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INTRODUCTION 
 

Over the past decade, there has been a significant rise in 

the incidence of endometrial cancer (EC), making it one 

of the prominent gynecological malignancies among the 

three major types [1]. While 67% of patients are 

diagnosed with early-stage disease, resulting in an 81% 

5-year overall survival (OS), the prognosis for those 

with stage IVA and IVB EC is considerably poorer, 

with 5-year OS rates of only 17% and 15%, respectively 

[2]. In 2020, there were a reported 417,367 newly 

diagnosed cases of EC worldwide, resulting in an 

estimated 97,370 deaths related to this cancer [3]. Prior 

research has shown that approximately 70% of 

endometrial cancer (EC) cases are diagnosed in 

postmenopausal women, while 15% of cases are found 

in premenopausal women [4]. Ultrasonography is a 

frequently employed method for the initial screening 

of EC, while magnetic resonance imaging (MRI) is 

considered the gold standard for preoperative 

pathological staging. The earliest sign of EC is 

abnormal vaginal bleeding [5]. The conventional 

treatment for EC involves a standard procedure, which 

includes hysterectomy and bilateral salpingo-
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ABSTRACT 
 

Endometrial cancer (EC) is a fatal gynecologic tumor. Bioinformatic tools are increasingly developed to screen 
out molecular targets related to EC. Our study aimed to identify stemness-related prognostic biomarkers for 
new therapeutic strategies in EC. In this study, we explored the prognostic value of cancer stem cells (CSCs), 
characterized by self-renewal and unlimited proliferation, and its correlation with immune infiltrates in EC. 
Transcriptome and somatic mutation profiles of EC were downloaded from TCGA database. Based on their 
stemness signature and DEGs, EC patients were divided into two subtypes via consensus clustering, and 
patients in Stemness Subtype I presented significantly better OS and DFS than Stemness Subtype II. Subtype I 
also displayed better clinicopathological features, and genomic variations demonstrated different somatic 
mutation from subtype II. Additionally, two stemness subtypes had distinct tumor immune microenvironment 
patterns. In the end, three machine learning algorithms were applied to construct a 7-gene stemness subtype 
risk model, which were further validated in an external independent EC cohort in our hospital. This novel 
stemness-based classification could provide a promising prognostic predictor for EC and may guide physicians in 
selecting potential responders for preferential use of immunotherapy. This novel stemness-dependent 
classification method has high value in predicting the prognosis, and also provides a reference for clinicians in 
selecting sensitive immunotherapy methods for EC patients. 
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oophorectomy, with or without lymphadenectomy. 

Subsequent adjuvant therapy is tailored to the patient’s 

risk factors. Nonetheless, in cases involving younger 

patients who have a strong desire to preserve their 

fertility, especially if they have not yet had children, a 

fertility-sparing approach is often necessary. This 

approach typically incorporates the use of oral or 

uterine local progestin in combination with GnRH-a or 

other regimens, along with regular hysteroscopic 

biopsies [6]. Research findings indicate that inhibiting 

PROM2 expression results in heightened sensitivity to 

paclitaxel, leading to decreased IC50 values and 

reduced proliferation in endometrial cancer. Moreover, 

the knockdown of PROM2 has been observed to 

promote apoptosis in endometrial cancer cell lines [7]. 

There is a certain relationship between gene expression 

and resistance to chemotherapy drugs. For example, in 

head and neck tumors, multiple genes are associated 

with chemotherapy drug resistance [8, 9]. Recently, 

bioinformatics has played an increasingly essential role 

in predicting survival. Bioinformatics analysis and 

computational approach had high accuracy in predicting 

the prognosis of cancer patients [10]. While a majority 

of EC cases are identified in the early stages, leading to 

a relatively positive prognosis thanks to early detection, 

there remains a subset of approximately 28% of patients 

who succumb to the disease. Their deaths are typically 

attributed to distant metastasis and recurring instances, 

which frequently result in a limited response to 

conventional therapies [11]. However, patients with the 

same degree of progression can show different 

prognoses and treatment responses [12]. Hence, it 

becomes paramount to underscore the molecular 

alterations in order to forecast the occurrence of 

metastasis and relapse in EC, while also ensuring the 

vigilant monitoring of EC patients’ prognoses. In the 

context of solid malignant tumors, the pivotal role 

played by cancer stem cells (CSCs) cannot be 

overstated, as they significantly contribute to disease 

progression, recurrence, and the development of drug 

resistance [13]. Moreover, CSCs facilitated immuno-

suppression, immune evasion, tumor metastasis, and 

resistance to treatments through their interactions with 

immune cells [14]. In order to delve deeper into the 

unique characteristics of cancer stem cells, Malta and 

colleagues harnessed cutting-edge deep learning 

methods. They crafted a scoring system using the One-

Class Logistic Regression (OCLR) machine learning 

algorithm to gauge the resemblance between tumor cells 

and diverse stem cell types sourced from the Progenitor 

Cell Biology Consortium (https://www.synapse.org/ 

pcbc). This endeavor led to the development of two 

distinct stemness indices: the DNA expression-based 
stemness index (mDNAsi) and the mRNA expression-

based stemness index (mRNAsi). The perpetuation of 

tumor growth hinges on an exceedingly limited 

population of self-renewing stem cells. Research 

findings have uncovered a robust association between 

mRNAsi and the prognosis of EC, offering novel 

insights into the prediction of EC outcomes [15]. 

 

As our comprehension of the biology of EC has 

advanced, it is now evident that various histologic types 

of EC should not be regarded as a singular disease. 

Alternative treatments aimed at specific biological 

subsets of EC have made substantial progress [16]. 

Despite the availability of multiple markers for the 

isolation and characterization of cancer stem cells 

(CSCs) in endometrial cancer (EC), such as cluster of 

differentiation (CD)44, CD117, aldehyde dehydro-

genase (ALDH), CD133, and CD24 [17], the 

comprehensive assessment of a tumor’s overall 

stemness still poses a significant challenge [18]. In the 

ever-evolving field of cancer treatment, the role of the 

tumor microenvironment (TME) and immune 

checkpoints (ICs) holds paramount importance in the 

realm of oncology research. The introduction of 

immune checkpoint inhibitors, such as programmed 

death-1 receptor (PD-1) and cytotoxic T-lymphocyte 

antigen 4 (CTLA-4) inhibitors, has propelled 

immunotherapy into a promising frontier for managing 

cancer. This therapeutic approach has exhibited 

remarkable clinical effectiveness in a wide range of 

solid tumor types [19]. Additionally, molecular 

alterations such as POLE-mutated or microsatellite 

instability (MSI) are associated with a big number of 

tumor-infiltrating immune cells (TICs), which might be 

appropriate candidates for PD-1/PD-L1 immune 

therapies [20]. While research has highlighted the 

crucial role of immunotherapy in EC, the exact 

molecular mechanisms that underlie its effectiveness 

remain enigmatic. Therefore, it is essential to further 

explore the immune-mediated molecular intricacies that 

are unique to EC, with the goal of unveiling more 

potent and effective therapeutic strategies. 

 

In this study, differential analyses were conducted in 

patients with EC to evaluate their stemness index. 

Consequently, based on distinct mRNAsi features,  

EC patients were classified into two subgroups with 

distinct survival outcomes, somatic mutations, and 

clinicopathological characteristics. Subsequently, a 

comprehensive analysis was employed to examine the 

distinctions within the tumor microenvironment, 

genomic variations, and patterns of immune response 

among patients with EC subtypes I and II. By 

integrating multiple machining learning, hub genes 

were selected and prognostic risk signature was 

developed and verified by patients in Cangzhou Central 

Hospital. Our research aims to establish a new 

molecular classification based on stem cells to help 

11249

https://www.synapse.org/%0bpcbc
https://www.synapse.org/%0bpcbc


www.aging-us.com 3 AGING 

doctors predict the individual survival of EC patients 

and make better treatment choices. 

 

MATERIALS AND METHODS 
 

Data acquisition and clinical information 

 

The information utilized encompasses the fragments per 

kilobase of FPKM (transcript per million mapped reads) 

standardized sequencing dataset, as well as the 

associated clinical data (including age, stage, 

histological type, menopausal status, grade, cancer 

status, lymph node metastasis, survival information, and 

other clinical particulars Supplementary File 1) for both 

EC samples and normal samples, was sourced from The 

Cancer Genome Atlas (TCGA) website 

(https://portal.gdc.cancer.gov/). 

 

Sample collection of Cangzhou Central Hospital 

cohort 

 

The nomogram’s predictive accuracy was confirmed in the 

testing cohort, which comprised 24 surgically patients at 

the Obstetrics and Gynecology Department, Cangzhou 

Central Hospital. For this cohort, both RNA sequencing 

results and clinical data were accessible. Samples for this 

validation were obtained from patients treated between 

January 2008 and December 2012. The protocols for total 

RNA isolation and reverse transcription-quantitative PCR 

were consistently applied in line with established 

procedures [21]. This study was approved by the Ethics 

Committee of Cangzhou Central Hospital. 

 

Differential analysis of the high and low mRNAsi 

groups 
 

mRNAsi were obtained from previous research [22], 

which was based on a OCLR machine learning 

algorithm. We acquired the mRNAsi of EC patients and 

integrated it with TCGA data on EC. This integration 

was achieved using a Perl merge script, with unmatched 

cases being removed. The stemness indexes served as 

indicators of the likeness between tumor cells and stem 

cells, with mRNAsi specifically capturing trans-

criptomic stemness characteristics. 

 

Identification of the stemness-based molecular 

classification of EC patients 
 

We conducted survival analysis to evaluate the 

prognostic implications of distinct stemness subtype 

groups. Additionally, both univariate and multivariate 

Cox regression analyses were conducted to assess 

whether the prognostic significance of the stemness 

subtype remained statistically significant when 

considering other clinicopathological variables. These 

analyses were carried out using the 

“ConsensuClusterPlus” package, and we repeated these 

steps 1000 times to ensure the robustness and stability 

of the classification [23]. Unsupervised clustering 

analysis was utilized to identify DEGs and to classify 

patients into distinct clusters for further investigation. 

The ideal number of clusters and their robustness were 

assessed using the consensus clustering algorithm 

Supplementary File 2 [24]. 

 

Immune cell infiltration and the tumor micro-

environment analysis 

 

CIBERSORT is a deconvolution method for expression 

matrices of immune cell subsets [25]. Moreover, 

immune scores of different subgroups were calculated 

with the package “estimate”, and plot histograms of 

differences in immune scores, stromal scores, 

ESTIMATE scores, and tumor purity of each EC tumor 

sample Supplementary File 3 [26]. Tumor Mutational 

Burden (TMB) for each tumor sample was quantified as 

the number of mutated bases per million bases, 

encompassing missense mutations, nonsense mutations, 

frameshift mutations, and other types of mutations. We 

calculated TMB values for each sample by Perl scripts, 

considering the number of variants across the human 

exome’s length (38 million bases). 

 

Construction and validation of the stemness subtype 

predictor by multiple machine learning methods 

 

The 514 EC patients were randomly divided into training 

(N = 343) and testing (N = 171) sets in a 2:1 ratio. Initially, 

within the training set, we utilized the least absolute 

shrinkage and selection operator (LASSO) regression, 

Random Forest (RFB), and Cox regression analyses to 

identify the most significant group-related features by 

computing importance scores for each variable using the 

“glmnet,” “randomForest,” and “cox” packages in R [27, 

28]. We employed the “survival” package in R to conduct 

univariate Cox proportional hazard regression analysis, 

aiming to identify stemness-related genes significantly 

associated with the overall survival (OS) of EC patients 

within the TCGA cohort. The most crucial stemness 

subtype-related genes, identified through the intersection 

of results from LASSO Supplementary File 4, Random 

Forest (RF), and Cox regression analyses, were visually 

represented using a Venn diagram. Finally, we carried out 

multivariate cox regression analysis on these critical genes 

to construct the predictive model, referred to as the 

‘Stemness Subtype Predictor’ [27]. “We utilized ROC 

curve analysis to establish the optimal cutoff values for 

distinguishing between different subtypes and evaluated 
performance metrics such as the AUC, sensitivity, 

specificity, and accuracy. Following this, we assessed the 

predictive capabilities of the stemness subtype predictor in 
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a test set derived from our hospital cohort, employing a 

methodology akin to that employed in the previously 

studied cohorts.” 

 

Statistical analysis 

 

In the presentation of descriptive statistics, we employed 

‘mean ± standard deviation’ for continuous variables 

following a normal distribution, and ‘median (range)’ for 

continuous variables exhibiting abnormal distribution. 

Categorical variables were represented by counts and 

percentages. For all statistical analyses, we employed R 

statistics software (version 3.6.1 Supplementary File 5). 

We evaluated the relationship between mRNAsi and 

diverse clinicopathological characteristics using the Chi-

square test. The correlation between mRNAsi and tumor-

infiltrating immune cells was determined using 

Spearman’s correlation. To assess the prognosis of 

endometrial cancer, we conducted Cox regression 

analysis. Kaplan-Meier method was used to analyses the 

difference in OS between different subtypes. P < 0.05 

was considered statistically significant. 

Data availability statement 

 

The data underlying this article are available in the 

article and in its online supplementary material. 

 

RESULTS 
 

Distribution of mRNAsi in patients with different 

clinicopathological features and mutation status 

 

The clinicopathological characteristics of the patients 

are shown in Supplementary Table 1. We arrange the 

patients from low to high according to their mRNAsi 

values. The corresponding clinicopathological changes 

are shown in Figure 1A by heatmap. It can be seen that 

OS and other factors show significant differences with 

the increase of mRNAsi value. In addition, we also 

explored the mutation of TMB and several genes in the 

high and low mRNAsi groups. The results showed that 

there were significant differences in mutations of TMB 

among different mRNAsi groups (Figure 1B). Next, we 

explored the distribution of mRNAsi in different 

 

 
 

Figure 1. The clinical and molecular features associated with the stemness index (mRNAsi) in EC patients. (A) An overview of 
the association between mRNAsi and clinicopathological features of patients. Columns represented samples ranked by mRNAsi from low to 
high (top row), and rows represent known clinical and molecular characteristics associated with mRNAsi. (B) Heatmap of the association 
between TMB and somatic mutation status of the most popular biomarkers of EC. (C) Distribution of mRNAsi in different clinicopathological 
features including TCGA subtypes, stage, recurrence, peritoneal cytology, LNM, histology, grade, and tumor status displayed by boxplots. (D) 
Distribution of mRNAsi in different somatic mutation status of the biomarkers including TP53, TMB, TERT, PTEN, IDH1, EGFR, BRAF, ATRX. 
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clinicopathological features and gene mutation 

subgroups. The results showed that mRNAsi had 

significant differences in most clinicopathological 

features (TCGA subtype, stage, recurrence, lymph  

node metastasis, histology, grade, tumor status, age, 

living status, and menopausal status, Figure 1C and 

Supplementary Figure 1). The mRNAsi score was 

higher in worse pathological features. On the other 

hand, mRNAsi has a higher score in gene mutation 

groups, including TP53, PTEN, EGFR, BRAF, ATRX, 

and high TMB group. Above all, these results indicate 

that higher stemness index is reflected with worse 

prognosis and mutation status (Figure 1D). 

 

Construction of EC grouping based on ssGSEA and 

immune microenvironment landscape of stemness 

index 

 

We evaluated the immune status of tumor samples by 

employing the ssGSEA method on the transcriptomes of 

TCGA endometrial cancer specimens. This assessment 

incorporated 29 immune-related pathways and assessed 

the presence of infiltrating immune cells to estimate the 

immune profile of EC tissues (Figure 2A). The total 

TCGA cohort were clustered into 2 subgroups (low 

immunity: 221 samples, and high immunity: 293 

samples) by applying unsupervised consensus clustering 

analysis (Supplementary Figure 2A). There was 

significant distinction existed on the transcriptional 

profile among these two immunity modification clusters 

(Supplementary Figure 2B). By stratifying the TCGA 

dataset into low and high immunity groups through 

unsupervised consensus clustering analysis, we 

categorized patients into two distinct subgroups, namely 

‘immunity_H’ and ‘immunity_L.’ It was evident that 

the ‘immunity_H’ signature was linked to a more 

favorable prognosis, while the ‘immunity_L’ group 

exhibited worse survival outcomes (Supplementary 

Figure 2C). Several parameters were applied to estimate 

the immune infiltration profiles, including tumor purity, 

ESTIMATE score, immune score, and stromal score. 

The distribution of these scores is obviously different  

in immune subgroups (Supplementary Figure 2D).  

In addition, the low immunity group exhibited 

significantly lower HLA related gene set expressions 

(Supplementary Figure 2E). The distinction between the 

two immune subtypes may be attributed to the intricate 

nature of the tumor microenvironment (TME). To 

investigate the biological disparities between these 

clusters, we employed the ssGSEA algorithm to assess 

the prevalence of 28 distinct immune cell types within 

the immune-infiltrated microenvironment of EC. The 

findings indicated a significantly higher level of 
immune infiltration in ‘Immunity_H’ compared to 

‘Immunity_L’ cluster, as evidenced by a more 

pronounced activation of immune response-related 

cells. Next, we investigated the association between 

mRNAsi and ESTIMATE-related scores. As shown in 

Figure 2B, mRNAsi was evaluated and found to be 

significantly negatively correlated with stromal score (p 

< 2.2e-16), immune score (p < 1.2e-05), and 

ESTIMATE score (p < 2.2e-16) in EC. Moreover, the 

results also revealed that the mRNAsi had an evident 

positive correlation with tumor purity (p < 2.2e-16). 

Then the mutation score and ESTIMATE score were 

compared between immunity_H and immunity_L 

groups. According to the results, the immunity_H had 

an obviously lower mRNAsi, tumor purity score, and 

higher ESTIMATE score, immune score, and stromal 

score compared with the immunity_L group in the 

dataset (p < 2.2e-16, Figure 2C). To explore if the high 

or low immunity status could affect the status of tumor 

immune microenvironment, tumor-infiltrating immune 

cells (TIICs) between different immunity groups were 

compared. The results exhibited that no significant 

differences were observed between two groups in 

abundance of the rest immune cells (Figure 2D). As 

shown in Figure 2E, the stemness index was 

significantly positively correlated with Macrophages 

M1 (R = 0.46, p < 0.01), activated CD4 T memory cells 

(R = 0.35, p < 0.01), T cells follicular helper (R = 0.34, 

p < 0.01), and activated dendritic cells (R = 0.29, p < 

0.01); meanwhile the stemness index was significantly 

negatively correlated with plasma cells (R = −0.56, p < 

0.01), CD8 T cells (R = −0.52, p < 0.01), Tregs (R = 

−0.51, p < 0.01), and resting CD4 T memory cells (R = 

−0.47, p < 0.01). These results indicated that immunity 

subgroups could have strong correlation with TME in 

EC. 

 

Differentially expressed genes analysis of mRNAsi 

and corresponding mutational features 
 

Initially, a Kaplan-Meier curve was generated to 

examine the impact of mRNAsi values on the prognosis 

of EC patients. It was observed that patients with lower 

mRNAsi values experienced an extended overall 

survival (p = 0.033) and DFS (p = 0.037, Figure 3A, 

3B), progression-free survival (PFS, p = 0.081, and 

disease-specific survival (DSS, p = 0.049, 

Supplementary Figure 3A, 3B). To further find out 

novel genes that play essential roles in EC 

microenvironment associated with stemness index, we 

grouped the samples based on the median of the 

mRNAsi, and then we conducted a differential analysis 

between the high and low-mRNAsi samples. The DEGs 

were displayed in the heatmap (Figure 3C) and volcano 

(Supplementary Figure 3C). The results showed that 

there were 1,290 DEGs between high and low mRNAsi 
groups, including 117 significantly upregulated genes 

and 1,173 significantly downregulated genes. GO and 

KEGG pathway analysis of DEGs exhibits intriguing 
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Figure 2. The tumor immune microenvironment patterns and immunogenomic features of EC associated with the mRNAsi. 
(A) The immune cells were highly expressed in the cluster 1, which was named as the high immune cell infiltration group (Immunity_H), and 
the low expression in the cluster 2 group was named as the low immune cell infiltration group (Immunity_L). Using ESTIMATE's algorithm, 
the tumor purity, ESTIMATE score, immune score, and stromal score of each sample gene was displayed together with the grouping 
information. (B) Correlation analysis between mRNAsi and different kinds of score, including stromal score, immune score, ESTIMATE score, 
and tumor purity. (C) The violin plot showed that there was a statistical difference in Tumor Purity, ESTIMATE Score, Immune Score and 
Stromal Score between the two groups (p < 0.01). (D) Different distributions of tumor-infiltrating cells in two immunity clusters (***p < 
0.001, **p < 0.01, *p < 0.05). (E) Correlation analysis between immune cells and mRNAsi. Blue bars meant correlation coefficient >0, and 
yellow bars meant correlation coefficient <0. 
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results. In GO functional analysis, microtubule-based 

movement, extracellular matrix structural constituent, 

and collagen-containing extracellular matrix were 

enriched. The expression levels of the correlated genes 

in the enriched KEGG pathways are also displayed, 

including cAMP signaling pathway, Wnt signaling 

pathway, and Hippo signaling pathway (Figure 3D). 

Moreover, the mutation characteristics of DEGs in each 

EC sample are visually represented in a waterfall plot 

(Figure 3E), allowing for the analysis of distinct 

mutation types associated with individual genes 

contributing to EC progression. The rest of the mutation 

analysis are shown in Supplementary Figure 3D–3I. 

Comparing the two clusters, the differential analysis of 

copy number variations showed that, in the high 

mRNAsi group, 20 (16.7%) genes had significant 

amplifications, and 11 (7.2%) genes had significant 

deletions, in contrast to the low mRNAsi group (Figure 

3F). All these results revealed that different mRNAsi 

subgroups had diverse survival and DEGs from high or 

low mRNAsi group might play a pivotal role in 

progression and somatic mutation in EC patients. 

 

Identification of tumor subtypes based on DEGs 

from mRNAsi using consensus clustering 

 

ConcensusCluster analysis was utilized to classify the 

EC samples based upon the DEGs from high and 

 

 
 

Figure 3. Evaluation and differential expression analysis between low and high mRNAsi groups. (A, B) Overall Survival curve 

and Disease-Free Survival curve of patients in low and high mRNAsi group. (C) Heatmap of differentially expressed genes (DEGs) between 
the mentioned two groups. (D) GO and KEGG functional analysis of DEGs. (E) Landscape of the top ten mutation DEGs profiles in EC 
samples. Mutation information of each gene in each sample was shown in the waterfall plot, where different colors with specific 
annotations at the bottom meant the various mutation types. The bar plot above the legend exhibited the number of tumor mutation 
burden (TMB). (F) The differential analysis of copy number variations between low and high mRNAsi groups was visualized by Circos plot, 
which revealed that compared with the low mRNAsi group. Blue dots represented amplifications, black dots represented deletions, and 
grey dots represented no significant CNAs. 
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low-mRNAsi subgroups. As depicted in Figure 4A–4C 

and, we determined that selecting k = 2 was a sound 

decision, given the increase in cluster stability from k = 

2 to 10. Additionally, we employed PCA analysis to 

explore the features of DEGs, using the k = 2 

classification among EC patients (Supplementary 

Figure 4A). Heatmap was plotted to show the 

distribution of gene expression and mutation 

information, including TMB, TCGA subtypes, and 

mRNAsi are significantly different in two subtypes 

(Figure 4D). High TMB, high mRNAsi, and worse 

TCGA subtypes are enriched in subtypes II. 

Furthermore, we found that the two subtypes were 

associated with OS (p = 6.56e-04, Figure 4E), DFS (p = 

7.21e-03, Figure 4F), and PFS (p = 1.66e-02, 

Supplementary Figure 4B), but not associated with DSS 

(p = 3.11e-01, Supplementary Figure 4C). To further 

explore the biological behaviors between distinct 

subtypes, we conducted GSVA and found that stemness 

subtype II presented enrichment pathways associated 

with tyrosine metabolism, steroid hormone bio-

synthesis, retinol metabolism, and fatty acid 

metabolism. Stemness Subtype I tumors mainly 

correlated with basal transduction factors, cell cycle, 

 

 
 

Figure 4. Consensus clustering based on the DEGs and assessment of the Stemness Subtypes. (A) Consensus clustering matrix 

for EC patients for DEGs in EC. (B) Consensus clustering distribution function (CDF). (C) Relative changes in the area under the CDF curve. 
(D) The heatmap shows the of 145 DEGs (including 3 up-regulated and 142 down-regulated genes) between different Stemness Subtypes 
and the clinical characteristics (TMB, TCGA subtypes, continuous variable of mRNAsi and categorical variable) in the TCGA database. (E, F) 
Survival curve of patients in different subtypes. Patients in subtype I had a promising prognosis in both OS and DFS. (G) Thermogram shows 
the activation state of KEGG pathways in different Stemness Subtype I and II after processing by GSVA. The yellow node represents high 
enrichment scores, and the blue node represents low enrichment scores, p < 0.05. 
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mismatch repair, and RNA degeneration (Figure 4G). 

According to these implications, the mRNAsi-related 

DEGs could categorized patients into two subtypes, and 

patients in two subtypes had diverse characteristics. 

Differentiating these functions of patients may occur in 

GSVA related results. 

 

CNA burden, TMB, and clinical features in different 

stemness subtypes 

 

To further explore the relationship between stemness 

subtypes and clinicopathological characteristics, we 

compare different clinical features in Stemness Subtype 

I and II. As shown in Figure 5A, patients in the 

Stemness Subtype I group were significantly lower in 

age (62.5 ± 22.4 versus 64.9 ± 24.1 years, p = 0.0023) 

and mRNAsi (0.35 ± 0.22 versus 0.44 ± 0.25, p < 

2.22e-16) than those in the Stemness Subtype II group. 

The clinical factors in Stemness Subtype I was 

significantly different from that in the Stemness 

Subtype II group, such as grade, TCGA subtypes, 

stage, cancer status, and histological types (Figure 5B). 

However, the distribution of stemness subtypes were 

not correlated with OS status, recurrence, LNM, and 

peritoneal cytology (Supplementary Figure 5A, 5B). As 

shown in Figure 5C, 5D, subtype I group presented less 

extensive tumor mutation burden than the subtype II 

group. The box diagram of each color represents a kind 

of mutation (Supplementary Figure 5C, 5D). The value 

of TMB is much higher in Stemness Subtype groups (p 

= 2.7e-05, Figure 5E). We then compare the mutation 

occupation of key genes for EC. The same situations 

were observed for ATRX, BRAF, EGFR, IDH1, and 

TP53, indicating that the mutation frequencies of 

ATRX (I versus II, 30.8% versus 12.5%; P < 0.01), 

BRAF (I versus II, 29.1% versus 13.2%; P < 0.001), 

EGFR (I versus II, 30.2% versus 17.4%; P < 0.05), 

IDH1 (I versus II, 25.1% versus 13.2%; P < 0.05), and 

TP53 (I versus II, 27.5% versus 9.2%; P < 0.001) in the 

Stemness Subtype II group were significantly higher. 

Whereas, mutation frequencies of PTEN (I versus II, 

16.3% versus 26.8%; P < 0.05) and TERT (I versus II, 

13.3% versus 34.8%; P < 0.01) between the two 

subtypes in the Stemness Subtype I group were 

significantly higher (Figure 5F). Finally, we proved 

that the stemness subtype groups are diverse in 

clinicopathological features and key somatic 

mutations, which may indicate us these mutational 

genes play an essential in the progression derived from 

stem cells in EC. 

 

 
 

Figure 5. Validation of the Stemness Subtype classification and exploration of the relevant clinical features and somatic 
mutational characteristics. (A, B) Differences in clinical features between distinct Stemness Subtypes in TCGA cohorts. (C, D) The 
waterfall plot of tumor somatic mutation established by those with Stemness Subtype I and Stemness Subtype II. Each column represented 
individual patients. The upper bar plot showed TMB, the number on the right indicated the mutation frequency in each gene. The right bar 
plot showed the proportion of each variant type. (E) Distribution of TMB between two subtypes. (F) The comparisons of mutational status 
of ATRX, BRAF, EGFR, IDH1, PTEN, TERT, and TP53 promoter between Stemness Subtype I and II. (*p < 0.05; **p < 0.01; ***p < 0.001; Kruskal-
Wallis value). 
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Distinct immunogenomic patterns and functions in 

two stemness subtypes 

 

Next, ESTIMATE score and purity score in two 

stemness subtypes were compared. As shown in Figure 

6A, stromal score, immune score, and ESTIMATE 

score were much higher in subtype I group (all p < 

0.05). In contrast, tumor purity score was much higher 

in Subtype II group (p = 1.3e-05). To investigate the 

correlation between TIICs and stemness subtypes in EC, 

we first used CIBERSORT to calculate infiltration of 22 

immune cells in the EC cases. Then, we compared the 

infiltration of 22 immune cells in stemness subtype I 

and II groups. The difference analytical results showed 

that naive B cells, plasma cells, CD8 T cells, T cells 

CD4 memory resting, T cells CD4 memory activated, T 

cells follicular help, Tregs, NK cells resting, 

Macrophages M0/M1/M2, Mast cells resting, Mast cells 

activated were significantly different in two groups 

(Figure 6B). Furthermore, consistent with the findings 

of previous studies, the proportion of immunity_H 

decreased from Stemness Subtype I (49.3%) to 

Stemness Subtype II (31.3%, Figure 6C). The part of 

high TMB group occupied more in Stemness Subtype II 

group (Supplementary Figure 6). In addition, to 

investigate the immunotherapy and response in two 

stemness subtypes, we compare the expression of 

related genes in two groups (Figure 6D). We then 

combined the subtype with TMB score, and divided the 

cohort into for subgroups according to subtypes and 

low/high TMB score. The results showed that patients 

in subtype I and low TMB subgroup had the best 

prognosis, and patients from subtype II, high TMB 

subgroup tended to survive shorter than the patients 

from other subgroups (Figure 6E). Next, GSEA was 

then performed, subtype I was enriched in cell cycle, 

DNA replication, and ether lipid metabolism, and 

subtype II patients were enriched in mismatch repair, 

 

 
 

Figure 6. Evaluation of immunogenomic patterns and functional analysis in two stemness subtypes. (A) Different stromal 

score, immune scores, ESTIMATE scores, and tumor purity in two subtypes. (B) Different distributions of 22 kinds of tumor-infiltrating cells 
in two subtypes (*p < 0.05; **p < 0.01; ***p < 0.001). (C) Different proportions of high and low immunity tumors in two stemness subtype. (D) 
The expression levels of PD-1, PD-L1, PD-L2, CTLA-4, CD80 and CD86 in Stemness Subtype I and II. (E) Survival analyses for subgroup 
patients stratified by both stemness subtype and TMB using Kaplan-Meier curves. (p < 0.001, Log-rank test). (F) GSEA showed the 
significantly enriched KEGG pathways based Stemness Subtype I and II. (G) Fractions of EC patients were shown in the form of a Sankey 
map according to different classifications (clinical stage: I/II/III/IV; stemness subtypes: I and II; immunity: high and low). 
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primary bile acid biosynthesis, and tyrosine metabolism 

(Figure 6F). We visualized a Sankey map to illustrate 

the connections among stage, subtype, and immune 

status. The results indicated that patients in stage IV 

were primarily associated with Stemness Subtype II and 

displayed lower immune infiltration (Figure 6G). These 

intriguing findings underscore that Stemness Subtype I 

tumors exhibit comparatively low levels of immune 

infiltration and high tumor purity, while also having 

relatively elevated immune activity. 

 

Construction and validation of predictive prognostic 

model integrating multiple machine learning 

algorithms 

 

We proceeded to split the patients into a training set and 

a validation set, maintaining a 2:1 ratio. Initially, in the 

training set, we applied three distinct machine learning 

algorithms to discern the most crucial stemness 

subtype-related features based on the expression levels 

of 1,290 stemness-related DEGs. Simultaneously, time-

dependent AUC analysis revealed that the stemness 

subtype score exhibited substantial predictive value for 

the Overall Survival (OS) of EC patients within the 

TCGA dataset. Figure 7A illustrates that LASSO 

regression yielded the highest AUC, standing at 0.931 

in the validation set, as reflected in the corresponding 

coefficient in Supplementary Table 2. A total of 9, 66, 

and 107 genes were identified by LASSO, random 

forest (RF), and Cox regression, respectively 

(Supplementary Figure 7A–7E). By overlapping the 

DEGs of the three machine learning methods, we 

obtained a total of 7 common genes (Figure 7B). 

Coefficient was shown in Supplementary Table 3. Risk 

score was calculated with the 7 genes as following: risk 

score= −(ART3 × 1.120) −(C1orf64 × 0.763) + 

(FOXD3 × 0.868) −(FRMPD2 × 0.621) −(IHH × 0.263) 

+ (LMO1 × 0.582) −(TMEM114 × 1.434), and divided 

the patients into low and high groups. Stemness 

Subtype Predictor also had an excellent performance in 

discriminating the stemness subtypes as evaluated in the 

test set (Figure 7C). The expression of the 7 genes 

subtype I and II patients in the TCGA dataset was also 

demonstrated in the heatmap (Figure 7D). We observed 

significant distinctions between subtype I and subtype II 

groups concerning factors such as risk, immune 

subtype, Tumor Mutational Burden (TMB), TCGA 

molecular classification, cancer status, peritoneal 

cytology, recurrence, grade, histology, stage, age, and 

survival status. Subsequently, we validated the seven 

genes along with their associated clinicopathological 

features within different stemness subtypes in our 

hospital cohort. As shown in Figure 7E, the patients in 
our center also confirmed that there was a significant 

difference in the distribution of clinicopathological 

characteristics between the two groups. K-M survival 

analysis indicated that patients in low risk group 

presented significantly better OS and DFS in both the 

TCGA and EC cohorts (Figure 7F, 7G). PFS and DSS 

in TCGA group showed a similar result (Supplementary 

Figure 7F, 7G). The accuracy of risk model prediction 

was verified by ROC curve, and the results confirmed 

that all AUCs of survival prediction was greater than 

0.7 (Supplementary Figure 7H–7K). Cohort in our 

hospital proved that the AUCs of OS and PFS were 0.82 

and 0.85, respectively (Supplementary Figure 7L, 7M). 

Finally, we validated the expression of the 7 genes with 

normal endometrium and EC tissues by western blot in 

protein level. The results were shown in Supplementary 

Figure 8, which is also corresponding with the 

sequencing results. These findings demonstrate that the 

classification derived from comprehensive analyses 

exhibited superior performance, both in the TCGA 

dataset and among patients in our hospital. 

 

DISCUSSION 
 

Patients dealing with high-grade, recurrent, and 

metastatic EC confront considerably unfavorable 

prognoses. For many years, treatment choices for EC 

have been far from ideal, presenting significant 

challenges, until the emergence of immunotherapy 

provided a glimmer of hope [1, 29]. While reports have 

highlighted the therapeutic potential of immunotherapy, 

the search for predictive biomarkers linked to prognosis 

and the identification of a subgroup with heightened 

sensitivity to immunotherapy could significantly 

enhance the outlook for EC patients [3]. Recent years 

have witnessed substantial advancements in our 

understanding of the biological attributes of EC, with an 

increasing emphasis on molecular subtypes rather than 

histological classifications. In 2013, the TCGA 

categorized EC into four distinct groups: POLE ultra-

mutated, microsatellite instability hypermutated (H-

MSI), copy-number low, and copy-number high [30]. 

The exploration of biological subcategories holds great 

promise in shaping customized immunotherapy 

strategies for EC patients in the foreseeable future. 

TME has been established as a pivotal influencer in 

modulating gene expression and molecular functions 

within cancer cells, a factor intricately connected to 

their receptiveness to immunotherapeutic interventions 

[31]. Investigating the interplay between EC and the 

TME, we employed the ESTIMATE algorithm to assess 

the risk scores associated with immune and stromal 

cells. Subsequently, we computed the ESTIMATE 

score, which integrates both cell types. Our next step 

involved exploring the correlations between these 

scores and the clinical characteristics of the 514 EC 

samples. Our findings revealed that lower scores were 

prevalent in high-grade tumors, implying a potential 

association between immune molecules in the TME and 
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the degree of EC tumor differentiation. This aligns with 

the observations made by Jones Nathaniel L et al., 

suggesting that high-grade tumors exhibit higher 

immunogenicity compared to low-grade tumors and 

may consequently be more responsive to immuno-

therapeutic interventions [32]. 

 

In an effort to gain a more comprehensive understanding 

of the immune and risk scores, we harnessed the power 

of CIBERSORT algorithms within the R platform to 

calculate the subtypes of immune cells. Our 

investigation unveiled notable disparities in the 

composition of immune cell subtypes when comparing 

the two risk score groups. Furthermore, GSEA analysis 

highlighted differences in 14 crucial signaling pathways 

between the high and low RS groups. Notably, the 

inhibition of the MAPK signaling pathway was shown to 

enhance the melanoma immune microenvironment by 

boosting melanoma antigen expression and suppressing 

immunosuppressive cytokines [33, 34]. Furthermore, the 

chemokine signaling pathway plays a significant role in 

tumor growth. Certain chemokines, including CCR10 

and CXCR3, have been demonstrated to play a pivotal 

role in the proliferation and metastasis of melanoma 

cells [35]. 

 

Introducing a novel stemness index, both the mRNAsi 

and EREG-mRNAsi indices were computed through the 

 

 
 

Figure 7. Establishment and validation of the stemness subtype-based risk signature in TCGA and cohort in our hospital. (A) 

The performances of three machine-learning algorithms (LASSO, COX and RF) for feature selection were, respectively, evaluated in the 
training set and validation set. AUCs were generated by ROC analysis. (B) Venn diagram showing the common genes of the three machine-
learning methods. (C) Left panel: confusion matrices of binary results of the Stemness Subtype Predictor for the training set (upper) and 
validation set (lower). Right panel: ROC curves of the Stemness Subtype Predictor in distinguishing two subtypes in the training set (Upper, 
AUC = 0.960) and validation set (Lower, AUC = 0.922). (D, E) The heatmap showing the expression levels of 7 hub genes in the subtype I and 
subtype II. The distribution of clinicopathological features was compared between the two groups in TCGA cohort and cohorts in our 
hospital, respectively. (F) Kaplan-Meier curve of patients in low- and high-risk groups of OS and DFS in TCGA patients. (G) Kaplan-Meier 
curve of patients in low- and high-risk groups of OS and DFS in patients in our hospital. 
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application of an OCLR machine learning algorithm. 

These indices were found to effectively categorize 

tumors into specific stemness phenotypes. By 

analyzing the expression profiles of both EC and 

normal samples in tandem with their respective 

stemness indices, we successfully identified five 

distinct gene modules among the Differentially 

Expressed Genes (DEGs). Within these modules, we 

pinpointed hub genes in two that exhibited the most 

substantial correlations with mRNAsi. Prior research 

has underlined the robust connections between cancer 

stemness and critical factors such as cancer metastasis, 

drug resistance, recurrence, and poor prognosis [36, 

37]. Our study conducted comprehensive analyses  

of cancer stemness in EC patients. These findings 

support our initial hypothesis that cancer stemness can 

indeed serve as a valuable biomarker for prognostic 

predictions in EC. Tumors are known for their 

significant heterogeneity and intricate compositions. In 

recent years, there has been a surge in research 

focused on cancer stem cells. Previous studies have 

consistently shown that cancer stem cells share key 

characteristics with stem/progenitor cells, including 

the ability for self-renewal and multipotent 

differentiation [38]. While the importance of stemness-

related genes is evident, research on therapeutic 

strategies targeting these genes remains relatively 

fragmented and lacks comprehensive development. 

Therefore, there is a compelling need to identify key 

stemness-related hub genes that could serve as 

potential therapeutic targets. These stemness-related 

genes displayed significant connections at both the 

transcriptional and protein levels, signifying strong 

biological relationships in their functions. Further-

more, subsequent GO and KEGG analyses unveiled 

the intricate ties between hub genes associated with 

stemness and processes involving cell cycle regulation 

and mitosis. These findings strongly imply their 

potential involvement in self-renewal and the 

proliferative properties characteristic of cancer stem 

cells. 

 

Subsequently, in our quest to understand the interplay 

between risk scores and immune components, we 

delved into the potential impact of risk scores on the 

patterns of immune infiltration and immune scores. 

Focusing first on immune cells, we acknowledge the 

diverse array of immune cell types, each carrying 

distinct roles in the context of anti-tumor responses, 

immune evasion mechanisms, and the processes of 

tumor growth, invasion, and metastasis [39–41]. These 

findings firmly suggest that this signature affects 

prognosis by interfering with immune cell infiltration in 
EC. In GO and KEGG analysis, the results revealed that 

DEGs were enriched in cytoskeletal protein and EMC-

related components. The most significant enrichment 

function and pathway is microtubule-based movement 

and extracellular matrix structure constituent, 

respectively, which is predominantly integrin-mediated 

anchoring junction, located on the basal surface of 

epithelial cells and serves primarily to integrate the 

surrounding extracellular matrix (ECM) and actin 

cytoskeleton [42]. Numerous studies have highlighted 

the significant role of this pathway in enhancing the 

migratory, invasive, and adhesive capabilities of cancer 

cells [43]. By inhibiting the function of key enzymes of 

this pathway can improve the metastasis and invasion of 

endometrial cancer cell [44]. Wnt plays a central role as 

a hub gene in various pathways, including the Wnt 

signaling pathway and pathways responsible for the 

regulation of the actin cytoskeleton. These pathways, in 

turn, play a crucial role in mediating processes such as 

cell proliferation and differentiation [45]. 
 

In the present study, we performed multivariate Cox 

regression analyses and identified a seven-gene 

signature including FOXD3, LMO1, ART3, FRMPD2, 

TMEM114, C1orf64, and IHH. Within these findings, 

FOXD3 emerged as a pivotal regulator of gene 

expression distinct to the secretory phase/endometriosis 

[46, 47]. Notably, FOXD3 exhibited dynamic 

expression patterns in healthy endometrium and showed 

significant differential expression in cases of endo-

metriosis [48, 49]. Another study focusing on DNA 

copy numbers and DNA methylation aberrations in EC 

have indicated that three potential prognostic markers 

(KIAA1324, NPR1, and IHH) showed distinct CNV, 

DNA methylation, and gene expression profiles. 

 

CONCLUSION 
 

In summary, our study conducted a thorough 

examination of immune cell profiles within EC tissue 

samples, leveraging a range of bioinformatics tools. Our 

analysis uncovered a significant relationship between 

mRNAsi and diverse clinicopathological attributes, 

highlighting marked variations in the distribution of 

mRNAsi across different clinicopathological features 

and gene mutation profiles. We developed novel 

prognostic prediction models based on the quan-

tification of infiltrating immune cells and stemness 

subtypes. These models hold the potential to enhance 

prognosis assessment and the identification of EC 

patients who may be particularly well-suited for 

immunotherapy. Moreover, they exhibited a high degree 

of accuracy in predicting the prognosis of EC patients. 

These findings emphasize the considerable promise  

of immunotherapy in the context of EC and may  

have important implications for tailoring personalized 
postoperative follow-up, care, interventions, manage-

ment, and therapeutic choices for individual EC 

patients. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. (A–C) Distribution of mRNAsi in different age, living status, and menopausal status. 
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Supplementary Figure 2. (A) Unsupervised clustering for 514 EC patients from the TCGA-EC cohort. Patients were classified into two 
cohort according to the transcriptome data. (B) PCA analysis of the two clusters based on the ssGSEA. (C) Kaplan-Meier Survival analysis 
indicates that the two clusters had significantly different survival rates (p = 0.03). (D) Difference in Stromal score, Immune score, and 
ESTIMATE score of samples from two clusters. (E) Comparison of the expression levels of HLA genes between two clusters in TCGA. 
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Supplementary Figure 3. (A) Volcano plot showing the DEGs between low and high mRNAsi groups. (B, C) PFS and DSS analysis of 

patients in different mRNAsi groups. (D) Classification and frequency of mutation types. (E) Frequency of variant types. (F) Frequency of 
SNV classes. (G, H) Tumor mutation burden in specific samples. (I) The top 10 mutated genes in EC samples. 
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Supplementary Figure 4. (A) PCA analysis of patients in Stemness Subtype I and Subtype II. (B, C) PFS and DSS for patients in different 

subtypes. The difference is significant in PFS (p = 0.011) but not in DSS (p > 0.05). 

 

 

 
 

Supplementary Figure 5. (A, B) Proportions of different lymph node metastasis (LNM) and peritoneal cytology in subtype I and subtype 

II. (C, D) Cohort summary plot displaying distribution of variants according to variant classification, type and SNV class in subtype I and 
subtype II. Bottom part (from left to right) indicates mutation load for each sample, variant classification type. A stacked bar plot shows top 
ten mutated genes. 
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Supplementary Figure 6. Proportions of low and high-TMB in different subtype. 
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Supplementary Figure 7. (A) Distribution of LASSO coefficients for 145 related genes. (B) Plots of the cross-validation error rates. The 

dashes signify the value of the minimal error and greater λ value. (C, D) Error and mean decrease Gini value of random forest analysis. (E) 
Heatmap of selected genes in different group by RF. (F, G) Based on the Kaplan-Meier survival analysis, DSS and PFS was significantly higher 
in the low-risk score group than the high groups. (H–K) Area under the ROC curve of OS (AUC = 0.788), DFS (AUC = 0.756), PFS (AUC = 
0.795), and DSS (AUC = 0.720) in TCGA cohort. (L, M) Area under the ROC curve of OS (AUC = 0.820), DFS (AUC = 0.850) in cohort in our 
hospital. 
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Supplementary Figure 8. Validation of the expression of the 7 genes in normal endometrium and endometrial cancer 
tissues by western blot. 
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Supplementary Tables 
 

Supplementary Table 1. Characteristics of patients in TCGA and cohort in our hospital. 

Variables 
TCGA Validation 

Mean + SD  Mean + SD  

OS (day) 999.3 ± 854.5  1562 ± 683.6 

Age (year) 64.2 ± 11.0  60.7 ± 15.2 

Living status  N (%)  N (%) 

Alive 343 (82.4%)  16 (66.7%) 

Death 73 (17.5%)  8 (33.3%) 

Diabetes  

No  286 (68.8%)  17 (70.8%) 

Yes  130 (31.2%)  7 (29.2%) 

Hypertension  

No  159 (38.2%)  12 (50.0%) 

Yes  257 (61.8%)  12 (50.0%) 

Menopausal status 

Premenopausal status 66 (15.9%)  7 (29.2%) 

Postmenopausal status 350 (84.1%)  17 (70.8%) 

Tumor grade  

G1 61 (14.7%)   

G2 89 (21.4%)  19 (79.2%) 

G3 266 (63.9%)  5 (20.8%) 

FIGO stage 

Stage I 255 (61.3%)  13 (54.2%) 

Stage II 42 (10.1%) 3 (12.5%) 

Stage III 95 (22.8%) 6 (25.0%) 

Stage IV 24 (5.8%)  2 (8.4%) 

Histological type 

EEA 301 (72.4%)  21 (87.5%) 

Other types 115 (27.6%)  3 (12.5%) 

Recurrence  

No  331 (79.6%)  12 (50.0%) 

Yes  85 (20.4%)  12 (50.0%) 

Peritoneal cytology 

Negative  344 (82.7%)  18 (75.0%) 

Positive  72 (17.3%)  6 (25.0%) 

LNM 

Negative  302 (72.6%)  19 (79.17%) 

Positive  114 (27.4%)  5 (20.83%) 

Abbreviations: TCGA: The Cancer Genome Atlas; OS: overall survival; SD: standard deviation; G: grade; EEA: endometrioid 
endometrial adenocarcinoma; LNM: lymph node metastasis. In histological types, the other type includes serous endometrial 
adenocarcinoma and mixed serous and endometrioid. 
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Supplementary Table 2. Seven genes and corresponding coefficient value in LASSO regression. 

Gene names Coefficient 

ART3 ‒0.0107606 

C1orf64 ‒0.0524939 

FOXD3 0.081842 

FRMPD2 ‒0.0075949 

FRMPD2L1 ‒0.0223019 

IHH ‒0.0060432 

LMO1 0.01754824 

SERPIND1 ‒0.0166729 

TMEM114 ‒0.0305824 

 

 

Supplementary Table 3. Multivariate logistic regression analysis of the seven genes selected by multiple 
machine learning algorithms. 

Variable B HR (95%CI) p-value 

ART3 ‒1.120 0.810 (0.719–0.912) 5.28E-04 

C1orf64 ‒0.763 0.845 (0.786–0.908) 5.28E-06 

FOXD3 0.868 1.237 (1.129–1.354) 4.33E-06 

FRMPD2 ‒0.621 0.833 (0.761–0.912) 8.02E-05 

IHH ‒0.263 0.880 (0.834–0.929) 4.40E-06 

LMO1 0.528 1.158 (1.073–1.251) 1.65E-06 

TMEM114 ‒1.434 0.753 (0.656–0.865) 5.82E-05 

 

 

11273



www.aging-us.com 27 AGING 

Supplementary Files 
 

Supplementary File 1. Clinical data for TCGA patients. 

 

Supplementary File 2. Patients code and cluster. 

 

Supplementary File 3. ESTIMATE score for each patient in TCGA. 

 

Supplementary File 4. LASSO risk and score for TCGA patients. 

 

Supplementary File 5. R code used in this study. 
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