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INTRODUCTION 
 

A chimeric antigen receptor for T cells was developed by 

Zelig Eshhar in 1993 before being developed to increase 

its effectiveness and potential as an anti-tumor therapy 

[1]. One of the most influential and specific methods of 
immune therapy is chimeric antigen receptor (CAR)-T 

cell therapies. CAR-T-cell therapies have emerged at  

the forefront of these advancements, demonstrating 

remarkable potential in transforming cancer treatment 

paradigms [2]. CAR-T-cell therapy has emerged as a 

promising immunotherapeutic strategy for managing 

various malignancies. These engineered T cells are 

designed to recognize and destroy cancer cells expressing 

specific antigens, bypassing major histocompatibility 

complex (MHC) restrictions associated with conventional 
T-cell activation. Despite the success of CAR-T cell 

therapy in hematologic malignancies, its potential in solid 

tumors, such as ovarian cancer (OC), is yet to be fully 

realized. Key challenges include the identification of 
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ABSTRACT 
 

Target antigens are crucial for developing chimeric antigen receptor (CAR)-T cells, but their application to 
ovarian cancers is limited. This study aimed to identify potential genes as CAR-T-cell antigen candidates for 
ovarian cancers. A differential gene expression analysis was performed on ovarian cancer samples from four 
datasets obtained from the GEO datasets. Functional annotation, pathway analysis, protein localization, and 
gene expression analysis were conducted using various datasets and tools. An oncogenicity analysis and 
network analysis were also performed. In total, 153 differentially expressed genes were identified in ovarian 
cancer samples, with 60 differentially expressed genes expressing plasma membrane proteins suitable for CAR-
T-cell antigens. Among them, 21 plasma membrane proteins were predicted to be oncogenes in ovarian 
cancers, with nine proteins playing crucial roles in the network. Key genes identified in the oncogenic pathways 
of ovarian cancers included MUC1, CXCR4, EPCAM, RACGAP1, UBE2C, PRAME, SORT1, JUP, and CLDN3, 
suggesting them as recommended antigens for CAR-T-cell therapy for ovarian cancers. This study sheds light on 
potential targets for immunotherapy in ovarian cancers. 
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target antigens that are highly and specifically expressed 

by tumor cells but that spare normal tissues. 

 
OC remains a critical challenge in gynecological 

oncology and is responsible for a significant source of 

morbidity and mortality for women worldwide. A 

diagnosis of OC often occurs in advanced stages of the 

disease due to its non-specific symptoms and the lack  

of effective early detection methods. The prevalence  

of OC ranges from 9.2~12.0 per 100,000 women 

worldwide [3]. Although the median age for diagnosis is 

50~79 years, an older age increases the risk of suffering 

from more aggressive types of OC [4]. Conventional 

treatment strategies, such as surgery and platinum- 

based chemotherapy, provide limited improvement in  

the overall survival (OS) rate, and drug resistance may  

be induced [5, 6], underscoring the urgent need for  

novel therapeutic interventions. Genetically engineered 

immune effector cells, programmed to recognize specific 

antigens, offer a ground-breaking approach to target and 

eliminate malignant cells selectively. Identifying target 

antigens, particularly for specific cancer types, remains a 

formidable task, yet it is critical to the success of CAR-T-

cell therapies [7]. 

 

The potential deployment of CAR-T-cell therapies in OC 

is increasingly recognized; however, our understanding 

of suitable antigenic targets remains in its infancy. 

Addressing this knowledge gap will significantly propel 

the development of more effective, personalized CAR-T-

cell therapies for OC. In this era of precision medicine, 

the utility of bioinformatics cannot be overstated. 

Bioinformatics, the application of computational tools  

to manage, analyze, and interpret biological data, has 

become a mainstay in cancer research, particularly in the 

era of high-throughput genomics. Integrating genomic, 

transcriptomic, and proteomic data from various sources 

can provide a comprehensive landscape of tumor 

biology, facilitating the discovery of potential targets  

for novel therapeutics [8]. In this study, we aimed to 

leverage the power of bioinformatics to uncover potential 

targets for CAR-T-cell therapy in the context of OC.  

By interrogating genomic, transcriptomic, and proteomic 

datasets, we sought to identify preferentially and highly 

expressed antigens in ovarian tumor tissues. The bio-

informatics strategy we employed offers an accelerated, 

systematic, and unbiased approach to antigen discovery. 

We hypothesized that such a comprehensive analysis 

could propel significant advancements in CAR-T-cell-

based immunotherapeutic interventions for OC. 

 
We remain aware of the challenges ahead and are 

optimistic about the potentially transformative impact 

that a successful CAR-T-cell therapy could have on the 

management of OC. Identifying novel targets would not 

only serve to broaden the therapeutic arsenal. Still, it 

would also contribute to a deeper understanding of OC 

biology, paving the way for personalized and precision 

medicine for this intractable disease. 

 

RESULTS 
 

Identification and functional examination of 

differentially expressed genes (DEGs) 

 

The selected gene set enrichments (GSEs), namely 

GSE36668 [9], GSE27651 [10], GSE26712 [11, 12], and 

GSE14407 [13], were microarray datasets from OC 

patient samples, and a detailed profile of the datasets is 

provided in Table 1. Based on a log [fold change (FC)] 

cutoff of > 1.5 and a p-value of < 0.5, the gene 

distribution of the sample is clearly visible on the left and 

right of the volcano plot to ensure the significance of their 

expressions in the sample. Based on a Venn analysis, it 

was found that the numbers of unique genes from the 

GSEs were sequentially 1484, 586, 297, and 1374 genes, 

and 153 genes, which were DEGs, were expressed in all 

four GSEs (Figure 1A–1C). Furthermore, results of the 

gene ontology (GO) term and pathway analysis of DEGs 

showed a high confidence score (false discovery rate; 

FDR) for GO biological processes (BPs) and cellular 

components (CCs) and a low confidence score for GO 

molecular functions (MFs). GO terms that involved the 

most GSEs were GO:0005515-protein binding (125 

genes: p < 0.001), GO:0050896-response to stimulus (102 

genes: p < 0.0001), and GO:0005886-plasma membrane 

(60 genes: p < 0.001). Based on the results of this 

analysis, it can be seen that expressed proteins were 

dominated by those located in plasma membranes and 

played roles in responding to stimuli, including binding 

between proteins. Furthermore, the pathway analysis of 

DEGs showed a relatively low average confidence score 

(p-value). The induced pathways with the highest 

confidence scores (p < 0.0001) were hsa05200: Pathways 

in Cancer (KEGG: 16 genes) and R-HSA-162582: Signal 

Transduction (Reactome: 40 genes). Based on the top 

pathway that was induced in general, it is known that 

several DEGs act as oncogenes, which can be seen from 

the term-related pathways to cancer, especially in the  

Wnt and Janus kinase (JAK)-signal transduction and 

activator of transcription (STAT) signaling pathways 

(Figure 1D, 1E). 

 

Prediction of oncogenicity of plasma membrane-

related genes as CAR antigens 

 

In the analysis of target antigen CARs, in addition to 

significant oncogenicity, the protein must be located in 

the plasma membrane for CARs to interact and work 

effectively. A DEG localization analysis was performed 

to determine the protein position of each expressed 

gene. Results of the GO term analysis showed 60 
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Table 1. Ovarian cancer patient gene expression omnibus (GEO) microarray profiles. 

GEO profile Type Source 
No. of 

cases 

No. of 

controls 
Platform Annotation platform 

GSE36668 mRNA 
Serous ovarian 

carcinoma 
8 4 GPL570 

[HG-U133_Plus_2] Affymetrix  

Human Genome U133 Plus 2.0 Array 

GSE27651 mRNA 
High-grade serous 

ovarian carcinomas 
22 6 GPL570 

[HG-U133_Plus_2] Affymetrix  

Human Genome U133 Plus 2.0 Array 

GSE26712 mRNA Ovarian cancer 185 10 GPL96 
[HG-U133A] Affymetrix  

Human Genome U133A Array 

GSE14407 mRNA 
Serous ovarian 

cancer epithelia 
12 12 GPL570 

[HG-U133_Plus_2] Affymetrix  

Human Genome U133 Plus 2.0 Array 

 

selected plasma membrane-related genes (PMGs),  

and their confidence scores were analyzed using  

the GeneCard database. The result was an average 

confidence score of 4.6, with details of 56 genes at > 3 

and 4 genes at 3. This means that PMGs are known to 

have a high probability of being found in plasma cell 

membranes (Figure 1F). The oncogenicity of PMGs was 

analyzed based on their expressions in OC and normal 

samples. As a result, it was found that 21 genes were 

highly expressed and 25 genes were poorly expressed  

in OC. In contrast, 14 expressed genes did not 

significantly differ in expression levels between OC and 

normal tissue in the database. (Supplementary Figure 1) 

To analyze further, 18 CAR clinical trial antigen genes 

were selected as control genes, which were examined 

for their associations with 19 highly expressed genes 

(CD24 and FOLR1, which had been used in clinical 

trials, so they were categorized as control genes) by 

gene ontology (GO) terms, pathways, expressions, and 

correlations. (Figure 2A, 2B). The control genes listed 

have been or are being developed as treatment targets 

using CAR T cells [14–24]. We obtained the predicted 

genes in this study and compared their potential 

bioactivity against control genes. (Table 2, Figure 2C). 

 

Enrichment analysis of predicted and control genes 

 

Bioactivity, diseases, and expression-specific analyses 

were carried out to analyze the potential of these  

37 genes (highly expressed genes are now called 

predicted genes). Based on a bioactivity enrichment and 

pathway analysis, control genes were predicted to have 

GO enrichment, including T cell costimulation (GO: 

0031295) and renal filtration cell differentiation (GO: 

0061318); the predicted pathways were endocytosis 

(hsa04144), GPCR downstream signaling (R-HAS-

388396), and extracellular vesicle-mediating signaling 

in recipient cells (WP2870). Meanwhile, predicted 

genes were predicted to have GO enrichment, including 

endocytosis (GO:0006897), inorganic anion transport 

(GO:0015698), myelination (GO:0042552), metal ion 

transport (GO:0030001), and mitotic cell cycle process 

(GO:1903047). Also, the predicted genes induced a 

pathway in the epithelial-to-mesenchymal transition  

in colorectal cancer (WP4239). Furthermore, based on 

the top evidence of GO BP, the predicted gene was 

predicted to induce fewer BPs than the control gene. 

According to these results, it could also be predicted 

that the BP data related to the predicted gene were  

still limited, so the chance of discovery was higher 

(Figure 2E, 2F). 

 

Additionally, based on a disease-related gene analysis 

result, it was found that the control gene was related to 

the top 20 diseases by confidence scores, compared to 

the predicted gene, which was only predicted to be 

related to nine diseases. Based on the confidence scores, 

C1368683: epithelioma, C0025500: mesothelioma, and 

C0007138: carcinoma, was the disease with the highest 

confidence score, where genes in both groups were 

predicted to play roles in the disease. In addition, the 

control gene was only expressed (p < 0.05) in lung 

(PGB:00018). In contrast, the predicted gene was 

expressed (p < 0.05) in renal epithelial (PGB:00119), 

colon tissue (PGB:00007), and K562 cell line [25], 

which are lymphoblast cells isolated from the bone 

marrow of a 53-year-old chronic myelogenous leukemia 

patient (Figure 2G, 2H). 

 

Protein-protein interaction (PPI) network analysis  

 

To discover more pathways that the 37 genes may 

induce, a network was built by adding 100 neighboring 

genes as enriched genes. The PPI network analysis  

was used because it was proven to be a valuable tool  

in enhancing the efficacy of CAR T cell therapy by 

providing insights into critical protein interactions  

[26], optimizing T cell functions [27], and identifying 

potential therapeutic targets [28]. Based on the network 

formed, it was found that EGFR and ERBB2 were  

genes with the highest betweenness-centrality scores  

in the control group, while MUC1 and CXCR4 were 

genes with the highest betweenness-centrality scores 

among predicted genes. In addition to those two genes, 
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EPCAM, RACGAP1, UBE2C, PRAME, SORT1, JUP, 

and CLDN3 sequentially had the top seven 

betweenness-centrality scores. Based on MCODE 

clustering, it was found that there were nine clusters in 

the main network. Some of the predicted genes in the 

cluster included JUP (cluster 2), CXCR4 (cluster 4), 

RSCGAP1 and UBE2C (cluster 5), MUC1 (cluster 6), 

CLDN3, and CLDN4 (cluster 8) (Figure 3A, 3B). 

Furthermore, GO and pathway analyses were also carried 

out to evaluate which bioactivities and pathways were 

 

 
 

Figure 1. Determination of gene set enrichments (GSEs) and differentially expressed genes (DEGs). (A) Volcano plot of gene 

distributions in control and ovarian cancer samples. Gray dots represent genes that are not significantly expressed between normal and 
ovarian cancer cell samples. (B) Venn diagram of overlapping gene between four GSEs from which we obtained 153 DEGs. Also, the highest 
unique genes are GSE36668, GSE14407, and GSE27651. (C) List of DEGs. (D) Pathway terms related to DEGs, colored by –log10(p-values).  
(E) Gene ontology terms related to DEGs, colored by –log10 (p-values). (F) Plasma membrane-related genes from six GO terms (p > 0.05) with 
localization confidence scores. A higher score means a greater probability that the protein will be situated there. 
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Figure 2. Oncogenicity analysis. (A) Twenty-one genes were significantly expressed in ovarian cancer among plasma membrane-related 
genes. (B) Plasma membrane-related genes expressions in ovarian cancer. (C) Overlap between gene lists: high expression gene list 
(Predicted) and Control gene list, (D) including the shared term level, where blue curves connect genes that share an enriched ontology term. 
Gene lists are represented by the inner circle, with hits arranged along the arc. Genes that appear on multiple lists are depicted in dark 
orange, while genes that only appear on one list are displayed in light orange. (E) Heatmap of enriched terms across input gene lists, colored 
by p-values. (F) Heatmap of biological processes across input gene lists, colored by p-values. (G) Pattern genes related to predicted and 
control genes. (H) DisGeNET is a discovery platform containing one of the largest publicly available collections of genes and variants 
associated with human diseases. The heatmap is colored by p-values. Dark orange indicates a greater probability that bioactivity will occur. 
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Table 2. Clinical trial antigens for chimeric antigen receptors 
(CARs) and used as control genes. 

Gene NCT Gene transfer Reference 

CEACAM5 01212887 RV [14] 

CXCR1 n.p TF [15, 16] 

EGFR 01869166 LV [14] 

FSHR n.p RV [16] 

KLRK1 03018405 n.p. [14] 

PDL1 n.p LI [16, 17] 

ANXA2 n.p LV [16, 18] 

CD133 02541370 RV [14] 

CTAG1B 02366546 RV [14] 

ERBB2 01935843 LV [29–31] 

L1CAM n.p LV [16, 20] 

MAGEA4 02096614 RV [14] 

MSLN 02580747 RV, mRNA, LV [14, 16, 21] 

MUC16 02498912 RV, LI [14, 16, 17] 

TPBG n.p LV [16, 22] 

WT1 00562640 n.p. [14] 

CD24 n.p LV [14, 23] 

FOLR1 00019136 RV, LV [14, 16, 24] 

Abbreviation: RV, retroviral vector; LV, lentiviral vector; GT, mRNA gene 
transduction; TF, mRNA transfection; LI, lentiviral infection; n.p., not 
provided. 

 

associated with this network. Based on the GO analysis, 

the top two from each GO category are shown in  

Figure 3C. At the same time, MUC1, CXCR4, EPCAM, 

RACGAP1, UBE2C, PRAME, SORT1, JUP, and CLDN3 

were labeled as the recommendation of tumor-associated 

antigens (TAAr) in a subsequent analysis. 

 

Furthermore, to further explore the TAAr genes,  

co-expression and correlation analyses were carried  

out on control genes; this analysis was carried out  

to see relationships between gene expressions that 

occurred. Based on a STRING co-expression analysis  

in Homo sapiens (cutoff, high confidence: 0.7), it  

was found that several TAAr genes were co-expressed 

with control genes. The top five co-expression scores 

were for RACGAP1-UBE2C, CLDN3-EPCAM, CD24-

EPCAM, CTAG1B-MAGEA4, and MSLN-MUC1. Then, 

a correlation analysis was performed to explore 

correlations of TAAr with control genes specific to  

the OC sample. TAAr interactions with control genes 

with the highest positive correlation scores were JUP-

ERBB2, MUC1-MUC16, MUC1-CEACAM5, CXCR4-

WY1, and SORT1-MUC16. In contrast, interactions with 
the lowest negative correlation scores were UBE2C-

MSLN, EPCAM-KLRK1, RACGAP1-MSLN, UBE2C-
EGFR, and UBE2C-CXCR1 (Figure 4A, 4B). 

A further co-expression analysis was conducted  

using GeneMania to investigate other genes correlated 

with TAAr expressions. We obtained other proteins, 

CLDN1, CLDN4, CLDN7, cytochrome P450 family  

27 subfamily B member 1 (CYP27B1), polypeptide  

N-acetylgalactosaminyltransferase 12 (GALNT12), 

Homeobox A4 (HOXA4), nerve growth factor (NGF), 

Rho family GTPase 2 (RND2), SSH3 and multiple 

ankyrin repeat domain 2 (HANK2), solute carrier family 

26 member 8 (SLC26A8), sorting nexin 7 (SNX7), 

serine/threonine-protein kinase 19 (STK19), and 

ubiquitin protein ligase E3D (UBE3D), which developed 

interactions with and were co-expressed with TAAr. 

Several other proteins appeared in the pathway we 

highlighted for each TAAr, but others did not, so we will 

not examine them further (Figure 3D, 3E and Table 3). 

 

Enrichment analysis of a novel tumor-associated 

antigen candidate for ovarian cancer 

 

Three pathways with the highest confidence scores 

based on Reactome were primordial germ cell 

specification, RhoB GTPase cycle, and RhoC GTPase 
cycle, with TAAr genes involved in these pathways 

being CXCR4, JUP, and RACGAP1. Complete 

information is given in Table 4. Primordial germ cell
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Figure 3. Protein-protein interaction (PPI) network analysis. (A) PPI network of 37 enriched genes (20 control and 17 predicted genes) 

with 100 genes, which were analyzed with NetworkAnalyzer and CytoHubba for node and edge scoring. Nine genes with the highest 
betweenness-centrality scores were designated as TAAr. (B) Clustered network with the Molecular Complex Detection (MCODE) algorithm. 
(C) Gene ontology (GO) terms related to control and predicted genes. (C) GO term related to control and predicted genes. (D) Interaction 
network of the TAAr gene: yellow genes are TAAr, and blue genes are interactor proteins. (STRING database, high confidence: 0.7).  
(E) GeneMania network of TAAr. The nine biggest nodes with shading are TAAr genes. Edge width is labeled for confidence scores. 
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Figure 4. Correlation, co-expression, and pathway analysis of TAAr. (A) Co-expressed genes are colored by a dot; a darker dot means 

a higher co-expression score. Co-expression score: the higher the score, the higher the probability that co-expression will occur. (B) 
Spearman’s correlation scores for gene expressions in ovarian cancer (OC), which are comprised of 27 proteins consisting of nine TAAr and 18 
control genes. (C) The complete pathway of the Reactome database related to TAAr. This pathway was constructed with the Voronoi 
tessellation method termed ReacFoam, which provides user-friendly access and visualization. (D) Pathway related to reproduction where the 
specification of primordial germ cells pathway is located. (E) Rho GTPase-related and neighbor pathways. (F) The expression data of TAAr in 
brain, retina, and liver tissue, provided by GeneCard, were used to analyze the possible toxic effects of targeting TAAr. 
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Table 3. Networks according to a GeneMania analysis. 

Network Interaction from Coverage Proteins 

Co-expression 
Burington-Shaughxnessy-

2008 
25.46% 

CLDN3, CYP27B1, EPCAM, HOXA4, JUP, MUC1, PRAME, 

SHANK2, SNX7, SORT1, UBE2C 

Co-expression Dobbin-Giordano-2005 14.07% CLDN4, CLDN7, EPCAM, JUP, MUC1, SNX7, SORT1  

Co-expression Bild-Nevins-2006 B 11.68% CLDN3, CLDN4, JUP, MUC1, STK19 

Co-expression Ramaswamy-Golub-2001 10.98% CLDN3, CLDN4, EPCAM  

Co-expression Perou-Botstein-2000 8.30% CLDN1, CLDN3, CLDN4, CLDN7, EPCAM, MUC1  

Co-expression Wu-Garvey-2007 8.16% 
CLDN3, CLDN4, CLDN7, CYP27B1, MUC1, NGF, STK19, 

UBE2C  

Co-expression Roth-Zlotnik-2006 7.68% 
CLDN3, CLDN4, CLDN7, EPCAM, GALNT12, PRAME, 

SLC26A8  

Co-expression Wang-Cheung-2015 2.33% CLDN4, CLDN7, JUP, NGF, RACGAP1, SHANK2, UBE2C  

Co-expression Arijs-Rutgeers-2009 0.49% 
CLDN1, CLDN3, CLDN4, GALNT12, MUC1, PRAME, 

RACGAP1, RND2, UBE2C, UBE3D  

Physical Interaction 
Biogrid-small-scale-

studies 
4.13% 

ANAPC11, BDNF, CLDN1, CLDN3, CLDN5, GALNT4, 

GALNT15, JUP, MUC1, NGF, PRAME, RACGAP1, RND2, 

SLC26A8, STK19, SORCS1, SORT1, UBE2C, UBE3D 

Physical Interaction IREF-hprd 2.14% 

ANAPC11, BDNF, CDLN1, CLDN3, CLDN5, CLDN7, EPCAM, 

GALNT12, GALNT15, JUP, NGF, PRAME, RACGAP1, RND2, 

SLC16A10, SLC26A8, SORT1, STK19, UBE2C  

Physical Interaction IREF-biogrid 1.79% 
ANAPC11, CLDN1, CLDN3, CLDN5, GALNT4, GALNT12, 

MUC1, JUP, RACGAP1, RND2, UBE2C 

Genetic Interaction Lin-Smith-2010 2.80% 

CLDN1, CXCR4, EPCAM, GALNT13, GALNT15, HOXA4, JUP, 

MUC1, NGF, PRAME, RACGAP1, RND2, SHANK2, SLC16A10, 

SLC26A8, SNX7, SORCS1, UBE3D  

*) Underlined proteins are the recommendation of tumor-associated antigens (TAAr). 

 

Table 4. The most significant pathways of the Reactome. 

Pathway name Entities founda) p-value FDR 

Specification of primordial germ cells 2 / 64 < 0.001 0.175 

RhoB GTPase cycle [32] 2 / 75 0.001 0.175 

RhoC GTPase cycle [32] 2 / 85 0.002 0.175 

Formation of definitive endoderm 3 / 85 0.002 0.175 

RhoA GTPase cycle [32] 2 / 154 0.005 0.193 

a)Entities found are a count of entities input with pathway-related entities in 
Reactome. FDR, false discovery rate. 

 

specifications are developmental processes of 

primordial germ cells (PGCs) that occur around the 

third to fourth week of pregnancy in humans to 

become gametes. In the process of becoming gametes, 

PGCs undergo various metabolic cycles in which  

the expression or suppression of each gene has an 

important role, and disruption of this critical role can 

cause developmental disorders, from disabilities to  

an inability to fertilize and germ cell-specific tumors  

[33, 34]. Furthermore, the Rho GTPase cycle plays a 

role in various cellular responses, including regulating 

cell migration. This cycle is controlled by Rho family 

GTPases, members of the Ras superfamily, which can 

be grouped into two typical and atypical subdivisions. 

Rho family members in the typical subdivision are 

RhoA, Cdc42, and Rac1, with a cycle related to  

GTP-bound activation and GDP-bound inactivation 

conformation. Next, Rho family members in the 

atypical subdivision are those proteins that possess 

amino acid substitutions that affect their ability to 

interact with GTP or GDP and are regulated by certain 

mechanisms [35]. Also, the Rho GTPase cycle is 
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known to play an essential role in regulating the actin 

cytoskeleton, where the actin cytoskeleton plays a role 

in cellular processes such as cell division, migration, 

chemotaxis, and endocytosis [36, 37]. Finally, the link 

of this pathway to OC is through the process of tumor 

cell growth, where tumor germ cells can end up as 

ovarian germ cell tumors due to unregulated metabolic 

processes, and Rho GTPases can increase cellular 

activity related to cell division, proliferation, and 

migration [37, 38]. 

 

Also, based on an ingenuity pathway analysis (IPA), 

we obtained 15 pathways with the highest confidence 

scores out of three annotations (Table 5). IPA results 

showed predicted pathways related to the nine 

recommended antigens, especially toxicity pathways 

that may occur with or be associated with these 

proteins. Based on toxicity results, it was observed that 

the liver and kidneys may be organs that need to be 

examined for adverse effects that may occur. To verify 

expressions of TAAr in brain, retina, and liver tissues, 

we obtained data from GeneCard (Figure 4F). These 

data showed that the TAAr had the lowest RNAseq 

counts in the retina, while the brain and liver had 

varied RNAseq counts (100× FPKB). We highlight 

three proteins, SORT1, JUP, and CLDN3, with upper-

middle RNAseq expressions in these two organs. 

CAR-T-cell therapy may have adverse effects on these 

three organs. Neurotoxicity is a frequent complication 

after CAR-T-cell therapy, and the exact cause of which 

is still under research and debate. Apart from that, the 

neurotoxicity of CAR-T-cell therapy is probably due 

to high cytokine levels in the brain and cerebrospinal 

fluid associated with the blood-brain barrier [39]. Also, 

CAR-T-cell therapy commonly induces neurological 

complications termed immune effector cell-associated 

neurotoxicity syndrome (ICANS). The ICANS is a 

significant concern in the context of chimeric antigen 

receptor (CAR) T cell therapy [40]. Liver toxicity was 

also reported in an earlier CAR-T-cell therapy clinical 

trial. Three metastatic renal carcinoma patients who 

received autologous T cells transduced with CAR-

targeting carboxyanhydrase-IX (CAIX) experienced 

cholangitis due to T-cell infiltration around the bile 

ducts, because bile duct epithelial cells unusually 

express CAIX [41, 42]. Furthermore, CAR-T-cell 

therapy was also reported to affect the patient, even 

though it does not seem to be severe. Treatment results 

in 1421 cases showed that 28 of them had eye 

disorders, with abnormalities in the form of vision 

impairment or changes, impaired pupil responses, 

papilledema, mydriasis, photophobia, and visual 

tracking test abnormalities [43, 44]. Then, the final 
enrichment results, namely single-cell RNA sequencing 

(scRNA-seq) analysis of the tumor microenvironment 

(TME). Single-cell RNA analysis provides numerous 

advantages over traditional bulk RNA sequencing 

methods. This technology has been pivotal in detecting 

novel cell types with distinct expression signatures and 

understanding the stochasticity of gene expression 

within a cell population. Additionally, single-cell RNA 

sequencing allows for differential expression analysis, 

clustering, cell type annotation, and pseudotime analysis 

at a single-cell level, leading to significant progress  

in the field of transcriptomics [45, 46]. According  

to this analysis, the result indicated that EPCAM, 

MUC1, UBE2C, and CLDN3 were highly expressed  

in malignant samples in two scRNA-seq databases, 

thereby increasing the potential of TAAr (Figure 5). 

 

DISCUSSION 
 

CAR T cell therapy has shown promise in treating 

hematological malignancies, with the potential for 

sustained remissions and improved clinical outcomes 

[47]. This is due to the healing effectiveness of CAR 

treatment in acute lymphocytic leukemia patients, 

which can reach 92%. CARs work by targeting the 

tumor associated antigen (TAA) found on the cell 

surface and bypassing the recognition process with 

MHC class I or II [48]. However, the development of 

and research into CARs in solid tumors are still limited, 

including in OC patients. OC is a type of cancer and an 

orphan drug disease with a high mortality rate due to 

malignancies [49, 50].  
 

Thus, researching target genes for therapy (biomarkers) 

remains essential to optimize treatment efficacy and 

costs [51]. Based on our bioinformatic analysis, we 

found nine novel TAAr genes, including MUC1, 

CXCR4, EPCAM, RACGAP1, UBE2C, PRAME, 

SORT1, JUP, and CLDN3, that have been identified 

and may have the potential to be further studied for their 

role in OC clinically to help optimize OC therapy.  
 

The first of the nine TAAr is Claudin 3. Regulation  

of claudin 3 protein (CLDN3) (gene: CLDN3) in 

ovarian cancer cells is a complex process influenced by 

genetic and epigenetic factors. CLDN3, a tight junction 

protein, plays an important role in cellular interaction 

and migration. Studies have shown that this gene is 

associated with the epithelial-to-mesenchymal transition 

(EMT), a process that induces cell migration or the 

aggressiveness of cancer cells [52]. Research has shown 

that the transcription factor Sp1 plays a crucial role  

in controlling the expression of CLDN3. Moreover, 

epigenetic modifications, such as DNA methylation  

and histone alterations, are significant in regulating  

the CLDN3 promoter in ovarian cancer cells [53, 54]. 
This complex regulatory landscape results in CLDN3’s 

overexpression in epithelial ovarian cancer (EOC), and 

ovarian epithelial inclusion cysts may potentially serve 
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Table 5. The five canonical, disease and function, and toxicity pathways based on an 
ingenuity pathway analysis result of nine genes. 

Annotation Name p-value 

Canonical pathway Granulocyte adhesion and diapedesis  2.34E-03 

Canonical pathway Leukocyte extravasation signaling  2.75E-03 

Canonical pathway Agranulocyte adhesion and diapedesis  2.87E-03 

Canonical pathway Sertoli cell-Sertoli cell junction signaling  3.14E-03 

Canonical pathway FAT10 cancer signaling pathway  2.11E-02 

Disease and function Primary ovarian cancer 1.17E-10 

Disease and function Serous ovarian adenocarcinoma 1.77E-09 

Disease and function Primary clear cell ovarian carcinoma 3E-09 

Disease and function Primary serous ovarian carcinoma 3.63E-08 

Disease and function Clear-cell ovarian carcinoma 2.92E-07 

Toxicity  Hepatic fibrosis  8.64E-03 

Toxicity  Hypoxia-inducible factor signaling  2.90E-02 

Toxicity  Increases liver damage  4.18E-02 

Toxicity  Increases renal damage  4.63E-02 

Toxicity  
Decreases transmembrane potential of mitochondria 

and the mitochondrial membrane potential  
6.10E-02 

 

as a marker for malignancy but also as a potential  

target for immunotherapy [55]. The aberrant expression 

patterns and the pivotal role of CLDN3 in maintaining 

cellular polarity and ion flux underscore its significance  

in cancer pathology and as a candidate for targeted CAR-

T cell therapy, aimed at improving treatment specificity 

and efficacy against ovarian cancer. Integrating these 

molecular insights with the broader application of CAR-T 

therapy underscores the potential for targeting CLDN3 in 

ovarian cancer treatment. The overexpression of CLDN3 

in ovarian cancer, contrasted with its low levels in normal 

tissues and benign conditions, positions it as a distinct 

antigen for CAR-T cell targeting. This approach could 

lead to the development of more precise and effective 

therapeutic strategies, leveraging the unique expression 

profile of CLDN3 to minimize off-target effects and 

enhance the therapeutic window. The ongoing research 

into the regulation and function of CLDN3 in ovarian 

cancer not only deepens our understanding of the 

disease’s molecular underpinnings but also paves the  

way for novel, targeted immunotherapies that could 

significantly impact patient outcomes in ovarian cancer,  

a malignancy notorious for its resistance to conventional 

treatments [53, 56, 57]. 

 

Second, membrane protein that could potentially become 

an ovarian cancer biomarker is CXCR4, which can 

activate several downstream proteins. The C-X-C Motif 

Chemokine Receptor 4 (CXCR4) (gene: CXCR4) plays 

various biological roles, specifically in cell migration, 

hematopoiesis, cell homing, retention in the bone  

marrow, and cell homing. It also directly controls cell 

proliferation of non-hematopoietic cells [58]. Studies have 

demonstrated that a substantial majority of advanced  

EOC patients exhibit expression of CXCR4 and CXCR7, 

with over half showing expression of the full CXCR4-

CXCL12-CXCR7 axis [59]. This expression pattern is 

closely associated with poor progression-free and overall 

survival rates, particularly in EOC patients [60, 61]. 

Focusing on CXCR4, this gene is linked to promoting 

ovarian cancer aggressiveness. Several studies report that 

inhibiting CXCR4 by its antagonist reduces tumor growth 

in vitro and in vivo by hindering cell proliferation, 

migration, and invasion [62]. Such findings underscore 

the critical role of CXCR4 in tumor progression and 

suggest its components as promising targets for novel 

therapeutic strategies, including CAR-T therapy. 

 

The third TAAr is epithelial cell adhesion molecule 

protein (EpCAM) (gene: EPCAM). EPCAM is a 

membrane protein considered in the past to play a role 

in regulating cellular communication as an adhesion 

molecule, but now this protein has been shown to have 

various biological functions, including in the regulation 

of cell proliferation and cancer stemness [63]. The 

elucidation of EpCAM’s role in ovarian cancer presents 

a transformative insight into the mechanisms of tumor 

aggression and chemoresistance. EpCAM+CD45+ cells, 

identified in the ascitic fluid of patients with serous 

EOC, not only manifest a drug-resistant phenotype  

but also display invasive characteristics through the 

overexpression of genes like SIRT1, ABCA1, and 

BCL2. This phenotype’s ability to evade immune 

surveillance by overexpressing major histocompatibility 

complex class I antigen accentuates its potential as a 

pivotal player in ovarian cancers pathogenesis and 
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Figure 5. Gene expression levels are based on single-cell RNA sequencing based on a human sample based on the TISCH2 
database. (A) Sample from GSE154600 based on 5 non-treatment patients, 42583 cells, analyzed with the 10x genomics platform. (B) UMAP 
plot of nine TAAr on GSE154600, where EPCAM, MUC1, RACGAP1, CLDN3, and JUP are highly expressed in malignant cell samples. (C) Sample 
from GSE118828 based on 9 non-treatment patients, 1909 cells, analyzed with the Smart-Seq2 platform. (D) UMAP plot of nine TAAr on 
GSE118828, where CXCR4, MUC1, EPCAM, UBE2C, CLDN3, JUP, PRAME, and SORT1 are highly expressed in malignant cell samples. (E) Violin 
diagram of TAAr expression in each sample cell in GSE118828. (F, G) Diversification and comparison of the number of samples analyzed in 
GSE118828. (H) Violin diagram of TAAr expression in each sample cell on GSE154600. (I, J) Diversification and comparison of the number of 
samples analyzed on GSE154600. (K) Transcription factor induced by TAAr in GSE118828: the higher the induction, the redder it is. (L) 
Number of cell-cell interactions in sample GSE118828. (M) Transcription factor induced by TAAr in GSE154600: the higher the induction, the 
redder it is. (N) Number of cell-cell interactions in the GSE154600 sample. (O, P) The genetical hallmarks that are up-downregulated based on 
the TAAr gene in GSE118828. (Q, R) The genetical hallmarks that are up-downregulated based on the TAAr gene in GSE154600.  
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persistence. The complex interplay between these  

cells and the tumor microenvironment, especially  

the influence of non-tumor cell exosomes in fostering 

drug resistance and invasiveness, underscores the  

necessity of targeted therapeutic strategies aimed at this 

phenotype [64]. Related to their expression, EpCAM is 

overexpressed in comparison between 30 EOC and 15 

normal ovary tissues based on immunohistochemistry 

evaluation. Then, according to those studies indicating 

its role in cancer progression, metastasis, and drug 

resistance [65]. The RT-PCR primer for EpCAM, 

MUC1, and PRAME can be seen in Supplementary 

Table 2 [66]. 

 

The association of EpCAM with pathways like PI3K/ 

AKT signaling and its regulation by factors such as 

EGF via ERK1/2 signaling elucidates its part in tumor 

progression and resistance mechanisms. Moreover, 

EpCAM’s involvement in tumor immune modulation, 

particularly its ability to resist natural killer cell-

mediated cytotoxicity, highlights its significance in 

tumor immune evasion strategies. The exploration of 

EpCAM-targeted therapies, such as the bispecific T-

cell engaging antibodies (BiTE) that show efficacy 

against ovarian cancer cells, underscores the potential 

of EpCAM as a target for innovative therapeutic 

interventions. These findings collectively emphasize 

the necessity for continued research into EpCAM-

focused therapies, aiming at disrupting the intricate 

mechanisms through which EpCAM+ cells contribute 

to ovarian cancer’s malignancy and chemoresistance, 

thereby opening avenues for more effective and 

personalized treatment modalities for EOC [64, 67, 

68]. By focusing on EpCAM expression and their 

molecular pathways, there emerges an opportunity to 

enhance the efficacy of treatments and improve patient 

outcomes, pointing towards a targeted approach to 

managing EOC. Also, integrating the knowledge from 

the study on EpCAM’s impact on chemotherapy 

response and clinical outcomes with findings from 

previous research sheds light on a broader spectrum of 

EpCAM’s roles in EOC’s molecular landscape.  

 

The fourth TAAr is Junction Plakoglobin, also  

known as plakoglobin (JUP) (gene: JUP). JUP is a  

part of the adhesion molecule that can affect the  

Ras, Hedgehog, and Wnt signaling pathways, although 

the activity remains unclear yet [69]. JUP emphasizing 

its potential as a specific early detection biomarker  

for ovarian cancer, uniquely elevated in the ovarian 

venous blood of patients with early-stage epithelial 

ovarian carcinomas, particularly serous stage IA+B 

through III. JUP, part of the Armadillo protein family, 
crucial for cell adhesion and architecture, shows 

specificity by not being elevated in early-stage breast 

cancer. It also interacts with the p53 protein, possibly 

influencing tumor suppression in ovarian cancer. This 

suggests JUP could, alongside traditional markers  

like CA125, improve diagnostic precision, facilitating 

earlier, more effective treatments. Its role in onco-

genic pathways, particularly in cell-cell adhesion and 

migration, highlights its importance in understanding 

ovarian cancer’s malignancy and metastasis processes, 

suggesting a significant potential in refining therapeutic 

strategies and advancing the efficacy of interventions 

in ovarian cancer treatment [70]. 

 

The next TAAr is the transmembrane glycoprotein 

mucin 1 (MUC1), (gene: MUC1). MUC1 is a mucin 

family that the body can use it as a lubricant, 

moisturizer, and physical barrier. MUC1 serves a 

pivotal role in EOC, significantly influencing tumor 

metastasis and progression [71]. Characteristically 

overexpressed in EOC, MUC1 is primarily found on 

the surface of tumor cells and is underglycosylated, 

exposing epitopes concealed in non-malignant cells. 

This unique expression not only positions MUC1 as a 

critical diagnostic biomarker but also as a promising 

therapeutic target. The protein interacts with various 

oncogenic signaling pathways enhancing cell survival, 

proliferation, and metastasis. Such interactions suggest 

that MUC1 could enhance the specificity and efficacy 

of CAR-T cell therapy by targeting these aberrant  

[72, 73].  

 

Another TAAr is the Preferentially Expressed Antigen 

in Melanoma protein (PRAME, gene: PRAME). 

PRAME has emerged as a significant tumor-specific 

antigen for ovarian cancer therapy, particularly in high-

grade serous carcinoma (HGSC). Identified for its  

high expression relative to healthy tissues, PRAME’s 

promoter hypomethylation correlates with increased 

mRNA levels across various stages and grades of 

ovarian cancer. This epigenetic regulation suggests a 

pivotal role for PRAME as both a therapeutic target  

and a prognostic marker, potentially enhancing survival 

outcomes in HGSC patients. The specific targeting  

of PRAME through T-cell receptor (TCR) therapies, 

leveraging allogeneic HLA T-cell repertoires, has 

demonstrated potent anti-tumor reactivity in vitro  

and in vivo, underscoring the antigen’s viability as a 

focus for advanced immunotherapeutic strategies. The 

dual focus on PRAME and another promising target, 

CTCFL, reveals the need for precision in the balance of 

specificity and efficacy in TCR therapies for ovarian 

cancer. The selective recognition and destruction of 

ovarian cancer cells by CTCFL-specific TCRs without 

impacting healthy cells further exemplify the potential 

of such targeted therapies. These findings prompt 
continued research into the mechanisms regulating 

PRAME expression and its functional impact on the 

disease, offering pathways to enhance the efficacy of 
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PRAME-directed treatments. Despite its frequent 

expression at both mRNA and protein levels, the lack  

of correlation between PRAME protein expression and 

clinical outcomes in ovarian cancer highlights the 

complexity of its role, emphasizing the necessity for 

further studies to optimize therapeutic approaches and 

validate PRAME as a key molecule in targeted ovarian 

cancer therapy [74, 75]. 

 

The seventh TAAr is the Rac GTPase activating 

protein 1 (RACGAP1, gene: RACGAP1). RACGAP1 

plays a critical role in the progression and prognosis  

of epithelial ovarian cancer (EOC), predominantly 

expressed in the nuclei of tumor cells and associated 

with advanced tumor stages, high pathological grades, 

and lymph node metastasis. The overexpression of 

RACGAP1 correlates with shortened overall survival 

and increased disease recurrence. Functionally, 

RACGAP1 enhances the activation of RhoA and  

Erk proteins, promoting the migratory and invasive 

capabilities of EOC cells, which underscores its 

potential as a therapeutic target and a biomarker for 

disease progression. This study establishes RACGAP1 

as a novel, potent target for therapeutic intervention 

and necessitates further experimental and clinical 

evaluations to explore RACGAP1 inhibitors or 

modulators to improve ovarian cancer treatment 

strategies [76]. 

 

The next TAAr is Sortilin 1 (SORT1, gene: SORT1),  

a transmembrane protein. SORT1 is highly expressed  

in various cancers, including ovarian and endometrial 

tumors. Its role in internalizing ligands, such as the 

TH19P01 peptide linked to the therapeutic agent 

docetaxel in the TH1902 compound, is critical. This 

interaction enhances the delivery of the cytotoxic agent 

directly to SORT1-expressing cancer cells, improving 

the efficacy of the treatment while reducing off-target 

effects and systemic toxicity. Clinical studies and 

models have demonstrated that TH1902, by leveraging 

SORT1-mediated endocytosis, notably suppresses tumor 

growth more effectively than conventional chemotherapy 

agents like docetaxel alone, suggesting its potential as a 

targeted therapy for SORT1-positive gynecological 

cancers. Further research into the ectopic expression of 

SORT1 in ovarian carcinoma has shown a four-fold 

increase in its gene expression in carcinoma tissues 

compared to non-malignant tissues, highlighting its 

absence in normal ovarian tissue and its potential as  

a novel tumor marker. The predominant cell surface 

localization of SORT1, as opposed to the expected  

ER-Golgi compartment, suggests a significant role in 

tumor cell interaction with the microenvironment, 
potentially affecting tumor growth and metastasis. 

These findings underline the importance of SORT1 in 

cancer cell proliferation pathways and the need for 

targeted therapeutic approaches that exploit these unique 

properties of SORT1, offering a promising avenue for 

refining diagnostic tools and therapeutic strategies in 

the management of ovarian carcinoma [77, 78]. 

 

The last TAAr is the ubiquitin-conjugating enzyme E2C 

(UBE2C, gene: UBE2C), which emerges as a pivotal 

oncogene in ovarian cancer, significantly influencing 

tumor malignancy and resistance to cisplatin chemo-

therapy by interacting with Cyclin-Dependent Kinase 1 

(CDK1). Overexpression of UBE2C in ovarian cancer 

correlates with adverse clinical outcomes, including 

elevated tumor grades and diminished survival rates. 

The silencing of UBE2C in ovarian cancer cell lines 

markedly reduces cell proliferation and augments 

apoptosis, primarily by inducing G2/M phase arrest  

and reducing CDK1 expression. This underpins the 

functional linkage between UBE2C and CDK1, 

substantiated by their correlated expression in tumor 

tissues. Hence, targeting UBE2C may substantially 

bolster the efficacy of cisplatin treatments, reversing 

drug resistance and curbing tumor growth. These 

insights significantly contribute to the expansion of 

CAR T-cell therapy for ovarian cancer by pinpointing 

UBE2C and its associated molecular pathways as 

promising therapeutic targets, potentially enhancing  

the precision and effectiveness of these innovative 

treatments in managing a malignancy notorious for its 

grim prognosis and limited therapeutic options [79]. 

The more detailed descriptions of TAAr findings and 

studies can be seen in Supplementary Table 1. 

 

TAAr might have a role as a tumor-specific antigen that 

is modulated by the patient’s genetic background, the 

TME, and a multitude of other elements. This complexity 

serves as a significant barrier to the development of 

targeted therapies for OC treatment [80]. However, 

overexpression of these proteins, especially EPCAM, 

MUC1, UBE2C, and CLDN3, shows potential as 

promising biomarkers for early detection of disease or 

assessment of therapeutic response. Although, all of nine 

target proteins demonstrated their roles in oncogenic 

pathways and their suitability for development as TAA 

in CAR treatment. These proteins play distinct roles in 

biological pathways, but their cumulative dysregulation 

also might generate the OC malignancy. Formulating a 

comprehensive molecular target involving the roles and 

interactions of MUC1, CXCR4, EPCAM, RACGAP1, 

UBE2C, PRAME, SORT1, JUP, and CLDN3 in the 

scope of OC initiation and progression was a challenging 

attempt, because the actual bioactivity is markedly more 

complicated due to interactions between these and other 

signaling pathways, cellular heterogeneity within OC 
(Currently, it is known that there are five categories of 

ovarian carcinoma, including high-grade serous ovarian 

carcinoma (HGSOC), endometrioid ovarian carcinoma 
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(EOVC), ovarian clear cell carcinoma (OCCC),  

low-grade serous ovarian carcinoma (LGSOC), and 

mucinous ovarian carcinoma (MOC)) [81], and the 

dynamic influence of the TME, and studying these 

limitations was pivotal to understanding the forefront of 

scientific research within the field of OC.  

 

Although we have suggested TAAr as a novel OC 

biomarker candidate, there are several important 

limitations in our research related to bioinformatics 

methods. First, the study relied exclusively on analyses 

of existing gene expression datasets (GSE data) 

obtained from the GEO database, which might not 

entirely represent the heterogeneity of OC patients. 

Second, the research solely depended on bioinformatics-

based oncogenicity predictions, which can lack the 

ability to capture the complex, dynamic interactions 

within TME and its influence on the oncogenic potential 

of the identified proteins. Lastly, the study provides no 

experimental validation for the novel antigen candidates 

(TAAr). As a consequence, we recommend conducting 

the in vitro and in vivo studies to confirm the potential 

biomarker of TAAr and to evaluate their molecular 

pathway in ovarian cancer. Then, a clinical study can  

be performed to evaluate their novelty as biomarkers  

of ovarian cancer and their effectiveness as CAR-T cell 

target antigens. 

 

CONCLUSIONS 
 

In this research, the landscape of potential antigenic 

targets for CAR-T-cell therapies in OC has been 

significantly broadened. By applying bioinformatics 

methodologies to analyze DEGs and PPIs, the study  

has highlighted nine proteins (MUC1, CXCR4, 

EPCAM, RACGAP1, UBE2C, PRAME, SORT1, JUP, 

and CLDN3) as pivotal proteins in the oncogenic 

pathways of OC, thereby marking them as compelling 

antigen candidates for CAR-T-cell interventions. These 

proteins, exhibited on the plasma membrane and 

predicted to be oncogenic, provide a high degree of 

specificity for potential targeted therapies. Nevertheless, 

as the baseline analysis was computational, additional 

experimental and clinical validations are essential  

to corroborate these initial findings and accurately 

evaluate the efficacy of these proteins as CAR-T- 

cell antigens. Thus, this study represents a significant 

leap in the ongoing research for detailed and vigorous 

immunotherapies for OC.  

 

MATERIALS AND METHODS 
 

Data sources 

 

The study was conducted following the general steps 

detailed in Figure 6. There was a determination of 

DEGs, followed by examination of protein localization 

and oncogenicity, and network and enrichment  

analyses of the recommendation of target genes. The 

microarray dataset was obtained from the NCBI-GEO 

database, which is a public gene profile database 

(https://www.ncbi.nlm.nih.gov/gds/). The four datasets 

relevant to OC, namely GSE36668, [9] GSE276512, 

[10] GSE26712, [11, 12] and GSE14407, [13] are 

datasets related to OC that use three levels on the 

GPL570 platform: [HG-U133_Plus_2] Affymetrix 

Human Genome U133 Plus 2.0 Array, and GSE26712 

using the GPL96 platform: [HG-U133A] Affymetrix 

Human Genome U133A Array. The dataset above is 

used because each dataset is submitted no later than the 

last 20 years, can be analyzed with the GEO2R tool, and 

has samples of ovarian cancer tissue and normal cell 

tissue in one dataset. GSE36668 had 12 samples (eight 

OC and four normal samples). GSE27651 had 49 

samples (43 OC and six normal samples). GSE26712 

had 195 samples (185 OC and 10 normal samples). 

GSE14407 had 24 samples (12 OC and 12 normal 

samples). In this study, we used a balanced count of 

data samples between normal and OC samples from 

each GSE. 

 
DEG identification 

 
Identification of DEGs was carried out using the 

GEO2R interactive tool (http://www.ncbi.nlm.nih.gov/ 

geo/geo2r) provided by NCBI to compare a number  

of sample datasets from the microarray dataset series. 

The threshold used was logFC > 1.5 and a p-value  

of < 0.05, which were considered to be of statistical 

significance. Next, GEO2R results were analyzed 

using Microsoft Excel format to separate genes with 

the same ID, and online Venn software [82] was used 

to determine gene intersections of the four datasets, 

which are DEGs. 

 
Functional examination of DEGs 

 
Functional annotation analysis of gene ontology  

(GO) and pathway of DEGs was performed with  

the Database for Annotation, Visualization, and 

Integrated Discovery (DAVID; https://david.ncifcrf. 

gov/). Then, genes associated with the seven GO 

terms with the highest confidence score (-log10 

(FDR)) for GO biological processes (BPs), cellular 

components (CCs), and molecular functions (MFs) 

were visualized, and plasma membrane-related  

genes (PMGs) were selected for analysis. Advanced 

confidence scores were from the GeneCard database 

(https://www.genecards.org/). The analysis plays a 
role in ensuring that the expressed protein is located 

in the plasma membrane so that it can be targeted as  

a CAR antigen. 
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Oncogenicity prediction analysis 

 

Oncogenicity predictions were carried out on PMGs 

using Gene Expression Profiling Interactive Analysis 

(GEPIA2; http://gepia2.cancer-pku.cn/#index). Gene 

expressions were compared in OC and normal samples. 

Parameters used were a Log2FC cutoff of 2, a p-value 

cutoff of 0.01, and matching of The Cancer Genome 

Atlas (TCGA) normal and GTEx data. GEPIA is  

a web-based tool that provides interactive features  

such as profile plotting, patient survival analysis,  

differential expression analysis, similar gene detection,  

and dimensionality reduction analysis [83]. A highly 

expressed gene in OC was designated a predicted gene, 

and predicted genes were used in the next analysis. 

 

Protein-protein interaction (PPI) network analysis 

 

A PPI network analysis was accomplished using  

the Search Tool for the Retrieval of Interacting Genes 

and Proteins (STRING; https://string-db.org/) and 

Cytoscape 3.10. A network of highly expressed genes in 

OC was constructed in STRING with an interaction 

confidence score of > 0.7 [84] and an additional 100 

enriched genes. Network PPIs were analyzed with 

NetworkAnalyzer [85] and CytoHubba [86, 87] to 

determine the betweenness score of each node. In 

addition, an MCODE clustering analysis, GO, and 

pathways were also carried out to more deeply 

investigate results of enrichment. MCDE clustering was 

carried out using CluserViz with a degree threshold of 

2, a node score threshold of 0.2, a K-core threshold of  

2, and a max depth of 100, resulting in nine clusters  

[88, 89].  

 

Enrichment analysis 

 

Basic GO and pathway analyses were carried out using 

the g: Profiler webserver [90]. GO terms and pathways 

with the best confidence score (FDR) were visualized. 

A TAAr enrichment analysis was also carried out using 

Metascape to obtain bioactivity comparisons between 

control and predicted genes [91, 92], TIMER to acquire 

co-expression scores of predicted genes to control genes 

 

 
 

Figure 6. Research stages and workflow. The four research red lines are differential expression analysis, differentially expressed genes 
(DEGs), protein localization analysis, oncogenicity analysis, and pathway and gene ontology analyses. Therefore, in this study, we carried out 
multilevel screening to reduce the potential for errors or discrepancies later. What we mean by multilevel screening is first looking at the 
significance of the expression of a gene in normal and cancer samples from the dataset, then checking the significance of the significant gene 
again in a different database to ensure that the gene is significantly expressed only in cancer cells. 
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[93], Reactome webserver (https://reactome.org/) and 

an Ingenuity pathway analysis (IPA) (Qiagen, USA) for 

analyzing pathway and bioactivity of predicted gene, 

and an scRNA-seq analysis by Tumor Immune Single-

cell Hub 2 (TISCH2) database to provide detailed  

cell-type annotation at the single-cell level, enabling  

the exploration of TME across different cancer types 

focusing on tumor microenvironment (TME) [94], and 

the SRPlot online tool (https://www.bioinformatics. 

com.cn/en) to construct and analyze data graphics [95]. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Several PMG expressions are not significant based on the ovarian cancer dataset in the GEPIA 
database. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The more detailed descriptions of TAAr findings and studies. 

 
Supplementary Table 2. RT-PCR primer on EpCAM, MUC-1, and PRAME in ovarian cancer based on Kloudová et 
al., (2016) study. 

Name of marker 

(protein) 
FOR primer (5´-3´) REV primer (5´-3´) Probe (5´-3´) 

No. of ovarian cancer 

samples examined 

Positive result 

(%) 

EpCAM 
GCAGGGTCTAA 

AAGCTGGTGT 

ACCCATCTCCTTT 

ATCTCAGCCTT 

TGCTGTTATTGTGGT 

TGTGGTGATAGCAGT 
41 

>90% 

MUC-1 
CGTAGCCCCTA 

TGAGAAGGTTTC 

GCGACGTGCCC 

CTACAAG 

AGCAGCCTCTCTTAC 

ACAAACCCAGCA 
41 

>90% 

PRAME 
CGTTTGTGGGG 

TTCCATTC 

CCAGAGGGAG 

GCAGGTG 

TGGCTGTGTCTCCCG 

TCAAAGGC 
41 

>60% 
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