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INTRODUCTION 
 

Immunosenescence is a ubiquitous remodeling of 

immune functions which involves both adaptive  

and innate immunity. It is a well-known risk factor  

for cancer development, with incidence increasing 

disproportionately with age. [1, 2]. The evolution of 

cellular immune parameters during the lifetime in 

healthy population has been intriguing researchers 

worldwide recently, but the published conclusions 

vary tremendously [3]. The robust trends of peripheral 

lymphocyte phenotype coming along with aging are 
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ABSTRACT 
 

Immunosenescence is a process of immune dysfunction that occurs along with aging. Many studies have 
focused on the changes of different lymphocyte subsets in diseases and immune aging. However, the 
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have been rarely reported. We further investigated the humoral and cellular immune parameters of 150 
healthy donors over 18 years old. Age was associated with decreased CD4+CD45RA+CD62L+ T cells, decreased 
CD4+CD45RA+CD31+ T cells, and increased memory CD4+ or CD8+ T cells, dominated by male CD8+ T cells. The 
loss of CD28 expression on T cells and the transverse trend of activated CD38 and HLA-DR were also related to 
the increased age. In addition, CD8+ T cells in men were more prominent in activation indicators, and the 
difference between the old and young groups was obvious. CD4+CD25+CD127- T cells percentage tended to 
decrease with age and did not differ significantly between gender. Interestingly, we found that age was 
positively associated with PD-1+ T cells and showed significant age-related variability in men. Similarly, the 
percentage of CD8+ki-67+ also showed an increasing trend, with significant differences between the young 
group and other elderly groups in males. Our findings can provide immunological clues for future aging 
research, offering new insights for clinical monitoring and prevention of certain diseases. 
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still pending. Our understanding of the mechanisms 

driving age-related immune system decline, immune 

dysfunction during the aging process, and the impact 

of the elderly immune system on age-related diseases 

remains incomplete. 

 
Research in aging model systems has shown significant 

changes in the function and phenotype of T cells with 

increasing age [4]. To fulfill the health needs of the 

growing elderly population, research on age-related 

immune senescence needs to progress rapidly. Adaptive 

immunity of T cells has always been a primary focus of 

research on immunosenescence [1, 2, 4, 5]. Mittelbrunn 

and Kroemer recently proposed 10 hallmarks of T cell 

aging [6], including phenotypic changes such as naïve-

memory T cell imbalance, reduced T cell receptor (TCR) 

pool, T cell senescence and lack of effect plasticity. 

Several researchers have investigated the changes in NK 

cells during the aging process [6–8]. However, the 

controversial results may attribute to study population 

and control groups selected in these studies [9, 10].  

This process is also associated with a decrease in initial 

B cell production and an increase in the pool of low-

clone B cells, resulting in altered reactivity to novel 

antigens. The characteristics of immunosenescence 

include a decline in cell-mediated immune function and 

humoral immune responses [3, 11]. 

 
As early as 2016 [9], our team conducted an 

observational study of immune parameters among 

1,068 healthy adults, which demonstrated elementary 

clues for exploring immunosenescence, involving 

development, activation, and differentiation. In the 

state of chronic infections, cancer, and other diseases, 

the immune system undergoes aging due to prolonged 

exposure to external/viral antigen stimulation, 

accompanied by cellular exhaustion or abnormal 

proliferation, resulting in the accumulation of dys-

functional, terminally differentiated cells [12, 13]. 

However, the age trend of some emerging lymphocyte 

subsets such as PD-1 and Ki67 remains unclear, which 

have played an indispensable role in assessing immune 

status and clinical diagnosis. Especially in the elderly 

population, changes in the phenotype and activity of 

their immune cells lead to impaired immune function, 

affecting their health status. In this study, we aim to 

depict age-related fluctuations in peripheral blood 

lymphocyte subpopulations, providing reference for 

research on immune aging and various diseases. 

 
Given previous research, we further evaluated the 

gender differences in immune aging and the associated 

phenotypic changes in lymphocyte subsets, including 

markers PD-1 and Ki67 reflecting peripheral blood 

exhaustion and proliferation function. It provides a rich 

perspective on immune aging in the elderly, offering a 

systematic reference for immune status analysis and 

clinical diagnosis and treatment. 
 

MATERIALS AND METHODS 
 

Subjects 
 

A cross-sectional study was conducted between June 

and September 2022 among 150 healthy adults, 

including 90 males and 60 females, aged over 18 years. 

Subjects testing positive to HIV, systemic infection, 

connective tissue disease, abnormal tumor marker or 

cancer were excluded. According to the defined criteria 

from the SENIEUR protocol guideline [14], subjects 

were classified as older (≥65 years), middle-aged (45–

64 years), and younger (18–44 years). All subjects 

received informed consent, and the ethics committee of 

Peking Union Medical College Hospital approved the 

study (Ethics number: I-23PJ463). 
 

Lymphocyte count and phenotyping analysis 
 

Fresh EDTA-anticoagulated whole blood was 

collected and treated by flow cytometry within 6 h. 

Eighteen color flow cytometry (LSRFortessa and 

trade; BD Biosciences, La Jolla, CA, USA) analyzed 

peripheral blood lymphocyte subsets. Isolated PBMC 

from whole blood was incubated and tested with a 

panel of monoclonal antibodies against: anti-CD56-

PE/anti-PerCP-cy5.5-HLA-DR/anti-CD38-APC/anti-

CD3-PE-cy7/anti-CD8-APC-cy7/anti-CD4-AF700/anti- 

CD19-V450/anti-CD45-V500C/anti-PD-1 BV605/anti-

CD45RA-FITC/anti-CD62L-PE/anti-CD28-PerCP-cy5.5/ 

anti-CD25-APC/anti-CD127-V450/anti-CD31-BV421. 

Antibodies for this study were purchased from BD 

Pharmingen (San Diego, CA, USA). The samples were 

analyzed using FACSDiva software (Becton Dickens, 

Franklin Lakes, NJ, USA). The gating strategy for 

lymphocyte subsets is shown in Figure 1. Cell counts 

for lymphocyte subsets were calculated using a two-

platform approach, where white blood cell counts and 

lymphocyte differentials were obtained from routine 

blood tests of the same specimen. 
 

Statistical analysis 
 

All data parameters were subject to normality testing 

using the Shapiro–Wilk normality test. The continuous 

variables were described as mean or median and 

compared by Kruskal–Wallis Rank Sum Test or Mann–

Whitney U-test when data did not conform to a normal 

distribution. Probability value was obtained from two-

sided tests and P < 0.05 were considered significant. 

Statistical analysis was performed with SPSS software 

(SPSS® for Windows™ version 21.0, SPSS Inc, Chicago, 

IL, USA) and GraphPad Prism software (GraphPad 

Software® for Windows™ version 9.0, Boston, MA, USA). 
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RESULTS 
 

The characteristics of study population 
 

A total of 150 healthy Chinese adults were recruited in this 

study, including 90 men (60.0%) and 60 women (40.0%) 

with age spanning from 19 to 83. In this study, the 95% 

confidence interval recommended by the International 

Committee for Clinical Laboratory Standardization was 

used to determine the detailed distributions of lymphocyte 

subsets by the combination of normal distribution 

method and percentile method, as shown in Table 1. 

 

 
 

Figure 1. Gating strategy. Cells were first gated for lymphocytes (SSC-A vs. CD45), then CD3+ T cells, CD4+ T cells, CD8+ T cells, CD56+ NK 

cells and CD19+ B cells were positively determined. Next, the subtle subsets underlying each type of cell were further identified and 
differentiated. 
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Table 1. Peripheral blood lymphocyte subset reference values. 

Parameters  Mean Median Std. deviation Range Min–Max 

Lymphocyte (%) 26.2 29.7 5.4 20.6–35.8 20.6–52.7 

 (cells/μl) 1936 1901 466 1551–2321 950–2947 

CD19+ B (%) 9.96 10.00 3.8 7.0–12.0 2.2–22.7 

 (cells/μl) 190 186 80 131–247 18–434 

CD16+CD56+ NK (%) 16.6 15.0 6.8 12.0–21.2 2.1–37.0 

 (cells/μl) 324 301 162 205–403 36–789 

CD3+ T (%) 69.1 70.8 8.5 62.3–75.5 44.9–86.5 

 (cells/μl) 1338 1292 362 1091–1553 509–2260 

CD3+CD4+/CD3+ (%) 52.5 51.9 10.5 44.3–60.1 27.7–77.5 

 (cells/μl) 702 644 250 525–842 233–1506 

CD3+CD8+/CD8+ (%) 37.9 37.5 9.6 32.3–45.0 16.0–65.3 

 (cells/μl) 506 485 187 358–609 95–1013 

CD4+/CD8+ (%) 1.6 1.4 0.8 1.00–1.80 0.42–4.49 

CD4+CD25+CD127-/CD4+ (%) 6.3 6.2 2.0 5.9–6.7 1.2–11.0 

 (cells/μl) 42 39 18.0 34–43 10–103 

CD4+CD45RA-/CD4+ (%) 66.0 65.3 13.6 56.5–75.0 29.5–98.3 

 (cells/μl) 456 439 171 333–549 194–1141 

CD4+CD45RA+/CD4+ (%) 37.7 36.0 13.8 25.0–43.5 1.7–70.5 

 (cells/μl) 455 439 176.9 291–465 20–1141 

CD4+CD45RA+CD62L+/CD4+ (%) 34.2 35.0 13.6 25.0–43.8 1.9–69.2 

 (cells/μl) 247 228 155 141–324 14–1037 

CD4+CD28+/CD4+ (%) 91.6 94.8 9.9 87.4–97.9 48.4–99.9 

 (cells/μl) 635 606 226 477–770 175–1478 

CD4+CD38+/CD4+ (%) 10.6 8.8 4.1 5.2–14.3 1.0–29.7 

 (cells/μl) 75 59 35.1 37–98 4–286 

CD4+HLA-DR+/CD4+ (%) 7.3 6.1 4.0 4.2–9.6 1.3–18.0 

 (cells/μl) 51 49 30 25–67 8–229 

CD4+CD38+HLA-DR+/CD4+ (%) 1.0 0.7 0.3 0.5–1.1 0.1–10.0 

 (cells/μl) 6 5 2 3–8 0–40 

CD4+PD-1+/CD4+ (%) 14.5 13.5 5.2 10.5–18.1 2.5–28.9 

 (cells/μl) 99 93 38 63–129 14–257 

CD4+Ki-67+/CD4+ (%) 0.8 0.7 0.5 0.3–1.2 0.1–2.3 

 (cells/μl) 6 5 3 2–8 0–19 

CD4+CD45RA+CD31+/CD4+ (%) 23.5 24.2 11.9 14.2–31.3 0.6–59.8 

 (cells/μl) 170 157 120 83–229 4–896 

CD8+CD45RA-/CD8+ (%) 48.7 47.3 15.4 35.8–60.8 19.4–85.3 

 (cells/μl) 244 219 125 161–313 40–781 

CD8+CD45RA+CD62L+/CD8+ (%) 27.4 24.7 16.4 13.8–39.6 1.6–71.2 

 (cells/μl) 137 113 96 62–204 6–464 

CD8+CD28+/CD8+ (%) 52.5 53.8 20.2 36.2–67.2 13.6–90.0 

 (cells/μl) 254 240 122 165–320 45–789 

CD8+CD38+/CD8+ (%) 4.6 4.0 3.6 2.0–5.7 0.3–19.0 

 (cells/μl) 23 17 20 9–30 2–111 

CD8+HLA-DR+/CD8+ (%) 12.9 10.7 7.9 6.8–18.0 2.2–33.1 
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 (cells/μl) 66 50 42 27–96 8–308 

CD8+CD38+HLA-DR+/CD8+ (%) 1.9 1.7 1.2 0.9–2.5 0.1–6.0 

 (cells/μl) 10 8 6 4–13 1–45 

CD8+PD-1+/CD8+ (%) 13.7 14.1 5.5 9.5–16.5 3.6–30.5 

 (cells/μl) 69 61 37 41–88 9–221 

CD8+Ki-67+/CD8+ (%) 0.7 0.5 0.3 0.3–0.8 0.1–2.1 

 (cells/μl) 3 2 1 1–4 1–11 

CD19+CD38+/CD19+ (%) 17.8 15.7 10.5 9.3–24.0 2.5–49.9 

 (cells/μl) 34 27 26 15–48 2–200 

CD19+PD-1+/CD19+ (%) 2.3 1.7 1.5 0.9–3.1 0.2–6.4 

 (cells/μl) 3 2 1 2–5 1–14 

CD19+Ki-67+/CD19+ (%) 1.2 0.9 0.6 0.6–1.3 0.1–3.8 

 (cells/μl) 2 2 1 1–3 1–7 

CD16+CD56+CD38+/CD16+CD56+ (%) 42.9 43.5 19.3 28.4–58.7 8.6–82.1 

 (cells/μl) 131 111 90 75–161 14–631 

CD16+CD56+HLA-DR+/CD16+CD56+ (%) 6.3 4.5 3.5 2.1–9.0 0.8–20.9 

 (cells/μl) 21 13 13 6–31 1–112 

CD16+CD56+PD-1+/CD16+CD56+ (%) 1.6 0.8 0.7 0.3–1.7 0.1–7.5 

 (cells/μl) 5 3 3 1–5 1–35 

CD16+CD56+Ki-67+/CD16+CD56+ (%) 1.1 0.9 0.7 0.4–1.6 0.1–3.8 

 (cells/μl) 3 2 3 1–4 1–20 

 

The relationship between lymphocyte subsets and 

aging 

 

To investigate the influence of the age on the lymphocyte 

subsets, we divided the subjects into three age groups. A 

total of 55 (36.6%) were in young adult group (19–44 

years old, 34 males, 21 females, mean age 29.2 years), 46 

(30.7%) belonged to the middle-aged adult group (45–64 

years old, 24 males, 22 females, mean age 52.6 years) and 

49 (32.7%) belonged to the elderly (over 65 years, 31 

males, 18 females, mean age 68.0 years). The Chi-square 

tests showed that there were differences between the 

gender in different age groups. (P = 0.045). We then 

observed associations between a set of parameters and age 

(results shown in Figure 2). Most parameters varied with 

age except for CD19+ B cells (p = 0.304), CD16+CD56+ 

NK cells (p = 0.727), CD3+ T cells (p = 0.966), 

CD3+CD4+ T cells (p = 0.162) and CD3+CD8+T cells  

(p = 0.204), especially a clear association was shown in 

the CD4 and CD8 T cell subsets combinations. Gender 

impacts the fluctuation of many physiological parameters, 

furtherly, the lymphocyte subsets distributions correlated 

with age in males and females at different stages were 

evaluated and regression analysis was performed. 

 

T cell subsets decreased with older ages in male and 

female populations 

 

The results of subgroup distribution of males and 

females showed that CD4/CD8 percentage and the 

percentage of CD4+CD25+CD127-T cells had  

slightly increased or decreased trend with age  

(Figure 3A, 3F), whereas there was no significant 

difference among further groups (Figure 4A, 4F).  

Data showed a moderate decreased expression level  

of CD4+CD45RA+ T cells percentage (r = −0.303,  

p = 0.002, Figure 3C) and CD4+CD45RA+CD62L+  

T cells percentage (r = −0.326, p < 0.001, Figure  

3D) with age growing in males (Figure 4C, 4D). 

Meanwhile, it was found that aging did not seem to 

have a significant effect on women, but still showed  

an obvious downward trend. Significant differences 

existed in CD8+CD45RA+CD62L+ T cells and 

CD4+CD45RA+CD31+ T cells between the gender  

in the whole age stages and the difference mainly lay  

in males (Figure 4H, 4E). Figure 3E, 3H shows the 

strong negative correlation between these two types of 

cells with age (r = −0.598, P < 0.001 and r = −0.3379, 

p < 0.001). A trend of decrease in CD4+CD38+ T cells 

and CD8+CD38+ T cells were also observed with age 

(r = −0.446, P < 0.001 and r = −0.200, P < 0.001, 

Figure 3I, 3M), but there was only obvious difference 

with age growing in the males (Figure 4I). Differences 

in the percentage of CD8+CD38+ T cells mainly lay  

in the older group, and women were higher than men 

(Figure 4M). The same changes can also be observed  
in CD8+CD28+ T cells (Figure 4L), with a strong 

negative correlation in the CD8+CD28+ T percentage 

(r = −0.456, P < 0.001, Figure 3L), particularly evident 

in females. 
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T cell subsets increased significantly with age 

between male and female individuals 

 

Compared with CD45RA+ T cells, the reverse trend 

between CD4+CD45RA-T cells (r = 0.251, p = 0.001, 

Figure 3B) and CD8+CD45RA-T cells (r = 0.258, p = 

0.018, Figure 3G) were also shown in our study which 

gradually increased with age (Figure 4B, 4G). Significant 

gender difference was found among three cohorts 

respectively in memory CD8+ T cells and were higher in 

women (Figure 4G). Data showed an increased expression 

level of CD4+HLA-DR+ T cells (r = −0.254, p = 0.002, 

Figure 3J) and the percentage of CD8+HLA-DR+  

T cells (r = −0.226, p < 0.001, Figure 3K) with age 

growing. Meanwhile, it was found that age seem to  

have a significant effect on men between the older and  

the younger, and that men were significantly higher than 

women in the older group (Figure 4J). The same changes 

could be seen in CD8+HLA-DR+ percentage (Figure 4K). 

More interestingly, we found a weak positive correlation 

between age and CD4+PD-1+ T cells (r = 0.218, p = 

0.016, Figure 3N), as well as CD8+PD-1+ percentage 

 

 
 

Figure 2. Correlation and regression analysis of different T cell subsets and ages were calculated. The left represents the 

frequency, and the right represents the absolute number. The red points and bars represent the R-value and 95% confidence interval of the 
regression equation, and the P-value to the right of the figure indicates the statistical significance of each subset. 
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(r = 0.241, p < 0.001, Figure 3P). Age-related variation 

was obvious with CD4+PD-1+ T cells in the males 

(Figure 4N). Similarly, the percentage of CD8+PD-

1+showed increased expression level with age growing 

in the males, and the gender difference was significant 

in the older group (Figure 4P). An increased trend of 

CD8+ki-67+ percentage was also observed with age  

(r = 0.201, p < 0.001, Figure 3O), and the obvious 

difference existed in men versus women towards the 

younger and the other older groups (Figure 4O). 
 

DISCUSSION 
 

Immunosenescence is a concept that encompass all  

age-related changes in the immune system and 

describes the progressive and ubiquitous remodeling  

of immune function during aging [15]. Lymphocytes 

exert their immune function through activation, 

proliferation, differentiation, memory, exhaustion, and 

other mechanisms.[16]. Different subgroups exhibit 

unique trends and age-related immune function turning 

points [17, 18]. Therefore, age-related immune sub-

group transformation and sex differences need to be 

further explored. We firstly conducted extensive flow 

cytometric analysis on peripheral blood from 150 

healthy adults of all ages, depicting a series of age-

related immune aging indicators, especially some 

emerging indicators of depletion and proliferation  

with potential clinical application merits, such as  

PD-1 and Ki67, which can be used as new markers  

for immunosenescence research. It provides a richer 

perspective on immune aging of peripheral blood 

lymphocyte subgroups in the elderly. 

 

Our team conducted an observational study of 1068 

individuals as early as 2016 to explore clues for 

immune aging [9]. Our research not only validated 

previous classic indicators, but also further evaluated 

the impact of aging on the quantity and phenotype of 

PD-1 and Ki67. At the same time, there are different 

immune aging patterns in terms of gender differences, 

and immune parameters of different ages and genders 

may have an impact on the design of immunotherapy 

for the elderly. Controversial findings regarding the 

effect of age on immune markers in peripheral blood 

have been reported [19–26]. Our results did not show 

 

 
 

Figure 3. Relationship between age and percentages of lymphocyte subsets in the male or female population.  (A) CD4+/CD8+ 

percentage, (B) CD4+CD45RA- T cell percentage, (C) CD4+CD45RA+ T cell percentage, (D) CD4+Naïve T cell percentage, (E) 
CD4+CD45RA+CD31+T cell percentage, (F) CD4+CD25+CD 127- T cell percentage, (G)CD8+CD45RA- T cell percentage, (H) CD8+Naive T cell 
percentage, (I) CD4+CD38+ T cell percentage, (J) CD4+HLA-DR+ T cell percentage, (K) CD8+HLA-DR+ T cell percentage, (L) CD8+CD28+ T cell 
percentage, (M) CD8+CD38+ T cell percentage, (N) CD4+PD-1+ T cell percentage, (O) CD8+Ki67+ T cell percentage, (P) CD8+PD-1+ T cell 
percentage. Correlations between two variables were done using Spearman’s correlation and linear regression was used to plot graph. 
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any significant quantitative alteration in the overall T 

cells, NK cells, and B cells with age. Report of changes 

in Treg with age are conflicting [26]. The results may 

be inconsistent due to different characteristic markers 

(such as CD127− or Foxp3+). The conclusions drawn 

from different studies cannot be unified, possibly due to 

differences in inclusion and exclusion criteria, sample 

sizes etc, resulting in different trends in the data. 

Consistent with previous studies [4, 9, 15], our data  

also confirm a clear trend of reversal of age-related 

naïve T cells and memory cells, especially in the CD8 

population, which is attributed to long-term repeated 

exposure to antigens and decreased thymic function  

[1, 8, 27]. The same changes could be seen in 

CD4+CD45RA+CD31+ T cells. The expression of 

CD31 is very low in most elderly people [28, 29], which 

reflects the new output capacity of thymus to a certain 

extent. Similarly to previous reports [9, 22, 25, 30–32], 

we also confirmed changes in different activation 

markers, with a significant increase in HLA-DR+ T 

cells and an opposite trend in early CD38+ T cells. In 

addition, we made a new discovery that the impact of 

aging is more pronounced in males, both in terms of 

percentage and absolute numbers, perhaps suggesting 

that older men are more susceptible to age-related 

diseases could potentially explain differences in lifespan 

between genders [33]. 

Depletion and senescence are two states of impaired T 

cell function, and recent studies have revealed the 

functional state of T cell failure, which is not an inert 

and non-functional state, but T cells showing a residual 

level of dysfunction [34]. The results showed that 

CD4+PD-1+ T cells and CD8+ PD-1+ T cells increased 

with age, and were more prominent in men. The gender 

difference is more obvious in the older group, showing 

that men are higher than women. Although little 

research has been done on the relationship between PD-

1 and age, they have also shown increased expression  

of these proteins in older age groups, which is 

consistent with the characteristics of aging that we have 

developed. PD-1 is involved in the regulation of CD8 T-

cell exhaustion during chronic viral infection and it is 

also transiently expressed by activated CD8 T cells 

during the acute phase of viral infection [35, 36]. Part of 

the research focused on mice [17, 36, 37], where their 

research found that the accumulation of PD-1+ memory 

type CD4+ T cell subsets gradually increased with  

age and dominated the normal mouse aging phase. 

Notably, in healthy individuals, most PD-1 expressing 

cells exhibit an effector memory phenotype rather  

than exhaustion phenotype in CD8+ T cells. The up-

regulation of PD-1 on activated CD4+ and CD8+ T 

cells may contribute to differentiation and homeostasis 

of activated T cells, resulting in apoptosis and growth 

 

 
 

Figure 4. Comparison of lymphocyte subsets in different age groups of male or female populations with significant 
differences. (A) CD4+/CD8+percentage (%), (B) CD4+CD45RA- T cell (% and cells/µl), (C) CD4+CD45RA+ T cell (% and cells/µl), (D) CD4+ 

Naïve T cell (% and cells/µl), (E) CD4+CD45RA+CD31+T cell (% and cells/µl), (F) CD4+CD25+CD127- T cell percentage (%), (G) CD8+CD45RA- T 
cell (% and cells/µl), (H) CD8+Naive T cell (% and cells/µl), (I) CD4+CD38+ T cell (% and cells/µl), (J) CD4+HLA- DR+ T cell (% and cells/µl), (K) 
CD8+HLA-DR+ T cell (% and cells/µl), (L) CD8+CD28+ T cell (% and cells/µl), (M) CD8+CD38+ T cell (% and cells/µl), (N) CD4+PD-1+ T cell (% 
and cells/µl), (O) CD8+Ki67+ T cell (% and cells/µl), (P) CD8+PD-1+ T percentage (%). (*p < 0.05, **p < 0.01, ***p < 0.001). 
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restriction [38]. In recent years, immunosenescence has 

received more and more attention due to its role in 

tumor development [38–42]. Due to the outcomes of 

immunotherapy are not consistent between elderly and 

young patients, with controversies surrounding the 

relationship between age and immune-related adverse 

events. Therefore, analyzing the latest data on the 

efficacy of immunotherapy in elderly cancer patients is 

crucial. 

 

Ki-67 is a proliferating nuclear antigen that is associated 

with the mitotic cycle of cells and is often mentioned in 

cancer studies as an indicator of malignant proliferative 

activity [40, 43]. Our results also found that the 

Ki67+CD8+ percentage increased with age, and there 

was a significant difference between the younger and the 

older group. Studies have found that the proportion of  

Ki-67+ in peripheral blood increases with age, and CD8+ 

T cells proliferate more actively during aging [44]. There 

is not much literature support for the relationship 

between Ki-67 and age, so the specific reasons need to be 

further explored. Ki-67 is commonly used in pathologic 

diagnosis and is an independent predictor of breast cancer 

recurrence and survival [43]. Studies on the subgroup of 

lymphomas caused by fever of unknown origin, our team 

found that PD-1+ T cells were significantly higher in 

patients with fever and confirmed histologically than in 

non-tumor patients. PD-1 expression on effector T cells 

depletes anti-tumor immune function and impairs control 

of tumor growth [45]. In addition, the Ki67+ T cells  

in these patients were significantly increased in both 

percentage and absolute number, showing a strong 

proliferation of T cells. These patients generally undergo 

invasive tissue biopsy first, and the pathological results 

indicated neoplastic proliferation of lymphocytes or 

histiocytes, which was highly consistent with our 

peripheral blood response proliferation results. The 

results of the study have not yet been published. For Ki67 

research, only a small amount of peripheral blood is 

required, with a short reporting time and high consistency 

with pathological results, making it very suitable for 

routine projects. At the same time, our team also 

prospectively explored the immunological, hematological 

profiles inducing lymphocyte subsets related to SARS-

CoV-2 infection during the acute omicron epidemic 

abrupted in 2023 [46]. For elderly patients infected with 

SARS-CoV-2, severe COVID-19 has the characteristics 

of irreversible reduction, continuous activation and 

proliferation of NK cells and CD8+T cells, which is 

helpful for clinicians to identify and rescue severe or 

critically ill patients at an early stage. 

 

CONCLUSION 
 

In short, immune parameters are different between 

young and old populations. We used flow cytometry 

immunophenotyping to evaluate the counts and 

percentages of circulating lymphocyte subpopulation  

in healthy young and elderly individuals, not only 

validating the reliability of classical aging markers but 

also discovering an increasing trend of PD-1 on T cell 

and Ki67 on CD8+ T cell along with aging, providing 

clues for further research on immunosenescence. These 

data contribute to a deeper understanding of immune 

aging. Gender and age have significant impacts on 

lymphocyte subsets, thus a systematic investigation of 

various interacting factors related to age-associated 

immune changes is necessary. 

 
Limitation 

 
Although our enrollments are derived from the same 

hospital, with a certain diversity in population 

composition and immune indicators, there are still 

limitations in sample size and representativeness. 

However, the reliable mapping of human T cells across 

different generations is reliable. It is possible to further 

increase the sample size, integrate relevant research 

results through multi-center studies, and provide more 

accurate evidence for the dynamic analysis of immune 

aging-related cells through meta-analysis. 
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