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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is one of the leading 

causes of global cancer-related mortality, constituting a 

significant portion of liver cancer cases. According to 

the World Health Organization, there are over 840,000 

newly diagnosed cases of liver cancer globally each 

year, with approximately 780,000 deaths, highlighting 

the persistently high mortality and incidence rates of 

liver cancer. Particularly in East Asia and Africa, where 

the prevalence of hepatitis virus infections is high, the 

incidence of HCC remains elevated [1–3]. The 

symptoms of liver cancer in the early stages are often 

subtle, leading to the late detection of many patients who 

miss the optimal window for surgical intervention. The 

choice of treatment strategies such as surgical resection, 

radiofrequency ablation, or liver transplantation is often 

constrained by tumor size, quantity, location, and the 

patient’s liver function. While these treatment modalities 

achieve partial efficacy, the overall cure rate is 

suboptimal due to significant surgical trauma, potential 

postoperative complications, and high rates of lesion 

recurrence [4, 5]. For advanced-stage liver cancer 

patients opting for targeted therapies such as sorafenib, 

regorafenib, and cabozantinib, although these treatments 

extend survival and improve quality of life, they fail to 
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ABSTRACT 
 

In recent years, the detection and analysis of circulating tumor DNA (ctDNA) have emerged as a new focus in 
the field of cancer research, particularly in the early diagnosis of hepatocellular carcinoma (HCC) and 
monitoring of therapeutic efficacy. ctDNA, which refers to cell-free DNA fragments released into the 
bloodstream from tumor cells upon cell death or shedding, carries tumor-specific genetic and epigenetic 
alterations, thereby providing a non-invasive approach for cancer diagnosis and prognosis. The concentration of 
ctDNA in the blood is higher compared to that in healthy individuals or other liquid biopsies from early-stage 
cancers, which is closely associated with the early diagnosis and comprehensive sequencing studies of HCC. 
Recent studies have indicated that sequential ctDNA analysis in patients receiving primary or adjuvant therapy 
for HCC can detect treatment resistance and recurrence before visible morphological changes in the tumor, 
making it a valuable basis for rapid adjustment of treatment strategies. However, this technology is 
continuously being optimized and improved. Challenges such as enhancing the accuracy of ctDNA sequencing 
tests, reducing the burden of high-throughput sequencing on a large number of samples, and controlling 
variables in the assessment of the relationship between ctDNA concentration and tumor burden, need to be 
addressed. Overall, despite the existing challenges, the examination and analysis of ctDNA have opened up new 
avenues for early diagnosis and therapeutic efficacy monitoring in hepatocellular carcinoma, expanding the 
horizons of this field. 

www.aging-us.com AGING 2024, Vol. 16, No. 14

11460

https://www.aging-us.com


www.aging-us.com 2 AGING 

completely eliminate lesions and are plagued by issues 

of drug resistance [6–8]. In recent years, there has been 

an increasing emphasis on early diagnosis and 

therapeutic efficacy monitoring in liver cancer. 

Conventional imaging studies and the measurement of 

tumor markers such as AFP (Alpha-fetoprotein), CA125 

(Cancer Antigen 125), and CA19-9 remain the 

mainstays of liver cancer diagnosis. However, the 

sensitivity and specificity of these methods are 

significantly limited, failing to meet the demands for 

early, reliable, and accurate liver cancer diagnosis  

[9, 10]. Moreover, traditional monitoring methods, such 

as repetitive imaging examinations, often fall short in 

detecting minuscule recurrent lesions. Assessing 

treatment effectiveness typically requires a waiting 

period for confirmation through imaging or biochemical 

markers, which may lead to disease progression or the 

persistence of ineffective treatment strategies [11–13]. 

Therefore, the exploration of new diagnostic and 

therapeutic approaches for hepatocellular carcinoma 

holds paramount clinical significance. 

 

Circulating tumor DNA (ctDNA) comprises fragments 

of tumor-derived DNA released into the bloodstream 

upon tumor cell death. These fragments offer insights 

into the genomic status and dynamic alterations of the 

tumor [14, 15]. In contrast to conventional tissue 

biopsies, ctDNA analysis presents a non-invasive 

avenue for monitoring the epigenetic traits of tumors, 

encompassing mutations, copy number variations, and 

methylation patterns [16–18]. This analytical approach 

not only serves in early screening and diagnosis but also 

facilitates the assessment of therapeutic efficacy and the 

prediction of disease recurrence during the treatment 

process [19, 20]. In tumors, the generation of ctDNA 

primarily involves the processes of apoptosis and 

necrosis of tumor cells. When tumor cells die, their 

DNA is released into the bloodstream, forming ctDNA. 

Additionally, active tumor cells can also release DNA 

through the secretion of small vesicles, further 

increasing the concentration of ctDNA in the blood  

[21, 22]. Research has revealed that ctDNA can serve as 

a biomarker for early diagnosis and screening of cancers 

such as colorectal cancer and non-small cell lung 

cancer, and it can be detected before the onset of 

relevant clinical symptoms [23, 24]. Therefore, the 

detection and analysis of ctDNA can provide molecular 

characteristic information of the tumor, contributing to 

early cancer diagnosis and monitoring of therapeutic 

efficacy [25]. 

 

In recent years, significant progress has been made in  

the study of circulating tumor DNA (ctDNA) with  
the development of high-throughput sequencing 

technologies. The analysis of mutation information in 

ctDNA allows for early cancer diagnosis and monitoring 

of therapeutic efficacy. Furthermore, the Tagged-

Amplicon Deep Sequencing (TAm-Seq) method has 

been demonstrated as a viable approach for non-

invasively identifying gene mutations in blood, capable 

of amplifying and sequencing large genomic regions, 

even from a single copy of ctDNA. This method enables 

the detection of low-frequency mutations, including 

those in cancer-associated genes such as TP53, EGFR, 

BRAF, and KRAS [26]. Analysis of mutation sites in 

ctDNA can also unveil the molecular mechanisms 

underlying tumor resistance to therapy, thereby 

providing a basis for developing novel treatment 

strategies [27]. Moreover, ctDNA can be utilized to 

detect the presence of residual tumor cells post-surgery 

or radiation therapy, which holds significant importance 

in predicting tumor recurrence and guiding subsequent 

treatment [28, 29]. 

 

During the apoptosis process of tumor cells, DNA is 

fragmented by enzymes and released into the surrounding 

environment. Additionally, the necrosis of tumor cells 

can lead to the release of a large amount of DNA into the 

bloodstream. These released DNA fragments undergo a 

series of modifications and stabilization processes to 

form ctDNA. Researchers have also found that factors 

such as inflammation and angiogenesis in the tumor 

microenvironment may influence the release and 

circulation of ctDNA. In recent years, numerous studies 

have demonstrated the potential of ctDNA mutation 

analysis in early diagnosis of HCC [30, 31]. Researchers 

have discovered the presence of common hepatocellular 

carcinoma (HCC)-associated gene mutations, such as 

TP53, CTNNB1, and AXIN1, in blood samples from 

HCC patients [32–34]. These mutations play crucial roles 

in the occurrence and progression of HCC. Moreover, 

analysis of ctDNA in the blood samples of 77.3% of 

HCC patients undergoing anti-PD-1 therapy revealed the 

presence of >1 genetic alterations, with TP53 being the 

most common mutated gene, observed in 11 patients 

[35]. Evaluation of ctDNA mutations can not only be 

utilized for early screening of HCC but also serves as a 

vital tool for treatment selection and efficacy monitoring. 

Specific mutations in ctDNA, such as specific 

deletions/insertions in the EZH2 gene, can assess the 

efficacy of chemotherapy in gastric cancer. Similarly, the 

association between the detection of IDH1 mutations and 

clinical response offers a new perspective on the 

treatment of intrahepatic cholangiocarcinoma (IHC). 

Furthermore, monitoring the mutation spectrum of 

ctDNA aids in evaluating the diagnostic efficacy of early 

to intermediate stage non-small cell lung cancer 

(NSCLC) patients and correlates with tumor size and 

clinical staging [36]. 
 

In this review, we summarized the current understanding 

of the molecular mechanisms and clinical applications of 
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ctDNA mutation in the occurrence and development of 

hepatocellular carcinoma, with a focus on its value in 

early diagnosis and monitoring therapeutic efficacy. 

 

ctDNA mutation analysis techniques 
 

The mutation analysis of circulating tumor DNA 

(ctDNA) is an important non-invasive detection 

method that can be used for early diagnosis and 

monitoring therapeutic efficacy in hepatocellular 

carcinoma (HCC) [37, 38]. Over the past few years, 

significant improvements and innovations have been 

made in ctDNA mutation analysis methods along with 

technological advancements. This section will focus 

on the collection and extraction methods of ctDNA, as 

well as commonly used ctDNA mutation analysis 

techniques, including next-generation sequencing 

(NGS), digital PCR, and TAm-Seq techniques. 

 

Blood sample collection is one of the most commonly 

used methods for ctDNA collection [39]. ctDNA 

extraction methods primarily include nucleic acid 

extraction and ctDNA enrichment. Nucleic acid 

extraction involves extracting total DNA from plasma 

or serum, including DNA released from both normal 

and tumor cells. Common nucleic acid extraction 

methods include commercial DNA extraction kits and 

magnetic bead-based methods. On the other hand, 

ctDNA enrichment methods involve enriching ctDNA 

from total DNA using specific techniques to enhance 

detection sensitivity. Presently, methods for ctDNA 

enrichment primarily comprise Single-Strand Binding 

Polymerase Chain Reaction (SSB-PCR), probe 

detection systems based on the IV endonuclease, rolling 

circle amplification technology, digital PCR, hybrid 

capture methods, and detection using internal reference 

nucleic acid probes, as detailed in Table 1. 

 

Next-generation sequencing (NGS) is a high-throughput 

sequencing technology that allows simultaneous analysis 

of mutations in multiple genes. The advantages of NGS 

lie in its high sensitivity and specificity, enabling the 

detection of low-frequency mutations [40]. In the 

analysis of ctDNA mutations, NGS can be employed for 

whole exome sequencing, targeted gene sequencing, and 

quantitative analysis of mutation sites. Through NGS 

technology, a comprehensive understanding of the tumor 

mutation profile can be achieved, providing a basis for 

personalized therapy [41, 42]. Research has shown that 

Next-Generation Sequencing (NGS) can detect ctDNA 

mutations with allele frequencies as low as 0.1% and has 

been successfully applied in ctDNA analysis for various 

cancer types, including lung cancer, gastric cancer, and 
intrahepatic cholangiocarcinoma (ICC) [43]. The 

application of NGS extends beyond the detection of 

mutations in single genes, encompassing extensive 

analysis of the entire genome or specific gene regions, 

thereby uncovering more potential therapeutic targets 

[44]. Digital PCR (dPCR) is a PCR technology based  

on the principle of molecular counting, facilitating 

quantitative analysis of mutation sites in ctDNA. 

Compared to traditional quantitative PCR techniques, 

dPCR exhibits higher sensitivity and accuracy. In 

ctDNA mutation analysis, dPCR can be utilized to detect 

low-frequency mutations and assess mutation burden. 

dPCR has been demonstrated to exhibit good accuracy 

and sensitivity in detecting specific mutations such as 

KRAS G12D, TP53 C242S, and IDH1 R132C. 

Additionally, dPCR has been utilized in the development 

of a novel 5-plex copy number droplet digital PCR 

(ddPCR) detection platform targeting BRAF or CCND1 

copy number amplifications, enhancing the monitoring 

capabilities for resistance mechanisms [45]. With dPCR 

technology, precise quantification of ctDNA mutations 

can be achieved, offering more accurate results for early 

diagnosis and treatment monitoring of hepatocellular 

carcinoma [46]. Tagged-amplicon deep sequencing 

(TAm-Seq) is a deep sequencing method specifically 

designed for ctDNA, capable of identifying single-copy 

ctDNA fragments at extremely low allele frequencies. 

This technology has been applied in ctDNA analysis for 

various cancers, including high-grade serous ovarian 

cancer, successfully identifying low-level TP53 

mutations and mutations in other key genes [47, 48]. An 

improved version of TAm-Seq further enhances its 

ability to detect low-level mutations, making it a crucial 

tool for monitoring disease progression and treatment 

response. A comparison of the advantages and 

disadvantages of three ctDNA mutation analysis 

techniques is provided in Table 2. 
 

In conclusion, ctDNA mutation analysis techniques 

hold significant value in the early diagnosis and 

treatment monitoring of HCC. The collection and 

extraction methods for ctDNA, along with commonly 

used mutation analysis technologies such as next-

generation sequencing (NGS), digital PCR (dPCR), and 

Tagged-amplicon deep sequencing (TAm-Seq), serve as 

reliable tools for ctDNA mutation analysis. As 

technology continues to advance and research deepens, 

ctDNA mutation analysis techniques are poised to 

further propel the progress of early diagnosis and 

treatment monitoring for HCC. They will provide more 

precise guidance for personalized therapy. 

 

The application of ctDNA mutation analysis in 

early diagnosis of hepatocellular carcinoma 
 

In recent years, the analysis of circulating tumor DNA 

(ctDNA) mutations has emerged as a promising non-

invasive detection method, providing new opportunities 

for the early diagnosis of HCC. This section will focus 
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Table 1. Comparison of ctDNA enrichment methods. 

Method Principle Advantages Reference 

SSB-PCR 

Specific inhibition chains and primers are 

designed to selectively enrich low-abundance 

short DNA strands. 

Effective differentiation of fetal wild-type 

homozygous short DNA, heterozygous short 

DNA, and mutant homozygous short DNA 

even at abundances as low as 2%. 

[49, 50] 

Probe detection 

based on IV 

endonuclease 

Utilizes the ability of the IV endonuclease to 

recognize probe vacancies and cleave them, 

enabling simultaneous detection of multiple 

mutations at inconsistent detection temperatures 

through specific probe designs. 

Effective discrimination between wild-type 

DNA and mutant DNA, with effective 

discrimination among 6 mismatches, 

demonstrating good universality and accuracy. 

[51] 

Rolling circle 

amplification (RCA) 

Under the action of polymerases with strand 

displacement properties, amplification is 

consistently performed using the initial circular 

DNA as a template, ensuring that errors 

generated in each round of amplification are not 

passed on to the next round. 

Capable of enriching trace amounts of cfDNA 

and amplifying the frequency of low-

frequency mutations in ctDNA in allelic 

genes. 

[52] 

Digital PCR (dPCR) 

and hybrid capture 

Enriches target DNA by specific probes or 

antibodies binding to the target DNA sequence, 

demonstrating superior performance in target 

enrichment, especially in coverage of target 

sites across all samples. 

Demonstrates superior performance in target 

enrichment, especially in coverage of target 

sites across all samples. 
[53, 54] 

Detection using 

internal reference 

probes 

Constructs self-sequences as references, 

unaffected by irrelevant sequences, capable of 

effectively distinguishing between wild-type 

and mutant DNA. 

Enables quantitative detection of mutation 

abundance at different concentrations, 

demonstrating good quantitative limits and 

accuracy. 

[55, 56] 

 

Table 2. Comparison of advantages and disadvantages of ctDNA mutation analysis techniques. 

Analysis technique Principle Advantages Disadvantages 

NGS (Next-

Generation 

Sequencing) 

Utilizes high-throughput 

sequencing technology to 

analyze ctDNA for detecting 

tumor mutations. 

Relatively low cost, wide 

coverage range; simultaneous 

detection of multiple genes and 

mutation types; easy operation, 

suitable for large-scale sample 

analysis [57]. 

Detection sensitivity limited  

by ctDNA abundance;  

limited ability to detect low-

frequency mutations; requires 

complex bioinformatics 

analysis to interpret  

results [58, 59]. 

Digital PCR (dPCR) 

Divides samples into 

thousands of microreaction 

units, where PCR 

amplification and 

fluorescence-labeled probe 

detection are independently 

performed in each unit, 

achieving high sensitivity and 

specificity for specific 

mutations. 

High sensitivity and specificity; 

capable of detecting extremely 

low abundance of ctDNA; high 

accuracy, suitable for Minimal 

Residual Disease (MRD) 

detection. 

High equipment cost; complex 

sample preparation process; 

requires high technical 

expertise from operators [60]. 

TAm-Seq (Tagged-

Amplicon Deep 

Sequencing) 

Amplifies target regions in 

ctDNA using specific primers 

designed, followed by 

analysis of these amplicons 

using deep sequencing 

technology to identify low-

frequency mutations. 

Capable of detecting mutations 

with allele frequencies as low as 

0.1%; high sensitivity for single-

copy ctDNA; provides abundant 

variant information in a short time 

[48]. 

Requires design and 

optimization of primers for 

different tumor types and gene 

loci; may still have detection 

limitations for extremely low 

abundance of ctDNA or 

specific types of mutations; 

relatively high cost. 
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on the selection and validation of ctDNA mutation 

markers, a comparison between ctDNA mutation 

analysis and traditional diagnostic methods, and the 

clinical application of ctDNA mutation analysis in early 

HCC diagnosis through case studies. 

 

The selection and validation of ctDNA mutation 

markers are critical steps in early diagnosis of  

HCC. Analysis of mutation sites in ctDNA allows for 

the identification of mutated genes and mutation 

frequencies associated with HCC [61, 62]. Currently, 

numerous studies have identified ctDNA mutation 

markers associated with HCC, such as TP53, CTNNB1, 

AXIN1, and others [32–34], as shown in Table 3. 

 

The TP53 gene encodes the p53 protein, a tumor 

suppressor protein capable of inhibiting tumor 

development by inducing apoptosis or halting cell cycle 

progression. TP53 mutations typically result in loss of 

p53 function, thereby promoting proliferation and 

survival of tumor cells, increasing malignancy and 

metastatic risk [63]. Studies have shown that TP53 

mutations are commonly present in non-small cell lung 

cancer (NSCLC) and are closely associated with patient 

prognosis. Additionally, TP53 mutations may also 

affect patient response to certain treatments such as 

radiation therapy and chemotherapy [64]. Furthermore, 

the CTNNB1 gene encodes β-catenin, a cytoskeletal 

protein involved in regulating the Wnt signaling 

pathway. CTNNB1 mutations may lead to aberrant 

activation of the Wnt signaling pathway, promoting 

proliferation, invasion, and metastasis of tumor cells. 

However, current research evidence regarding the 

specific role and clinical significance of CTNNB1 

mutations in HCC is relatively limited. The KRAS gene 

encodes a small G protein involved in various cell 

signaling pathways, including the insulin-like growth 

factor-1 (IGF-1) and epidermal growth factor (EGF) 

signaling pathways. KRAS mutations mainly occur in 

codons 12 and 13 of exon 2, leading to sustained 

activation of the KRAS protein, promoting 

proliferation, invasion, and angiogenesis of tumor cells. 

KRAS mutations are considered significant adverse 

prognostic markers in tumors such as colorectal cancer 

(CRC) and NSCLC [65]. Additionally, KRAS 

mutations directly impact patient response to anti-EGFR 

therapy [66]. 

 

The clinical significance of TP53, CTNNB1, and KRAS 

gene mutations in HCC patients mainly manifests in 

their influence on tumor biology, predictive value for 

treatment response, and impact on prognosis, as 

depicted in Figure 1. The specific mechanisms of action 
of these gene mutations suggest the importance of 

personalized treatment strategies and also offer the 

potential for the development of new therapeutic 

targets. Future research needs to further explore the 

mechanisms of action of these gene mutations in 

different subtypes of HCC and their impact on treatment 

outcomes, aiming to provide more precise treatment 

options for HCC patients. 

 

Compared to traditional diagnostic methods, ctDNA 

mutation analysis offers several advantages. Firstly, 

ctDNA mutation analysis is a non-invasive detection 

method that only requires a blood sample from patients, 

avoiding the trauma and risks associated with traditional 

tissue biopsies. Secondly, ctDNA mutation analysis 

exhibits high sensitivity and specificity, enabling the 

detection of low levels of tumor DNA and accurate 

diagnosis even at early stages of the disease. 

Additionally, ctDNA mutation analysis can provide 

genetic information about the tumor, such as mutation 

burden and mutation profile, which can guide 

personalized therapy [67, 68]. In comparison to 

traditional tumor markers such as AFP, ctDNA 

mutation analysis demonstrates higher sensitivity and 

specificity in early diagnosis of HCC. A study 

comparing ctDNA mutation analysis with AFP in early 

HCC diagnosis showed that the sensitivity and 

specificity of ctDNA mutation analysis were 85% and 

92% respectively, while AFP exhibited sensitivity and 

specificity of 60% and 80% respectively. This indicates 

that ctDNA mutation analysis can provide more 

accurate and reliable early diagnosis results [69, 70]. 

 

A study analyzing the ctDNA mutation profile of 100 

HCC patients identified several mutated genes associated 

with HCC, such as TP53, CTNNB1, and AXIN1 [71]. 

Another study found that ctDNA mutation burden in the 

blood sample of HCC patients was closely related to 

tumor size, staging, and prognosis, indicating that ctDNA 

mutation analysis could be used to evaluate patients’ 

prognosis and treatment response [72]. In addition to 

early diagnosis, ctDNA mutation analysis can also be 

utilized to monitor HCC patients’ treatment efficacy. A 

study analyzing the changes in ctDNA mutation burden 

after HCC patients received radiation therapy or targeted 

treatments found that the reduction of mutation burden 

was closely related to treatment response and survival 

rate improvement. This indicates that ctDNA mutation 

analysis could be used to evaluate treatment efficacy and 

predict the risk of recurrence [73, 74]. 

 

Therefore, as an emerging, non-invasive detection 

method, ctDNA mutation analysis shows great potential 

in early diagnosis of HCC. Through the selection and 

validation of ctDNA mutation markers, accurate 

guidance for individualized treatment and early 
diagnosis of HCC can be achieved. Clinical studies have 

already confirmed the potential of ctDNA mutation 

analysis in early diagnosis and treatment monitoring of 
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Table 3. Functional description of ctDNA mutation markers associated with HCC. 

ctDNA Function Source Reference 

TERT Promoter 

Mutations 

Promote cellular proliferation and avoid senescence, associated with HCC 

development 
Hepatocytes [75, 76] 

TP53 Mutations Regulate cell cycle, DNA repair, and apoptosis 
Hepatocytes and 

surrounding tissues 
[32, 77] 

CTNNB1 Mutations Control cell adhesion and signaling, associated with HCC development Hepatocytes [32, 78, 79] 

ARID1A Mutations 
Involved in chromatin remodeling and gene expression regulation, related 

to liver carcinogenesis 
Hepatocytes [80] 

PIK3CA Mutations 
Activate signaling pathways for cell growth and survival, implicated in 

HCC 
Hepatocytes [81, 82] 

RAS Mutations 
Involved in cell signaling pathways that control cell growth, mutations 

often found in HCC 
Hepatocytes [83, 84] 

ALB-Fusions 
Abnormal albumin gene fusions, unique to liver cancer and can be used as a 

biomarker 
Hepatocytes [85] 

APOB Mutations 
A pattern of mutations suggesting activity of APOBEC cytidine deaminases, 

which can contribute to cancer genome mutations 

Hepatocytes and 

immune cells 
[86] 

 

HCC. With ongoing development of technology and 

research, ctDNA mutation analysis will provide more 

accurate and reliable methods for early diagnosis and 

treatment monitoring of HCC. 

 

Application of ctDNA mutation analysis in 

treatment monitoring of hepatocellular carci-

noma 
 

Treatment monitoring is crucial for clinical decision-

making in HCC, as it plays a significant role in 

evaluating treatment efficacy, guiding subsequent 

treatment strategies, and predicting patient prognosis 

[87]. The latest advancements in ctDNA mutation 

assessment in monitoring the therapeutic efficacy of 

HCC primarily encompass its significance as a tumor 

biomarker, its application in immunotherapy, its 

relationship with hepatocellular carcinoma, and its 

potential in treatment response monitoring. These 

advancements offer new perspectives and approaches 

for the diagnosis, treatment, and prognosis assessment 

of HCC. This section will focus on the association 

 

 
 

Figure 1. ctDNA mutation markers associated with HCC. 
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between ctDNA mutation burden and treatment 

response, the application of ctDNA mutation analysis in 

targeted therapies, and its utilization in radiation therapy 

and chemotherapy. 

 

The ctDNA mutation burden refers to the quantity and 

frequency of mutation sites in ctDNA. Studies indicate 

a close correlation between ctDNA mutation burden 

and tumor size, staging, and prognosis. During the 

course of hepatocellular carcinoma (HCC) treatment, 

changes in ctDNA mutation burden can reflect 

treatment efficacy and predict the risk of recurrence 

[88]. An analysis of HCC patients undergoing 

radiation therapy or targeted treatment revealed a 

significant correlation between the reduction in 

mutation burden and improved treatment response and 

survival rates [89]. This suggests that ctDNA mutation 

burden serves as a crucial indicator for evaluating 

treatment efficacy. 

 
Targeted therapy is a treatment method directed at 

specific molecular targets, aiming to enhance treatment 

efficacy and reduce side effects. The application  

of ctDNA mutation analysis in targeted therapy can 

assist in selecting suitable targeted drugs and 

monitoring treatment efficacy. By analyzing mutation 

sites in ctDNA, the mutational spectrum of HCC 

patients and the targets for targeted therapy can be 

identified. A study revealed a close correlation 

between EGFR mutations in HCC patients and 

sensitivity to targeted therapy. Through ctDNA 

mutation analysis, patients with EGFR-positive 

mutations can be identified and appropriate targeted 

drugs can be selected for treatment [90]. Another study 

found a close correlation between BRAF mutations  

in HCC patients and sensitivity to targeted therapy. 

Through ctDNA mutation analysis, patients with 

BRAF-positive mutations can be identified, and 

suitable targeted drugs can be selected for treatment 

[91]. Radiation therapy and chemotherapy are common 

treatment methods for HCC, but there are limitations 

in monitoring their efficacy. The application of  

ctDNA mutation analysis in radiation therapy and 

chemotherapy can provide more accurate and dynamic 

information on treatment efficacy. An analysis of  

HCC patients undergoing radiation therapy revealed  

a significant correlation between the reduction in 

mutation burden and improved treatment response  

and survival rates [92]. This indicates that ctDNA 

mutation analysis can be utilized to assess the efficacy 

of radiation therapy and predict the risk of recurrence. 

Another study found a significant correlation between 

the reduction in ctDNA mutation burden and improved 

treatment response and survival rates in HCC patients 

undergoing chemotherapy, further confirming the value 

of ctDNA mutation analysis in chemotherapy [93]. 

In summary, ctDNA mutation analysis, as an emerging 

non-invasive detection method, demonstrates significant 

potential in the monitoring of treatment efficacy for 

hepatocellular carcinoma (HCC). The association 

between ctDNA mutation burden and treatment 

response suggests that analyzing mutation sites in 

ctDNA can assess treatment efficacy and predict the 

risk of recurrence. In targeted therapy, ctDNA mutation 

analysis can assist in selecting suitable targeted drugs 

and monitoring treatment effectiveness. In radiation 

therapy and chemotherapy, ctDNA mutation analysis 

can offer more accurate and dynamic information on 

treatment efficacy. As technology continues to advance 

and research deepens, ctDNA mutation analysis will 

provide more accurate and reliable methods for 

monitoring the treatment efficacy of HCC, offering 

precise guidance for personalized treatment. 

 

Challenges and future development of ctDNA 

mutation analysis 
 

As the application of circulating tumor DNA (ctDNA) 

mutation analysis in the early diagnosis and monitoring 

of treatment efficacy for hepatocellular carcinoma 

(HCC) continues to develop, some challenges and 

future development directions are gradually emerging. 

This section will focus on the improvement of detection 

sensitivity and specificity of ctDNA, standardization 

and calibration of ctDNA mutation analysis, the 

combined use of ctDNA mutation analysis with other 

biomarkers, and the prospects of ctDNA mutation 

analysis in personalized treatment. 

 

In the analysis of ctDNA mutations, the key metrics are 

the detection sensitivity and specificity [94]. Despite 

notable progress to date, several challenges persist. 

Firstly, due to the extremely low abundance of ctDNA in 

blood, the development of more sensitive detection 

methods is imperative to enhance sensitivity. Secondly, 

given the sequence similarity between ctDNA and 

normal cell DNA, there is a need to further improve 

specificity to prevent misdiagnosis and errors in 

judgment. Future research endeavors may explore 

innovative technologies and approaches, such as 

amplifying the signal of ctDNA, increasing sequencing 

depth, and utilizing more specific mutation markers, to 

enhance the sensitivity and specificity of ctDNA 

detection. Standardization and calibration of ctDNA 

mutation analysis are crucial for ensuring accuracy and 

reproducibility. Standardized methods and procedures 

need to be established, as the lack of uniformity in 

experimental conditions and analytical methods across 

different laboratories and research teams has resulted in 
poor comparability and consistency of results [25, 62]. 

Therefore, the establishment of a unified standardization 

and calibration approach is paramount. This includes 

11466



www.aging-us.com 8 AGING 

standardizing the collection, processing, and storage of 

samples, as well as experiment conditions and analytical 

procedures. Additionally, the creation of reference 

standards and a quality control system is essential. 

Through standardization and calibration, the reliability 

and reproducibility of ctDNA mutation analysis can be 

enhanced, providing more dependable results for clinical 

applications. 

 

The combined application of ctDNA mutation analysis 

with other biomarkers holds the potential to further 

enhance the accuracy and reliability of early diagnosis 

and treatment monitoring for hepatocellular carcinoma 

(HCC). For instance, incorporating serum markers 

such as alpha-fetoprotein (AFP) and hepatocellular 

carcinoma-related antigen (HCC-RA) can improve the 

sensitivity and specificity of early diagnosis [95]. 

Additionally, integrating imaging modalities such as 

ultrasound, CT, and MRI can provide a more 

comprehensive overview of tumor information [96]. 

Future research endeavors should explore the 

synergistic use of ctDNA mutation analysis with other 

biomarkers to elevate the accuracy and reliability of 

diagnosing and monitoring the treatment efficacy of 

hepatocellular carcinoma. The prospect of ctDNA 

mutation analysis in personalized therapy lies in 

tailoring treatment plans based on individual patient 

differences and the genetic characteristics of tumors. 

By providing genetic information about the tumor, 

such as mutation load and mutational lineage, ctDNA 

mutation analysis serves as a foundation for 

personalized treatment decisions. Analyzing mutation 

sites in ctDNA allows for the identification of 

mutational lineages and targets for targeted therapy. 

Future studies can further investigate the application of 

ctDNA mutation analysis in personalized therapy, 

including the selection of appropriate targeted drugs, 

monitoring treatment effectiveness, and predicting 

patient prognosis. 

 

In summary, ctDNA mutation analysis has made 

significant progress in the early diagnosis and treatment 

monitoring of hepatocellular carcinoma (HCC). 

However, several challenges and future directions exist. 

These include improving the detection sensitivity and 

specificity of ctDNA, standardizing and calibrating the 

methods and procedures for ctDNA mutation analysis, 

exploring the combined application of ctDNA mutation 

analysis with other biomarkers, and further leveraging 

the role of ctDNA mutation analysis in personalized 

therapy. With the continuous advancement of 

technology and deeper research, it is believed that 

ctDNA mutation analysis will provide more accurate 
and reliable methods for the early diagnosis and 

treatment monitoring of HCC, offering more precise 

guidance for personalized therapy. 

CONCLUSION 
 

ctDNA mutation analysis holds significant value in the 

early diagnosis of hepatocellular carcinoma (HCC). Early 

diagnosis has been a massive challenge due to the hidden 

nature and lack of specific symptoms of HCC. However, 

as a non-invasive detection method, ctDNA mutation 

analysis can achieve early diagnosis by analyzing 

mutation sites in ctDNA. By screening and validating 

ctDNA mutation markers, it is possible to identify HCC-

related mutated genes and mutation frequencies, thereby 

enhancing the accuracy and reliability of early diagnosis. 

Additionally, ctDNA mutation analysis has important 

applications in monitoring the treatment efficacy of 

hepatocellular carcinoma. Treatment monitoring is vital 

for assessing treatment responses, guiding subsequent 

treatment strategies, and predicting patient prognosis. By 

analyzing changes in ctDNA mutation load, treatment 

effectiveness can be evaluated, and the risk of recurrence 

can be predicted. Research indicates a close correlation 

between a decrease in ctDNA mutation load and 

improved treatment response and survival rates. 

Therefore, ctDNA mutation analysis can serve as a non-

invasive monitoring method, providing more accurate 

and reliable results for the treatment monitoring of 

hepatocellular carcinoma. 

 

Furthermore, future research directions and prospects 

are worth considering. Firstly, there is a need to further 

improve the detection sensitivity and specificity of 

ctDNA mutation analysis to enhance the accuracy of 

early diagnosis and treatment monitoring. Secondly, 

standardized methods and procedures need to be 

established to ensure the reliability and reproducibility 

of ctDNA mutation analysis. Additionally, exploring the 

combined application of ctDNA mutation analysis with 

other biomarkers can enhance the accuracy and 

reliability of the diagnosis and treatment monitoring of 

hepatocellular carcinoma. Lastly, ctDNA mutation 

analysis has potential in personalized therapy, enabling 

the selection of the most suitable treatment plan based 

on individual patient differences and the genetic 

characteristics of tumors. 

 

In summary, ctDNA mutation analysis holds significant 

value in the early diagnosis and treatment monitoring of 

hepatocellular carcinoma (HCC). By improving the 

accuracy and reliability of early diagnosis, as well as 

evaluating treatment effectiveness and predicting patient 

prognosis, ctDNA mutation analysis can provide more 

precise personalized treatment guidance for HCC 

patients. Future research efforts should focus on further 

advancing the technology and methods of ctDNA 

mutation analysis, promoting its clinical application, and 

strengthening multi-center collaboration and large-

sample studies to validate its potential in the early 
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diagnosis and treatment monitoring of HCC. It is 

believed that with continuous technological advancements 

and in-depth research, ctDNA mutation analysis will 

provide more accurate and reliable methods for the early 

diagnosis and treatment monitoring of HCC, leading to a 

significant improvement in patient survival rates and 

quality of life. 
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