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INTRODUCTION 
 

Cell death is an essential cellular process that plays 

crucial roles in development and immune responses. 

Apoptosis is a well-known example of cell death. 

Cytotoxic T cells and natural killer cells can utilize the 

apoptosis mechanism to kill virus-infected host cells. 

During apoptosis, DNA fragmentation can destroy the 

viral genome, eliminating viral pathogens. After the 

discovery of apoptosis, other cell death pathways have 

been discovered, including autophagy, ferroptosis, 

pyroptosis, necroptosis, and NETosis [1]. We have 

proposed a framework encompassing all discovered 

host immunological pathways, such as TH1, TH2a, 

TH2b, TH3, TH9, TH17, TH22, TH1-like, and THαβ 

immune reactions [2–4]. These immune responses 
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ABSTRACT 
 

Various immune pathways have been identified in the host, including TH1, TH2, TH3, TH9, TH17, TH22, TH1-like, 
and THαβ immune reactions. While TH2 and TH9 responses primarily target multicellular parasites, host 
immune pathways directed against viruses, intracellular microorganisms (such as bacteria, protozoa, and fungi), 
and extracellular microorganisms can employ programmed cell death mechanisms to initiate immune 
responses or execute effective strategies for pathogen elimination. The types of programmed cell death 
involved include apoptosis, autophagy, pyroptosis, ferroptosis, necroptosis, and NETosis. Specifically, apoptosis 
is associated with host anti-virus eradicable THαβ immunity, autophagy with host anti-virus tolerable TH3 
immunity, pyroptosis with host anti-intracellular microorganism eradicable TH1 immunity, ferroptosis with host 
anti-intracellular microorganism tolerable TH1-like immunity, necroptosis with host anti-extracellular 
microorganism eradicable TH22 immunity, and NETosis with host anti-extracellular microorganism tolerable 
TH17 immunity. 
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combat different types of pathogens and are linked  

to four types of hypersensitivities. TH1 and TH1- 

like immune responses fight against intracellular 

microorganisms, including intracellular bacteria, 

protozoa, and fungi. TH1 immunity is an eradicable 

immune reaction, while TH1-like is a tolerable immune 

reaction. TH1 and TH1-like immune responses are 

associated with type 4 delayed-type hypersensitivities. 

TH2 and TH9 immune responses combat parasites, 

including ectoparasites (insects) and endoparasites 

(helminths). TH2 immunity is an eradicable immune 

reaction, and TH9 is a tolerable immune reaction. TH2 

and TH9 immune responses are associated with type 1 

allergic hypersensitivities. TH22 and TH17 immune 

responses fight against extracellular microorganisms, 

including extracellular bacteria, protozoa, and fungi. 

TH22 immunity is an eradicable immune reaction,  

and TH17 is a tolerable immune reaction. TH22 and 

TH17 immune responses are associated with type 3 

immune complex-related hypersensitivities. THαβ and 

TH3 immune responses combat infectious particles, 

including viruses and prions. THαβ immunity is an 

eradicable immune reaction, and TH3 is a tolerable 

immune reaction. THαβ and TH3 immune responses are 

associated with type 2 antibody-dependent cytotoxic 

hypersensitivities. Programmed cell death is a crucial 

component of the host defense mechanism. Thus, 

different types of host immunological reactions can be 

related to different types of programmed cell death  

to defend against different pathogens. Here, we will 

review these cell death pathways associated with the 

host immunological pathways. 

 

Overview of cell death pathways 
 

Apoptosis 
 

Apoptosis, the earliest discovered cell death pathway, 

stands in contrast to necrosis, an unprogrammed form of 

cell death induced by pathogens or various external 

factors. Unlike necrosis, apoptosis is a tightly regulated 

and programmed cell death pathway governed by 

genetic machinery. During embryonic development, 

apoptosis plays a crucial role as embryonic cells  

utilize this mechanism to eliminate unwanted cells. 

Moreover, the apoptosis mechanism is employed in host 

immune responses to combat pathogenic infections.  

For instance, the natural killer cell antibody-dependent 

cellular cytotoxic reaction uses apoptosis to eliminate 

virus-infected cells. Consequently, apoptosis emerges as 

a vital component in the body’s self-defense reactions. 

 

Apoptosis can be categorized into two main pathways: 
the extrinsic pathway and the intrinsic pathway.  

The extrinsic pathway is activated by external signal 

molecules, initiating the apoptosis machinery. A classic 

example of the extrinsic apoptosis pathway involves  

the interaction between Fas and Fas ligand. On the  

other hand, the intrinsic pathway is activated by  

internal cellular signal molecules, with the release of 

cytochrome c from mitochondria being a characteristic 

event. Cytosolic cytochrome c serves as a trigger for 

cell apoptosis. Notably, there is an interconnection 

between the extrinsic and intrinsic pathways, converging 

into a common cell death pathway. The apoptosis 

machinery comprises initiator and executor caspases 

responsible for breaking down intracellular DNA and 

proteins. Initiator caspases include caspase 2, 8, 9, and 

10, while executor caspases include caspase 3, 6, and 7. 

This intricate system underscores the convergence of 

both extrinsic and intrinsic apoptosis pathways into a 

unified mechanism of cell death. 

 

Autophagy 

 

Autophagy is a natural, conserved cellular process  

that digests unwanted, damaged, or old organelles 

through a lysosome-dependent regulated mechanism. 

It is referred to as type 2 cell death. Autophagy can  

be initiated during starvation or other cellular stress 

situations [5]. It is a process that recycles cell contents 

to maintain the required metabolism of cells. Special 

organelles involved in autophagy include mitophagy, 

the autophagy of mitochondria, and others. Autophagy 

is an essential cellular process. Autophagic death  

is a cellular process involving autophagy-induced 

programmed cell death. This machinery also plays a 

crucial role in the cell’s defense mechanism [6]. 

Although initially recognized as a principal degradation 

pathway to protect against starvation, it is now  

evident that autophagy also plays a vital role in the 

homeostasis of non-starved cells. Defects in autophagy 

are associated with various human diseases, especially 

neurodegenerative disorders, and modulating autophagy 

becomes a potential treatment for these detrimental 

illnesses. 

 

Four types of autophagy have been classified: 

macroautophagy, microautophagy, chaperone-mediated 

autophagy (CMA), and crinophagy. In macroautophagy, 

cytoplasmic components such as mitochondria are 

targeted and isolated from the main part of the cell 

within a double-membrane autophagosome. Then, it 

fuses with a lysosome to become an autolysosome,  

and eventually, the contents of the vesicle are degraded 

and recycled. Compared to crinophagy, unnecessary 

secretory granules are degraded and recycled. In 

disease, autophagy has been seen as an adaptive 

response to stress, promoting cell survival; but in other 
conditions, it could promote cell death and morbidity. In 

extreme hunger, the breakdown of cellular components 

promotes cell survival by maintaining cellular energy. 
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Pyroptosis 

 

Pyroptosis is another form of programmed cell  

death [7]. It is related to interleukin-1 and interleukin-

18. It is associated with programmed cell death of 

macrophages. This process can help rapidly clear 

intracellular pathogens. Pyroptosis usually occurs in 

immune cells, keratinocytes, and sometimes epithelial 

cells. This process is triggered by the formation of an 

inflammasome complex (pyroptosome complex) via 

the stimulation of intracellular danger signals. The 

pyroptosome complex is related to the activation of 

caspases 1/4/5 in humans, which are different caspase 

sets compared to apoptosis. Caspases 1/4/5 cause the 

maturation of pro-inflammatory cytokines interleukin-

1β and interleukin-18. These caspases also activate  

the pore-forming protein gasdermin D (GSDMD). 

Gasdermin D is the key effector molecule of pyroptosis. 

The inflammasome pathway can be canonical or 

noncanonical. The canonical pathway involves the 

activation of pathogen-associated molecular patterns 

(PAMPs) and damage-associated molecular patterns 

(DAMPs) recognized by several endogenous pattern 

recognition receptors (PRRs). For example, NLRP3  

or NLRC4 protein is activated by different PAMPs  

and DAMPs. These receptors can upregulate pro-

inflammatory cytokines, including interleukin-12, via 

the NFkB and MAPK signaling mechanisms. Then, 

pro-IL-1β and pro-IL-18 are released to be activated 

via the action of cysteine-regulated caspase-1. Both 

NLRC4 and procaspase-1 contain a caspase activation 

and recruitment domain (CARD). After NLRC4 

recruits pro-caspase-1, the homotypic CARD-CARD 

interaction will induce an autocatalytic reaction, 

allowing pro-caspase-1 to become active caspase-1. 

Activated caspase-1 cleaves pro-IL-1β and pro-IL-18, 

enabling these two cytokines to become activated 

forms. Besides, caspase-1 also cleaves the intra- 

cellular gasdermin D. GSDMD will be cleaved  

into two fragments: the N-terminal GSDMD-N and  

the C-terminal GSDMD-C. GSDMD-N can form 

transmembrane pores. These transmembrane pores 

allow the secretion of IL-1β and IL-18 into 

extracellular spaces. These pores also impair the 

extracellular-intracellular ion gradients, causing an 

increase in osmotic pressure with the influx of  

water, leading to cell swelling and bursting, resulting  

in pyroptosis. It is worth noting that GSDMD-N  

can only insert itself into the inner membrane of 

specific lipid compositions. And, without cleavage, 

GSDMD-N is autoinhibited by GSDMD-C. The non-

canonical pathway involves the interaction of bacterial 

lipopolysaccharide and human caspase 4/5. Binding 
LPS to these caspases induces oligomerization and 

activation. These caspases also cleave GSDMD to 

become GSDMD-N, promoting pyroptosis. 

Ferroptosis 

 

Ferroptosis is a type of programmed cell death triggered 

by excess iron intracellularly. It is characterized by the 

accumulation of lipid peroxides. Its term is oxytosis. 

Ferroptosis is triggered by the failure of glutathione-

mediated antioxidant defenses. The overall pattern  

of ferroptosis is the iron-mediated accumulation of 

oxidatively damaged phospholipids, especially lipid 

peroxides. When free radicals abstract electrons from  

a phospholipid, oxidation of phospholipids will occur. 

Typically, it affects polyunsaturated fatty acids. The 

main cellular defense mechanism against ferroptosis is 

mediated by glutathione peroxidase 4 (GPX4). GPX4 

can convert lipid peroxides into non-toxic lipid alcohol 

molecules. Iron is vital and necessary to generate 

reactive oxygen species to initiate ferroptosis. Thus, 

treating cells with iron chelators can stop the occurrence 

of ferroptosis. Additionally, intracellular glutathione 

(GSH) levels are key to the function of GPX4, so 

depletion of GSH will lead to ferroptotic cell death. 

Besides, ferroptosis causes phenotypic changes in 

mitochondria. 

 

Necroptosis 

 

Necroptosis is a programmed form of cell death 

compared to necrosis. The key cytokine mediating 

necroptosis is TNFα. Binding of TNFα leads to the 

activation of its receptor TNFR1. TNFR1 receptor binds 

to TNFR-associated death protein (TRADD) and TNF 

receptor-associated factor 2 (TRAF2) to activate 

RIPK1, which recruits RIPK3 to form the necrosome 

(ripoptosome). During the necroptosis process, the  

anti-apoptotic protein cFLIP can inactivate caspase  

8, facilitating necroptosis. In the absence of caspase  

8, RIPK1 and RIPK3 can autophosphorylate and 

transphosphorylate each other to form a microfilament-

like complex named the necrosome. The necrosome 

phosphorylates the pro-necroptotic protein MLKL, 

which causes MLKL oligomerization. The oligomerized 

MLKL will insert into plasma and organelle membranes 

to induce permeability. Besides, MLKL insertion will 

induce the leakage of cellular contents of the damage-

associated molecular patterns (DAMPs) to trigger 

inflammation. The necrosome also inhibits the adenine 

nucleotide translocase in mitochondria, lowering intra-

cellular ATP concentrations. Furthermore, uncoupling 

of the mitochondrial electron transport chain will lead to 

mitochondrial damage and open the mitochondrial 

permeability transition pores, allowing mitochondrial 

proteins to move into the cytoplasm. The necrosome 

can additionally cause leaks of lysosomal enzymes  
into the cytosol via the induction of reactive oxygen 

radicals by JNK, calpain activation by calcium release, 

and sphingosine formation. In contrast to apoptosis, the 

11757



www.aging-us.com 4 AGING 

process of necroptosis does not relate to caspase 

activation. No apoptotic body formation is seen in 

necroptosis. Cells undergo necroptotic rupture, leaking 

cellular contents into intercellular spaces. 

 

NETosis 

 

Neutrophil extracellular traps (NETs) are networks  

of neutrophil-derived extracellular fibers binding to 

extracellular pathogens [8]. NETs allow neutrophils to 

kill extracellular microorganisms with minimal damage 

to the body [9]. NETs consist of DNA stretches and 

proteins, including azurophilic granules (neutrophil 

elastase, cathepsin G, and myeloperoxidase), tertiary 

granules (gelatinase), and specific granules (lactoferrin). 

NETs can also form intravascularly via the regulation  

of platelets. Platelet TLR4 can bind to extracellular 

microorganisms and activate neutrophils to initiate 

NETs. Thus, NETs can capture bacteria in blood 

vessels, stopping their migration via blood circulation. 

NETs activation and release are usually associated with 

neutrophil programmed cell death, suicidal NETosis. 

The NETosis pathway typically begins with NADPH 

oxidase activation of arginine deiminase 4 (PAD4)  

via reactive oxygen radicals. PAD4 will induce the 

citrullination of histones in the neutrophil cell nuclei, 

resulting in chromatin decondensation. Azurophilic 

granules (neutrophil elastase, cathepsin G, and 

myeloperoxidase) enter the neutrophil nucleus and 

cause the rupture of the nuclear envelope. Then, the 

decondensed chromatin enters the cytoplasm, where it 

combines with other cellular granules to form the early-

stage NET. NETosis is a double-edged sword, which 

may cause complications. There is a report suggesting a 

relationship between NETosis and organ injury [10]. 

 

Overview of host immunological pathways 
 

The immune system is a marvelously complex network, 

where host immunological pathways play a pivotal  

role in defending against diverse pathogens. These 

pathways are categorized based on the dominance of 

certain immunoglobulins, predominantly into IgG-

dominant eradicable immune responses and IgA-

dominant tolerable immune responses [2–4, 11]. 

Eradicable immune responses are initiated by follicular 

helper T cells (Tfh) via interleukin-21, and tolerable 

immune responses are initiated by regulatory T cells 

(Treg) via TGF-β. Understanding the intricacies of these 

pathways is crucial in comprehending how the immune 

system combats various threats. 

 

In the realm of eradicable immune responses, the action 

primarily revolves around combating different types of 

pathogens through specialized immune mechanisms. 

The TH1 immunity, for instance, stands guard against 

intracellular microorganisms such as bacteria, protozoa, 

and fungi. This branch mobilizes an array of defenders 

including M1 macrophages, IFNγ-producing CD4 T 

cells, iNKT1 cells, CD8 T cells (Tc1, EM4), and IgG3 

B cells, forming a formidable defense line against these 

intruders. TH1 immunity is also intricately linked to type 

4 delayed type hypersensitivity reactions, highlighting 

its role in specific immune responses. 

 

In contrast, TH2 immunity gears up against parasites, 

presenting two distinct subtypes: TH2a and TH2b. 

TH2a tackles endoparasites (helminths) with its  

lineup of inflammatory eosinophils (iEOS), interleukin-

4/interleukin-5 producing CD4 T cells, mast cells-

tryptase (MCt), iNKT2 cells, and IgG4 B cells.  

On the other hand, TH2b focuses on combating  

ectoparasites (insects), marshaling basophils, interleukin-

13/interleukin-4 producing CD4 T cells, mast cells-

tryptase/chymase (MCtc), iNKT2 cells, and IgE B cells. 

These branches of TH2 immunity are instrumental in 

addressing parasitic threats and are associated with type 

1 allergic hypersensitivity responses. 

 

Expanding further, TH22 immunity is dedicated to 

countering extracellular microorganisms such as 

bacteria, protozoa, and fungi. Neutrophils (N1), 

interleukin-22 producing CD4 T cells, iNKT17 cells, 

and IgG2 B cells collaboratively orchestrate the defense 

in this domain. TH22 immunity plays a significant role 

in type 3 immune complex mediated hypersensitivity 

reactions, showcasing its specialized function in 

immune responses. 

 

Moreover, THαβ immunity is specifically tailored to 

combat infectious particles like viruses and prions [12–

15]. This immune pathway employs NK cells (NK1), 

interleukin-10 producing CD4 T cells, iNKT10 cells, 

CD8 T cells (Tc2, EM1), and IgG1 B cells to combat 

these minute yet potent adversaries. Its connection to 

type 2 antibody-dependent cytotoxic hypersensitivity 

underscores its significance in addressing infectious 

threats. 

 
Transitioning to tolerable immune responses dominated 

by IgA, these pathways exemplify the system’s ability 

to mount defenses without causing excessive damage  

to the host. Regulatory T cells play a crucial role in 

steering these responses, facilitating the switch to IgA, 

thereby establishing a more tolerable immune milieu. 

 
TH1-like immunity within the tolerable response 

framework mirrors TH1 immunity but in a more 

regulated manner. It safeguards against intracellular 

microorganisms through M2 macrophages, TGFβ/IFNγ-

producing CD4 T cells, iNKT1 cells, CD8 T cells 

(EM3), and IgA1 B cells, while maintaining a balance 
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to prevent hyperactive responses that might harm the 

host. 

 

TH9 immunity, targeting parasites such as insects and 

helminths, relies on regulatory eosinophils (rEOS), 

basophils, interleukin-9 producing CD4 T cells, iNKT2 

cells, mast cells (MMC9), and IgA2 B cells to ensure  

a measured and controlled defense. This pathway, 

associated with type 1 allergic hypersensitivity, 

showcases the immune system’s ability to mount 

responses without tipping the balance toward excessive 

reactions. 

 

Continuing within the tolerable responses, TH17 

immunity is specialized in combating extracellular 

microorganisms. Neutrophils (N2), interleukin-17 

producing CD4 T cells, iNKT17 cells, and IgA2 B cells 

are the primary players in this pathway, illustrating a 

fine-tuned defense against extracellular threats while 

limiting immune-mediated damage through type 3 

immune complex mediated hypersensitivity. 

 

Lastly, TH3 immunity within tolerable responses gears 

up against infectious particles employing NK cells 

(NK2), interleukin-10/TGFβ-producing CD4 T cells, 

iNKT10 cells, CD8 T cells (EM2), and IgA1 B  

cells. This pathway showcases the immune system’s 

adaptability, mounting responses against infectious 

particles while maintaining a balanced immune 

environment to prevent excessive host damage,  

closely linked to type 2 antibody-dependent cytotoxic 

hypersensitivity. 
 

The intricate network of host immunological pathways, 

categorized into eradicable and tolerable immune 

responses, showcases the remarkable adaptability and 

specificity of the immune system in combating diverse 

pathogens. These pathways not only defend against 

various threats but also highlight the delicate balance 

between mounting effective responses and preventing 

immune-mediated damage to the host. The framework 

of host immunological pathways and their relations to 

different types of cell death is shown in Figure 1. 
 

THαβ immune response and its relation to 

apoptosis 
 

The host immunological THαβ pathway is the host’s 

immune reaction against infectious particles, including 

viruses and prions. Viruses and prions must live 

 

 
 

Figure 1. The framework of host immunological pathways and their relation to programmed cell death. Apoptosis is related 

to host anti-virus eradicable THαβ immunity. Autophagy is related to host anti-virus tolerable TH3 immunity. Pyroptosis is related to host 
anti-intracellular micro-organism eradicable TH1 immunity. Ferroptosis is related to host anti-intracellular micro-organism tolerable TH1-
like immunity. Necroptosis is related to host anti-extracellular micro-organism eradicable TH22 immunity. NETosis is related to host anti-
extracellular micro-organism tolerable TH17 immunity. 
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intracellularly to replicate and produce more 

transmissible particles. Apoptosis, the most well- 

studied programmed cell death pathway, is a key 

mediator regulating the death of virus-infected cells. 

During apoptosis, cell death leads to DNA or RNA 

fragmentation, allowing the intracellular viral DNA or 

RNA to be destroyed. Thus, virus particles can be 

eliminated by sacrificing the infected cells. Additionally, 

activated caspases degrade all intracellular proteins, 

leading to the destruction of prions, which are protein-

based infectious particles, during apoptosis. 

 

THαβ-related immune cells include natural killer (NK) 

cells, cytotoxic T cells, and IgG1-producing B 

lymphocytes. NK cells can induce antibody-dependent 

cellular cytotoxicity (ADCC) of virus-infected cells by 

binding to IgG1 antibodies [16]. ADCC is an apoptosis 

mechanism involving DNA and RNA fragmentation. 

Cytotoxic T cells can also cause apoptosis of virus-

infected cells through DNA or RNA fragmentation, 

thereby killing the viral genomes. This process is 

mediated by the recognition of viral peptides presented 

on major histocompatibility complex (MHC) molecules 

by specific T cell receptors on cytotoxic T cells, which 

induces the apoptosis machinery. A similar mechanism 

can be observed in other infectious particles, like prions. 

 

The immunosuppressive cytokine TGFβ has been found 

to inhibit the apoptosis process [17, 18]. Inhibition  

of TGFβ signaling can promote NK cell ADCC and 

cause target cell apoptosis [19]. Conversely, TGFβ can 

suppress NK cell ADCC. TGFβ-activated kinase 1 

(TAK1) can antagonize apoptosis [20]. TGFβ can also 

inhibit Fas and caspase 8-related apoptosis [21, 22] and 

induce anti-apoptotic transcription factors to prevent 

apoptosis. Apoptosis-related protein degradation can 

lead to the destruction of infectious prion protein 

pathogens. Additionally, type 1 interferons can induce 

caspase cascades to trigger apoptosis in malignant  

cell lines [23–25]. Thus, apoptosis is a THαβ-related 

host defense mechanism against infectious particles, 

including viruses and prions. 

 

Furthermore, the THαβ immune response is the host’s 

eradicable immune reaction induced by follicular helper 

T cells via the production of interleukin-21. Reports 

suggest that interleukin-21 is associated with apoptosis, 

including lymphocyte or cancer cell apoptosis [26–29]. 

 

TH3 immune response and its relation to 

autophagy 
 

Autophagy is the type 2 programmed cell death 
pathway and is a milder control mechanism for virus 

infection of host cells [30–32]. Since type 1 interferons 

can help control virus infection, research has found a 

correlation between type 1 interferons and autophagy 

[24, 33]. Type 1 interferon is an inducer of autophagy 

[34–36]. Interferon regulatory factor 1 (IRF1), which 

can activate interferon beta, is also related to autophagy 

[37]. 

 

Autophagy is involved in the presentation of cytosolic 

antigens to MHC class II molecules and the digestion  

of intracellularly produced viral protein antigens. 

Autophagy is a protective mechanism against virus 

infection by degrading viral particles in autolysosomes. 

For example, autophagy has been found in liver cells to 

protect against hepatic virus infection [38]. Hepatitis C 

virus induces autophagy and interferes with the anti-

viral innate eradicable immunity [39–41]. In contrast  

to apoptosis, autophagy with organelle degradation 

induces mild host inflammation. 

 

Compared to the THαβ eradicable host immune 

reaction, the TH3 immunological pathway is the  

host’s tolerable immune response against viruses and 

prions. During autophagy, organelles containing virus 

particles are degraded. Autophagy is often observed in 

chronic viral infections. The key cytokines in the TH3 

immunological pathway are interleukin-10 and TGF-β. 

However, interleukin-10 is more important for the 

eradicable THαβ immunity. Research has reported that 

interleukin-10 can prevent autophagy, and neutralization 

of interleukin-10 can recover the cellular machinery of 

autophagy [42–44]. 

 

Previous studies have found that TGF-β can promote 

autophagy [45]. TGF-β can prevent caspase 8-induced 

apoptosis and induce cell autophagy. TGF-β is mainly 

produced by regulatory T cells (Treg cells), and 

impaired Treg activity also impairs autophagy activity 

[46]. Follicular helper T cells (Tfh cells), which produce 

interleukin-21, have the opposite function of Treg cells. 

Previous literature reported that interleukin-21 can 

suppress autophagy [47]. 

 

The TH3 immune response is an IgA-dominant immune 

reaction, and autophagy has been found to be associated 

with the pathogenesis of IgA nephropathy [48]. This 

implies that the TH3 immune response could be related 

to the autophagy pathway. Interleukin-1, a key cytokine 

of the TH22/TH17 immunity, increases after the TH3-

associated autophagy is blocked. Another THαβ/TH3 

cytokine, interleukin-27, can also promote autophagy 

[49, 50]. 

 

TH1 immune response and its relation to 

pyroptosis 
 

The TH1 immunological pathway is the host’s eradicable 

immunity against intracellular microorganisms, including 
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intracellular bacteria, protozoa, and fungi. Pyroptosis, a 

programmed cell death mechanism, defends against 

intracellular pathogens [51, 52]. The major effector 

cells of the TH1 immune reaction are macrophages. 

Pyroptosis is related to the programmed cell death  

of macrophages. The key TH1 cytokine, interferon-

gamma, is related to the activation of pyroptosis.  

The inflammasome complex in pyroptosis induces the 

activation of interleukin-1β and interleukin-18, both of 

which are pro-inflammatory cytokines against micro-

organisms. Additionally, interleukin-18 can augment 

the potency of interferon-gamma, which is the key 

immune mediator of the TH1 immunological pathway. 

The activation of interleukin-1β and interleukin-18, 

triggered by the inflammasome, further induces the 

production of interferon-gamma. 

 

M1 macrophages are the key effector immune cells  

of TH1 immunity, and a correlation between M1 

macrophage polarization and pyroptosis has been  

noted in previous studies [53, 54]. Interleukin-23, a  

vital cytokine in triggering TH1 and TH17 immune 

reactions, is also associated with macrophage pyroptosis 

[55]. The activation of the inflammasome also causes the 

upregulation of NF-κB, the master gene for immune 

activation signaling. Furthermore, the activation of  

the inflammasome inactivates interleukin-33, a mediator 

of the TH2 immunological pathway. Pyroptosis can  

also trigger pore-induced intracellular traps to capture 

intracellular bacteria, protozoa, and fungi, leading to their 

clearance [56]. Caspase-1-induced pyroptosis is an innate 

immune effector machinery fighting against intracellular 

microorganisms [52]. The immunosuppressive mediator 

TGF-β can suppress pyroptosis [57, 58]. 

 

Moreover, TH1 immunity is the host’s IgG-dominant 

eradicable immunity induced by follicular helper T cells 

via interleukin-21. Previous literature reported that 

interleukin-21 can cause pyroptosis of certain cells like 

regulatory T cells (Treg cells) [59]. Additionally, IgG 

immune complexes can induce macrophage pyroptosis 

by upregulating the expression of GSDMD [60]. 

 

TH1-like immune response and its relation to 

ferroptosis 
 

Ferroptosis is a programmed cell death process triggered 

by intracellular iron overload. Iron is a key chemical 

element that helps the survival of microorganisms. 

According to increasing evidence, the occurrence of 

ferroptosis is always accompanied by inflammation. 

During the infection of microorganisms, including 

bacteria, protozoa, or fungi, higher concentrations of 
iron elements lead to worse infection control by the 

host. High intracellular iron concentrations help the 

survival of intracellular microorganisms. To reduce the 

availability of iron for intracellular microorganisms, 

iron-triggered cell death can sacrifice the infected  

cells and eliminate the microorganisms. This is the 

underlying logical principle of ferroptosis. 

 

Chronic iron overload can drive macrophages to 

polarize into M2 macrophages, the effector cells of the 

TH1-like immune reaction [61, 62]. During ferroptosis, 

iron triggers the accumulation of lipid peroxides, 

causing membrane peroxidation and damage. Thus, the 

cell membranes of intracellular bacteria, protozoa, or 

fungi are damaged, leading to their death. This is why 

ferroptosis is a mechanism to kill and control intracellular 

microorganism infections. Glutathione peroxidase 4 

(GPX4), which can prevent lipid peroxidation, is a 

protective mechanism against ferroptosis. 

 

Regulatory T cells (Treg cells) with their key  

effector cytokine TGF-β can induce a tolerable 

immune response and tissue fibrosis. TGF-β could 

enhance ferroptosis via further GPX4 inhibition [63]. 

Additionally, GPX4 can enhance follicular helper  

T cells to inhibit ferroptosis [64]. There is a  

linkage between ferroptosis and fibrosis [65]. Chronic 

inflammation can be related to ferroptosis-associated 

tissue destruction and subsequent tissue fibrosis. TGF-

β inhibitors can inhibit both ferroptosis and fibrosis 

[66]. Previous literature suggested an association 

between ferroptosis and tissue fibrosis, including renal 

fibrosis, pulmonary fibrosis, and liver cirrhosis [67]. 

For example, SARS-CoV-2 infection of lung epithelial 

cells can induce ferroptosis and subsequently lead to 

pulmonary fibrosis. 

 

The TH1 key cytokine interferon-gamma can enhance 

ferroptosis in cancer cell lines and epithelial cells [68–

70]. TH1-like immunity is an IgA-dominant tolerable 

immune reaction, and ferroptosis has been found to  

be related to the pathogenesis of IgA nephropathy 

[71]. 

 

TH22 immune response and its relation to 

necroptosis 
 

The TH22 immune response is the host’s eradicable 

immune reaction against extracellular microorganisms, 

including extracellular bacteria, protozoa, and fungi. 

The TH22 immune response is associated with pro-

inflammatory cytokines, including TNF-α. TNF-α is 

the key immune cytokine of the TH22 immune 

reaction that activates neutrophils to kill extracellular 

microorganisms. TNF-α is also the major mediator  

that induces necroptosis. The reason for triggering 
necroptosis, a programmed cell death pathway, can be 

to initiate a potent pro-inflammatory immune reaction 

to kill these invading extracellular microorganisms 
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[72]. Macrophage necroptosis is observed in acute 

bacterial pneumonia caused by Serratia marcescens, 

Staphylococcus aureus, Streptococcus pneumoniae, 
Listeria monocytogenes, or uropathogenic Escherichia 

coli (UPEC) [73]. Necroptosis is a key function of 

neutrophils [74]. 

 

Another reason for necroptosis is to destroy potential 

nutrients from host cells to prevent the growth of 

extracellular microorganisms. TNF-α activates RIP 

kinases to form the necrosome. Interferon-gamma, 

which belongs to the TH1 immune response (different 

from the TH22/TH17 immunity), can downregulate 

necroptosis. Type 3 innate lymphoid cells, which can 

help trigger the TH22/TH17 immunity, are associated 

with necroptosis [75]. Necroptosis can also stimulate 

the secretion of TH22/TH17-related pro-inflammatory 

cytokines. A research study found that TGF-β–activated 

kinase 1 binding protein 2 (TAB2) deficiency causes 

dilated cardiomyopathy by enhancing RIPK1-dependent 

apoptosis and necroptosis [76]. TGF-β is the mediator 

of tolerable immunological pathways. Thus, eradicable 

immune mechanisms like apoptosis or necroptosis can 

be enhanced without TGF-β signaling. Another study 

pointed out that TGF-β-activated kinase 1 (TAK1) 

serves as a key survival factor in cardiac organs by 

directly antagonizing necroptosis [20]. 

 

The TH22 immune response is the host’s IgG-mediated 

eradicable immunity, which is initiated by follicular 

helper T cells via interleukin-21. There is no direct 

evidence suggesting that interleukin-21 can induce 

necroptosis. However, previous literature reported that 

interleukin-21 can cooperate with TNF-α, the key factor 

of necroptosis, to induce autoimmune disorders [77]. 

Additionally, IgG immune complexes have been found 

to trigger necroptosis in a previous study [78]. 

Interleukin-22 is the central cytokine of the TH22 

immune reaction, and previous research pointed out that 

interleukin-22-producing type 3 innate lymphoid cells 

are related to necroptosis [75]. 

 

TH17 immune response and its relation to 

NETosis 
 

The TH17 host immune reaction is the tolerable 

immune response against extracellular bacteria,  

fungi, or protozoa. Neutrophils play dominant roles  

in the TH17 tolerable immune response. In this  

situation, neutrophils cannot successfully kill and 

eradicate these extracellular microorganisms. Thus,  

these neutrophils sacrifice themselves to stop the 

progression of these extracellular microorganisms. 
These polymorphonuclear neutrophils (PMNs) have 

condensed DNA contents in their cell nuclei, and  

they trigger the NETosis cell programmed death 

pathway. Then, these extracellular microorganisms  

can be entrapped in the neutrophil extracellular traps 

(NETs), and other alive neutrophils will digest these 

extracellular bacteria, protozoa, or fungi. NETs can 

also induce TH17 immune cells [79]. 

 

The tolerable antibody IgA is found to activate 

NETosis. NETosis is also found to be correlated with 

chronic inflammation and delayed wound healing [80]. 

The TH17 immune reaction-related IgA immune 

complex formation is also associated with NETosis  

via the activation of the Fc-α receptor [81, 82].  

IgA vasculitis has also been reported to be associated 

with NETs [83]. The central cytokine of the TH17 

immune response, interleukin-17, can also induce 

NETosis [84]. Neutrophils can release IL-17 through 

extracellular trap formation during psoriasis [85]. IL-

17A is expressed on NETs in ankylosing spondylitis 

[86]. The TH22/TH17 key cytokine TNF signaling  

can induce NETosis of CCR5+ neutrophils [87]. Thus, 

the TH17 host tolerable immunological pathway is 

associated with NETosis. 

 

TAK1 is also required for neutrophil extracellular  

trap formation [88], pointing out the significance of 

TGF-β in NETosis. TGF-β itself can also induce NETs 

[89]. Regulatory T cells, characterized by the secretion 

of TGF-β, suggest that Treg cells are mediators of 

NETosis. NETs can also directly trigger epithelial and 

endothelial cell death [90]. 

 

CONCLUSIONS 
 

Programmed cell death pathways are related to different 

host immunological pathways. Apoptosis is related  

to the host’s anti-viral eradicable THαβ immunity. 

Autophagy is related to the host’s anti-viral tolerable 

TH3 immunity. Pyroptosis is related to the host’s anti-

intracellular microorganism eradicable TH1 immunity. 

Ferroptosis is related to the host’s anti-intracellular 

microorganism tolerable TH1-like immunity. Necroptosis 

is related to the host’s anti-extracellular microorganism 

eradicable TH22 immunity. NETosis is related to  

the host’s anti-extracellular microorganism tolerable  

TH17 immunity. These relationships can help us  

understand the host defense mechanisms against invading 

pathogens and provide new insights for developing 

better therapeutic strategies against infections or 

autoimmune disorders. 
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