38 

RPS26 0.352 −0.52224 0.296 −0.75344 0.897 0.929 

CXCR4 0.641 0.455137 0.282 0.656624 0.767 0.547 

BTG1 0.634 0.440019 0.268 0.634813 0.927 0.81 

YPEL5 0.633 0.546502 0.266 0.788435 0.624 0.41 

ZNF331 0.629 0.595867 0.258 0.859654 0.502 0.26 

NR4A1 0.629 0.479171 0.258 0.691298 0.652 0.421 

EZR 0.626 0.488399 0.252 0.704611 0.681 0.5 

HERPUD1 0.624 0.425807 0.248 0.61431 0.764 0.606 

S100A11 0.378 −1.0229 0.244 −1.47574 0.336 0.517 

CD37 0.621 0.425842 0.242 0.614361 0.748 0.574 

CD83 0.62 0.761335 0.24 1.098374 0.464 0.245 

GTF2B 0.619 0.471917 0.238 0.680832 0.505 0.294 

S100A6 0.381 −0.94463 0.238 −1.36281 0.477 0.639 

LAPTM5 0.616 0.406139 0.232 0.585935 0.77 0.595 

CD79A 0.615 0.698526 0.23 1.007759 0.5 0.315 

CREM 0.613 0.5707 0.226 0.823346 0.492 0.29 

SLC2A3 0.611 0.483525 0.222 0.697579 0.526 0.328 

CD74 0.611 0.626941 0.222 0.904485 0.873 0.806 

HLA-DPA1 0.606 0.488038 0.212 0.70409 0.591 0.424 

HLA-DRB5 0.605 0.599606 0.21 0.865048 0.434 0.245 

RHOH 0.605 0.479818 0.21 0.692231 0.51 0.329 

HLA-DRB1 0.603 0.481777 0.206 0.695057 0.563 0.39 

HIST1H4C 0.603 0.423851 0.206 0.611488 0.656 0.508 

HLA-DRA 0.602 0.619545 0.204 0.893814 0.492 0.328 

HLA-DQB1 0.601 0.527498 0.202 0.761018 0.455 0.27 

HLA-DQA1 0.598 0.537681 0.196 0.77571 0.419 0.235 

RBM38 0.593 0.439431 0.186 0.633965 0.291 0.108 

LY9 0.593 0.524742 0.186 0.757042 0.347 0.17 

PPDPF 0.411 −0.55898 0.178 −0.80644 0.786 0.829 

CHMP1B 0.589 0.584106 0.178 0.842686 0.335 0.167 

TCL1A 0.589 0.709733 0.178 1.023929 0.244 0.064 

LGALS3 0.412 −0.82682 0.176 −1.19285 0.214 0.373 

VPS37B 0.586 0.442933 0.172 0.639018 0.345 0.188 

VPREB3 0.582 0.424238 0.164 0.612047 0.303 0.138 

HSPB1 0.419 −0.55165 0.162 −0.79586 0.294 0.426 

CSTB 0.422 −0.53586 0.156 −0.77308 0.338 0.465 

NR4A3 0.578 0.413409 0.156 0.596423 0.264 0.111 

GPR18 0.575 0.489747 0.15 0.706556 0.209 0.059 

S100A4 0.426 −0.56929 0.148 −0.82132 0.357 0.473 

HLA-DQA2 0.574 0.519909 0.148 0.75007 0.254 0.109 
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ANXA2 0.427 −0.61898 0.146 −0.893 0.189 0.321 

TXN 0.428 −0.54125 0.144 −0.78085 0.3 0.418 

S100A10 0.429 −0.76431 0.142 −1.10267 0.495 0.58 

CST3 0.437 −0.83373 0.126 −1.20281 0.078 0.199 

SELENOW 0.438 −0.40586 0.124 −0.58553 0.301 0.408 

GSTP1 0.44 −0.4488 0.12 −0.64748 0.471 0.534 

FCER2 0.559 0.41153 0.118 0.593712 0.179 0.062 

TIMP1 0.442 −0.935 0.116 −1.34892 0.136 0.245 

IGHM 0.552 0.506522 0.104 0.730756 0.192 0.089 

LYZ 0.448 −1.18492 0.104 −1.70948 0.011 0.116 

RAC1 0.448 −0.43494 0.104 −0.62748 0.31 0.384 

GPX2 0.452 −0.82268 0.096 −1.18688 0.037 0.131 

IFI27 0.455 −0.65298 0.09 −0.94206 0.055 0.144 

CEBPD 0.455 −0.4333 0.09 −0.62512 0.099 0.188 

HSPA6 0.455 −0.87952 0.09 −1.26888 0.054 0.142 

KRT19 0.457 −0.82736 0.086 −1.19363 0.051 0.136 

KRT18 0.457 −0.74114 0.086 −1.06924 0.104 0.186 

LGALS1 0.458 −0.45727 0.084 −0.6597 0.248 0.318 

KRT8 0.459 −0.62666 0.082 −0.90407 0.079 0.161 

PHLDA2 0.459 −0.60937 0.082 −0.87913 0.06 0.139 

MDK 0.461 −0.54889 0.078 −0.79189 0.036 0.112 

HSPA1A 0.462 −0.59295 0.076 −0.85545 0.437 0.471 

EPCAM 0.462 −0.5093 0.076 −0.73477 0.051 0.126 

CTSB 0.463 −0.5349 0.074 −0.7717 0.177 0.245 

CEACAM5 0.464 −0.66325 0.072 −0.95687 0.033 0.103 

PERP 0.464 −0.43449 0.072 −0.62684 0.113 0.179 

TSPAN8 0.465 −0.51586 0.07 −0.74423 0.038 0.109 

CLDN3 0.465 −0.41945 0.07 −0.60514 0.068 0.139 

IFITM3 0.466 −0.43279 0.068 −0.62439 0.244 0.293 

HSPA1B 0.466 −0.47407 0.068 −0.68394 0.476 0.498 

SERPINA1 0.467 −0.54867 0.066 −0.79156 0.037 0.103 

S100A14 0.468 −0.41836 0.064 −0.60356 0.037 0.1 

PIGR 0.473 −0.44955 0.054 −0.64857 0.057 0.11 

IGHA1 0.481 −0.62369 0.038 −0.89979 0.197 0.228 

GZMB 0.482 −0.45741 0.036 −0.65991 0.147 0.177 

IGKC 0.483 −0.63964 0.034 −0.92281 0.236 0.262 

MZB1 0.494 −0.44485 0.012 −0.64178 0.186 0.185 

IGLL5 0.496 −0.46485 0.008 −0.67064 0.121 0.126 

IGKV3-20 0.497 −0.42117 0.006 −0.60762 0.117 0.124 
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