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INTRODUCTION 
 

Diabetic nephropathy, a severe complication of diabetes 

affecting the kidneys, has witnessed significant strides 

in recent years [1]. Scientists have delved into 

unraveling the intricate pathogenesis of the disease, 
investigating mechanisms involving inflammation, 

oxidative stress, and signaling pathways that contribute 

to kidney damage [2–4]. Clinical trials exploring 

various therapeutic interventions, including drugs 

targeting blood glucose levels and inflammation, have 

been conducted [5]. Renoprotective strategies, such as 

lifestyle modifications and pharmacological approaches, 

have been investigated to prevent or slow disease 

progression [6]. The emerging concept of precision 

medicine tailors treatments based on individual patient 

characteristics, and the integration of telemedicine and 

remote monitoring technologies aims to enhance patient 
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ABSTRACT 
 

Background: Diabetic nephropathy (DN) is a severe complication of diabetes that affects the kidneys. 
Disulfidptosis, a newly defined type of programmed cell death, has emerged as a potential area of interest, yet 
its significance in DN remains unexplored. 
Methods: This study utilized single-cell sequencing data GSE131882 from GEO database combined with bulk 
transcriptome sequencing data GSE30122, GSE30528 and GSE30529 to investigate disulfidptosis in DN. Single-
cell sequencing analysis was performed on samples from DN patients and healthy controls, focusing on cell 
heterogeneity and communication. Weighted gene co-expression network analysis (WGCNA) and gene set 
enrichment analysis (GSEA) were employed to identify disulfidptosis-related gene sets and pathways. A 
diagnostic model was constructed using machine learning techniques based on identified genes, and 
immunocorrelation analysis was conducted to explore the relationship between key genes and immune cells. 
PCR validation was performed on blood samples from DN patients and healthy controls. 
Results: The study revealed significant disulfidptosis heterogeneity and cell communication differences in DN. 
Specific targets related to disulfidptosis were identified, providing insights into the pathogenesis of DN. The 
diagnostic model demonstrated high accuracy in distinguishing DN from healthy samples across multiple 
datasets. Immunocorrelation analysis highlighted the complex interactions between immune cells and key 
disulfidptosis-related genes. PCR validation supported the differential expression of model genes VEGFA, 
MAGI2, THSD7A and ANKRD28 in DN. 
Conclusion: This research advances our understanding of DN by highlighting the role of disulfidptosis and 
identifying potential biomarkers for early detection and personalized treatment. 
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care and early complication detection [7]. Stem cell 

therapy has also been explored for its regenerative 

potential in repairing damaged kidney tissue [8]. This 

multifaceted research landscape reflects a concerted 

effort to advance our understanding and management of 

diabetic nephropathy, with the ultimate goal of 

improving patient outcomes [9]. Currently, the key 

focus has been on identifying reliable biomarkers for 

early detection and monitoring, aiding in risk prediction 

and treatment assessment [10]. Genetic studies have 

advanced our understanding of the genetic factors 

influencing susceptibility to diabetic kidney disease, 

offering potential targets for personalized treatments. 

 

Programmed cell death (PCD) is a crucial biological 

process that plays a fundamental role in the develop-

ment, maintenance, and elimination of cells within 

multicellular organisms [11]. The intricate regulation of 

PCD is essential for various physiological functions, 

including tissue homeostasis, immune response, and 

embryonic development [12]. In recent years, 

significant strides have been made in unraveling the 

molecular mechanisms and signaling pathways involved 

in programmed cell death [13]. 

 

Disulfidptosis is a newly defined type of programmed 

cell death [14]. Researchers have found that in some 

diseases, SLC7A11 high expression cells are heavily 

consumed by NADPH, abnormal accumulation of 

cystine and other disulfides, which induces disulfide 

stress and rapid cell death [15]. This mechanism plays a 

critical role in maintaining cellular homeostasis and 

responding to stress conditions. In the context of 

disease, disulfidptosis has been implicated in the 

pathogenesis of various conditions, including neuro-

degenerative diseases, cancer, and cardiovascular 

disorders. The significance of disulfidptosis in disease 

lies in its potential as a therapeutic target. By 

modulating this pathway, it may be possible to control 

cell survival in pathological states, thereby offering a 

novel approach to treatment. For instance, in cancer, 

manipulating disulfidptosis could enhance the efficacy 

of chemotherapeutic agents by promoting cancer cell 

death. Similarly, in neurodegenerative diseases, 

protecting against excessive disulfidptosis may help 

preserve neuronal integrity and function. Understanding 

the regulatory mechanisms and molecular details of 

disulfidptosis is crucial for developing targeted 

therapies that can exploit this cell death pathway for 

clinical benefit. The ongoing research into 

disulfidptosis not only expands our knowledge of  

cell death mechanisms but also opens new avenues for 

the treatment of diseases where cell survival or death  
is dysregulated. However, the significance of 

disulfidptosis in diabetic nephropathy has been unclear 

[15]. 

Therefore, in this study, we combined single-cell 

sequencing data with bulk transcriptome sequencing 

data to explore the significance of disulfidptosis in 

diabetic nephropathy. For the first time, we reveal the 

disulfidptosis heterogeneity and cell communication 

landscape of diabetic nephropathy and identify specific 

targets. Our study can provide a reference for the early 

diagnosis and treatment of diabetic nephropathy. 

 

METHODS 
 

Single-cell sequencing data download and processing 

 

The single-cell dataset GSE131882 associated with 

diabetic nephropathy was downloaded from the GEO 

database(https://www.ncbi.nlm.nih.gov/geo/) [16, 17]. 

The dataset included 3 diabetic nephropathy samples 

and 3 normal control samples. We used the “Seurat” 

package, version 4.3.0, to process and analyze single-

cell data. The quality control of this study was as 

follows: (1) retention of genes larger than those 

expressed in 3 cells; (2) Cells that retain gene 

expression between 200 and 4000; (3) Cells that retain 

less than 15 percent of mitochondrial genes; (4) Cells 

with total gene expression less than 10000 were 

retained; The highly variable gene was set to 3000, 

and the “LogNormalize” method was used to 

standardize the data and integrate the sample. In this 

study, “PCA” analysis was first used to reduce the 

dimensionality of the data. “UMAP” then reduces the 

data dimension again and sets dim to 20. The KNN 

method was used to cluster the cells, setting dims to 

20 and resolution to 0.4. We annotate the cells 

according to the signature genes of the cell type. The 

“UMAP” map was used to show the results of the 

single-cell analysis. We used the “AUCell” package 

to calculate the cell disulfidptosis fraction based on 

the concentration of the disulfidptosis gene set in the 

cell. The “Seurat” package’s “FindMarkers” function 

was used to analyze the differences between the two 

groups. 

 

Source of disulfidptosis-related gene set 

 

Based on published articles, the disulfidptosis-related 

gene was summarized [14, 15]. These disulfidptosis-

related genes are summarized in Supplementary Table 1. 

 

Bulk transcriptome data download and processing 

 

Three diabetic nephropathy-related transcriptome data-

sets GSE30122, GSE30528 and GSE30529 were 

downloaded [18, 19]. The GSE30122 dataset contains 19 

diabetic nephropathy samples and 50 normal control 

samples, and GSE30528 contains 9 diabetic nephropathy 

samples and 13 normal control samples. GSE30529 
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consisted of 10 diabetic nephropathy samples and 12 

normal control samples. All data are standardized. The 

main analysis is performed in GSE30122, while the 

GSE30528 and GSE30529 datasets serve as validation 

sets for the later built models. 

 

Weighted gene co-expression network analysis 

(WGCNA) 

 

We used the WGCNA method to explore the gene set 

closely associated with the disulfidptosis phenotype in 

diabetic nephropathy. The soft threshold ranges from 1 

to 20. The pickSoftThreshold function looks for the 

appropriate soft threshold. The minimum number of 

module genes is set to 150, deepSplit = 2, and genes are 

clustered. We used the “ESTIMATE” package to 

calculate immune scores in diabetic nephropathy 

samples and correlated WGCNA-analyzed modules 

with disulfidptosis and immunophenotypes. 

 

Gene set enrichment analysis (GSEA) 

 

Firstly, the differentially expressed genes of the diabetic 

nephropathy group and healthy controls were obtained. 

The results of the difference analysis were sorted 

according to the magnitude of the difference multiple, 

and then compared with some gene sets of specific 

functions to find the most closely related pathways. 

 

Enrichment analysis 

 

Gene Ontology (GO) is a database established by the 

Gene Ontology Consortium, which aims to establish a 

database applicable to various species, to define and 

describe the function of genes and proteins, which is 

applicable to various species. There are three categories: 

Biological Process (BP), Cellular Component (CC) and 

Molecular Function (MF). Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database is a database that 

systematically analyzes gene functions, linked genomic 

information and functional information, including 

metabolic pathway database, hierarchical classification 

database, gene database, genome database, etc. By 

comparing the studied genes with the pathway gene set 

in the database, the enriched pathways are obtained. 

 

The construction of the diagnostic model and 

nomogram 

 

In this study, a variety of machine learning methods 

were used to construct a diagnostic model based on the 

“mlr3” package. Firstly, the features of included genes 

were screened by the “auc” method, the first 4 genes 
were retained, the external cyclic ressampling “CV” 

was set to 3, and the model results were compared to 

select the optimal model. 

Immunocorrelation analysis 

 

CIBERSORT is a commonly used method to calculate 

transcriptome immune infiltration. In this study, the 

expression matrix of the dataset was compared with the 

built-in matrix of the method to obtain the degree of 

immune infiltration of each patient in the dataset, and 

then the relationship between four key genes and 

immune cells in diabetic nephropathy was explored. 

 

PCR experimental verification 

 

Blood samples from 6 DN patients and 6 healthy 

controls were collected for PCR analysis. TRIzol 

reagents (Invitrogen, CA, USA) were used to extract 

total RNA, following the instructions provided by the 

manufacturer. This was followed by cDNA synthesis 

using the PrimeScript RT Reagent Kit (Takara, Nanjing, 

China). Finally, AceQ Universal SYBR qPCR Master 

Mix (Vazyme, Nanjing, China) was utilized to conduct 

quantitative real-time PCR (qRT-PCR). The primer 

sequence we used is shown in Supplementary Table 2. 

 

Statistical analysis 

 

The Seurat R package (version 4.3.0) was used for 

single-cell sequencing analysis. AUCell R packages are 

used to calculate gene set activation in different cells. 

The WGCNA R package is used for WGCNA. The 

limma package was used for differential expression 

analysis. The mlr3 R package is used to build the 

diagnostic model. The expression of differential genes 

between the two groups was measured by the rank-sum 

test, and the correlation between genes and immune 

cells was measured by Pearson’s method. p < 0.05 was 

defined as statistically significant. 

 

RESULTS 
 

Single-cell sequencing analysis 

 

Disulfidptosis was investigated at the single-cell level 

of diabetic nephropathy. As shown in Figure 1A, 1B, a 

total of 3 diabetic nephropathy and 3 control samples 

were retained through quality control and sample 

integration. There was no obvious batch effect between 

the samples of diabetic nephropathy and the samples of 

the control group, and heterogeneity was observed 

between the diabetic nephropathy and the control 

samples. As shown in Figure 1C–1E, cells were 

clustered into 16 clusters according to the marker genes 

of cell types, and a total of 10 cell types were annotated. 

Figure 1F, 1G shows the distribution of cell types in 

each sample, as well as the top 5 most significant up-

regulated and down-regulated differential genes of each 

cell type in both the diabetic nephropathy and the 
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control group. As shown in Figure 1H, 1I, the death 

enrichment fraction of double flow was mainly in 

glomerular cells and connecting tubule cells, and was 

divided into disulfidptosis high group and disulfidptosis 

low group according to the median value. Different 

genes between the two groups were found. 

 

 
 

Figure 1. Single-cell sequencing analysis of diabetic nephropathy (DN) and control samples. (A, B) Quality control metrics and sample 
integration results showing no significant batch effects between DN and control samples, with observed heterogeneity. (C–E) UMAP plots 
illustrating cell clustering into 16 distinct clusters based on cell type marker genes, with 10 cell types annotated. (F, G) Distribution of cell types 
across samples and the top 5 significantly up-regulated and down-regulated differential genes for each cell type in DN and control groups. (H, I) 
Enrichment fraction of disulfidptosis in Glomerular Cells and Connecting Tubule cells, with samples categorized into Disulifidptosis_High and 
Disulifidptosis_Low groups based on median values, highlighting differentially expressed genes between the two groups. 
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Functional enrichment analysis 

 

As shown in Figure 2A, 2B, we first explored the relevant 

functional pathways in diabetic nephropathy compared 

with the control group, and found that RNA splicing, 

histone modification, Focal adhesion and FoxO signaling 

pathways were mainly enriched in diabetic nephropathy. 

We also subsequently explored the pathways related to 

disulfidptosis in diabetic nephropathy. As shown in Figure 

2C, the xenobiotic metabolism pathway is activated, while 

the other three pathways are inhibited. 

 

WGCNA analysis 

 

In diabetic nephropathy, to further obtain genes 

associated with disulfidptosis, WGCNA analysis was 

performed in the GSE30122 dataset. As shown in 

Figure 3A, when the optimal soft threshold is 14, the 

data conforms to the power law distribution. As shown 

in Figure 3B, 3C, the genes were clustered into 17 non-

gray modules, with the green module most associated 

with the disulfidptosis phenotype (cor = 0.55 and p < 

0.05). We further explored the inter-gene correlation in 

the green module, as shown in Figure 3D. There was a 

positive correlation between Module membership in 

green module and Gene significance for body weight 

(cor = 0.33 and p < 0.05). 

 

The key disulfidptosis gene in diabetic nephropathy 

was obtained 

 

As shown in Figure 4A, the key genes of diabetic 

nephropathy obtained by single-cell analysis were 

intersects with the differentially expressed genes of 

GSE30122 and the genes related to disulfidptosis of 

diabetic nephropathy obtained by WGCNA analysis, and 

a total of 21 relatively important genes were obtained. 

Then, we carried out protein interaction analysis using 

the “STRING” website and visualization using cyto-

scape software. As shown in Figure 4B, MAGI2 was the 

most important factor in the correlation between genes. 

As shown in Figure 4C, 4D, the functional enrichment 

analysis of these 21 genes showed that they were mainly 

related to positive regulation of receptor internalization 

and MAPK signaling pathway. 

 

Construction of a diagnostic model 

 

We performed the analysis in GSE30122. As shown in 

Figure 5A, the first four important genes were VEGFA, 

MAGI2, THSD7A and ANKRD28. Subsequently, a 

variety of machine learning methods were used and 

compared, as shown in Figure 5B, 5C. Compared with 

other models, “KNN” method has the highest accuracy 

and the largest AUC area. As shown in Figure 5D–5F, 

this model performs well in training cohort GSE30122 

and verification cohorts GSE30528 and GSE30529, with 

AUC greater than 0.9. For better clinical application, we 

constructed a nomogram, as shown in Figure 5G, 5H, to 

accurately predict the possibility of diabetic nephropathy 

by combining the expression of four genes. 

 

Immunocorrelation analysis 

 

Figure 6A shows the immune infiltration of each sample 

in diabetic nephropathy. As shown in Figure 6B–6E,

 

 
 

Figure 2. Functional enrichment analysis in diabetic nephropathy. (A, B) Pathway analysis comparing DN to control group, 

indicating significant enrichment in RNA splicing, histone modification, Focal adhesion, and FoxO signaling pathways in DN. (C) Pathways 
related to disulfidptosis in DN, showcasing activation of the XENOBIOTIC_METABOLISM pathway and inhibition of other key pathways. 
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there is a correlation between immune cells, in which 

NK Cell resting is positively correlated with 

Macrophage M2, while Tregs are negatively correlated 

with T cells CD8. NK Cell resting was negatively 

correlated with Mast cells activated and Dendritic cells 

resting. VEGFA was positively correlated with T cells 

CD4 memory resting (p < 0.05), MAGI2 was negatively 

correlated with Tregs (p < 0.05), and THSD7A was 

positively correlated with T cells CD4 memory resting 

(p < 0.05). No significant correlation was found 

between ANKRD28 and immune cells. 

Expression analysis of model genes and PCR 

validation 

 

In the GSE30122 cohort, we analyzed the expression of 

four model genes, VEGFA, MAGI2, THSD7A and 

ANKRD28, and found that the expression of these model 

genes was down-regulated in the DN group (Figure 7A). 

Subsequently, we conducted PCR validation in clinical 

samples and also found down-regulated expression levels 

of VEGFA, MAGI2, THSD7A and ANKRD28 in the 

DN group (Figure 7B–7E) (*p < 0.05, ***p < 0.001). 

 

 
 

Figure 3. Weighted gene co-expression network analysis (WGCNA) in DN. (A) Selection of the optimal soft threshold (power of 14) 

ensuring data conforms to the power law distribution for network construction. (B, C) Gene clustering into 17 non-gray modules, with the 
green module showing the highest association with disulfidptosis phenotype (correlation and statistical significance). (D) Positive 
correlation between gene significance for disulfidptosis and module membership within the green module, indicating relevance to DN 
pathogenesis. 
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DISCUSSION 
 

The intricate landscape of diabetic nephropathy (DN), a 

notable complication of diabetes mellitus, underscores a 

compelling need for advancing our understanding of its 

pathophysiology and identifying novel diagnostic and 

therapeutic targets [20–22]. The current study 

illuminates the role of disulfidptosis, a recently 

characterized form of programmed cell death, within the 

context of DN, offering fresh insights into the cellular 

mechanisms underpinning kidney damage in diabetes. 

By integrating single-cell sequencing with bulk 

transcriptome data, we have elucidated the 

heterogeneity of disulfidptosis and its cellular 

communication landscape in DN, thereby identifying 

potential biomarkers and therapeutic targets. 

 

The exploration of DN pathogenesis has traditionally 

focused on mechanisms such as inflammation, oxidative 

stress, and aberrant signaling pathways. Our study 

expands this understanding by spotlighting 

disulfidptosis, a form of cell death induced by disulfide 

stress, which has been relatively unexplored in DN. The 

findings reveal that disulfidptosis contributes

 

 
 

Figure 4. Identification of key disulfidptosis-related genes in DN. (A) Intersection analysis identifying 21 critical genes related to 

disulfidptosis in DN through single-cell analysis, differential expression, and WGCNA. (B) Protein interaction network analysis highlighting 
MAGI2 as a central factor in gene-gene interactions. (C, D) Functional enrichment analysis of the 21 key genes, showing significant 
association with receptor internalization and MAPK signaling pathway. 
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significantly to the cellular heterogeneity observed in 

DN, suggesting that its modulation could offer new 

avenues for treatment. 

 

Single-cell sequencing analysis offered a granular view of 

the cellular composition in DN, unveiling distinct patterns 

of gene expression and cell-type-specific differences 

between diseased and healthy kidney tissue. This high-

resolution mapping underscores the complex interplay 

between various cell types in the kidney, each contributing 

uniquely to the pathogenesis of DN. The identification of 

disulfidptosis predominantly in glomerular and connecting 

tubule cells highlights specific cellular contexts where 

disulfidptosis might play a pivotal role, warranting further 

investigation into its mechanistic underpinnings and 

potential as a therapeutic target. 

 

Our use of weighted gene co-expression network 

analysis (WGCNA) to correlate gene expression 

modules with disulfidptosis phenotype provides a robust 

framework for identifying genes and pathways 

associated with this form of cell death in DN. The 

association of specific gene modules with disulfidptosis 

not only confirms its relevance in DN but also identifies

 

 
 

Figure 5. Construction and validation of the diagnostic model for DN. (A) Identification of the four most significant genes (VEGFA, 

MAGI2, THSD7A, and ANKRD28) through feature screening. (B, C) Comparison of machine learning models, with the KNN method showing 
superior accuracy and AUC in distinguishing DN from control samples. (D–F) Performance evaluation of the diagnostic model in training and 
validation cohorts (GSE30122, GSE30528, and GSE30529) with AUC >0.9. (G, H) Nomogram construction for clinical application, enabling 
accurate prediction of DN risk based on gene expression. 
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potential molecular signatures that could serve as 

biomarkers for early detection or targets for therapeutic 

intervention. 

The functional enrichment analysis further delineates 

the biological pathways associated with disulfidptosis in 

DN, such as RNA splicing, histone modification, and 

 

 
 

Figure 6. Immunocorrelation analysis in DN. (A) Overview of immune cell infiltration in DN samples. (B–E) Correlation analysis 

between immune cell populations and the expression of key genes (VEGFA, MAGI2, THSD7A), revealing significant associations and 
suggesting potential immunomodulatory roles in DN. 
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the MAPK signaling pathway. These findings are 

consistent with the known complexity of DN 

pathogenesis and suggest that disulfidptosis might 

intersect with other cellular processes contributing to 

kidney damage. Understanding these pathways in detail 

could lead to the development of multi-targeted 

therapeutic strategies that address various aspects of DN 

pathophysiology. 

 

The construction of a diagnostic model based on key 

disulfidptosis-related genes represents a significant leap 

towards the clinical translation of our findings. The 

model’s high accuracy in differentiating DN from 

control samples across multiple datasets underscores its 

potential utility in clinical settings. Moreover, the 

development of a nomogram for predicting DN risk 

based on gene expression profiles exemplifies the 

practical application of our research, offering a tool that 

could enhance early detection and personalized 

management of DN. 

 

Immunocorrelation analysis in our study sheds light on 

the complex interactions between the immune system 

and kidney cells in the context of DN. The correlation 

between key genes and specific immune cell 

populations suggests that disulfidptosis might also 

influence the immune landscape in DN, an aspect that 

warrants further exploration. Understanding how 

disulfidptosis affects immune cell behavior could 

provide insights into the inflammatory processes in DN 

and reveal new targets for modulating the immune 

response to slow disease progression. 

 

Our PCR validation of model genes in clinical 

samples reinforces the relevance of these genes in 

DN, supporting their potential as biomarkers for 

disease detection and monitoring. The down-

regulation of genes such as VEGFA, MAGI2, 

THSD7A, and ANKRD28 in DN samples aligns with 

the notion that disulfidptosis and its associated 

molecular pathways are intricately involved in the 

pathogenesis of DN. 

 

This study is not without limitations. While it provides a 

comprehensive analysis of disulfidptosis in DN, the 

mechanisms by which disulfidptosis contributes to 

kidney damage remain to be fully elucidated. Future 

studies should aim to unravel the molecular events 

leading to disulfidptosis in kidney cells and explore the 

therapeutic potential of modulating this process. 

Additionally, the translational impact of our findings 

would benefit from validation in larger cohorts and 

through experimental models that can mimic the 

complexity of DN. 

 

 
 

Figure 7. Gene expression analysis and PCR validation. (A) Expression analysis of the four model genes in the GSE30122 cohort, 

showing down-regulation in DN samples. (B–E) PCR validation results confirming the reduced expression levels of VEGFA, MAGI2, THSD7A, 
and ANKRD28 in DN compared to control blood samples, supporting their potential as diagnostic biomarkers. (*p < 0.05, ***p < 0.001). 
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CONCLUSIONS 
 

In conclusion, our study represents a significant 

advance in the understanding of DN pathogenesis, 

highlighting the role of disulfidptosis in the disease 

process. By integrating cutting-edge genomic analysis 

techniques, we have identified potential biomarkers and 

therapeutic targets that pave the way for novel 

diagnostic and treatment strategies. The findings 

underscore the importance of exploring new forms of 

programmed cell death in chronic diseases and open up 

new avenues for research into the cellular mechanisms 

of DN. As we continue to unravel the complexities of 

DN, the insights gained from this study will 

undoubtedly contribute to the development of more 

effective approaches to manage this challenging 

condition, ultimately improving patient outcomes. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Supplementary Table 1. Disulfidptosis-related genes. 

Disulfidptosis 

FLNA 

FLNB 

MYH9 

TLN1 

ACTB 

MYL6 

MYH10 

CAPZB 

DSTN 

IQGAP1 

ACTN4 

PDLIM1 

CD2AP 

INF2 

SLC7A11 

SLC3A2 

RPN1 

NCKAP1 

NUBPL 

NDUFA11 

LRPPRC 

OXSM 

NDUFS1 

GYS1 

 

 

Supplementary Table 2. PCR primer sequence. 

 The primer sequence 

VEGFA 
Forward ACAACAAATGTGAATGCAGACCA 

Reverse GAGGCTCCAGGGCATTAGAC 

MAGI2 
Forward CCAGGTTTCCGAGAAAAACCA 

Reverse CTCATCAGGCTCGTCTCCAC 

THSD7A 
Forward GGAGTGGTGTGAAGGTTCGT 

Reverse CCTCATACACCTGTGCCTGG 

ANKRD28 
Forward TCACAGAACTGGCATGAACCT 

Reverse GCACCAGTGATGGCAGAGAT 

 

 


