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INTRODUCTION 
 

Mammalian cells undergo irreversible growth arrest, 

known as cellular senescence, which is induced by 

various stresses, such as DNA damage, oxidative 

stress, oncogene activation, and telomere shortening 

[1]. Cellular senescence involves the activation of 

tumor suppressors, such as the p19ARF-p53-p21 and 

p16INK4a-pRb pathways, which collectively serve as 

potent mechanisms inhibiting the development of 

cancer [2]. However, recent studies revealed a more 

complex and intriguing role for cellular senescence. 

Senescent cells accumulate in multiple tissues during 

aging, and this is considered to contribute to both 

tissue aging and the development of chronic diseases 

[3–5]. The senescence-associated secretory phenotype 

(SASP) is crucially involved in the onset of pathological 

conditions, and studies that employed the semi-

genetic or pharmacological ablation of senescent cells 

demonstrated the potential therapeutic benefits of 

senolysis [6, 7]. The selective targeting of senescent 

cells was found to restore or enhance tissue function 

and prevent diseases, including cancer, cardiovascular 

disorders, neurodegenerative conditions, and age-

related pathologies [8].  

 
Chronic obstructive pulmonary disease (COPD) is a 

major global health concern and ranks among the 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

Roles of pigment epithelium-derived factor in exercise-induced 
suppression of senescence and its impact on lung pathology in mice 
 

Hiromichi Tsushima1, Hirobumi Tada2,3, Azusa Asai3, Mikako Hirose1, Tohru Hosoyama3, 
Atsushi Watanabe3, Taro Murakami2, Masataka Sugimoto1,3 
 
1Laboratory of Molecular and Cellular Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 
173-0015, Japan 
2Department of Nutrition, Shigakkan University, Aichi 474-8651, Japan 
3Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan 
 
Correspondence to: Masataka Sugimoto; email: msugimot@tmig.or.jp 
Keywords: senescence, exercise, PEDF, myokine, COPD 
Received: March 6, 2024 Accepted: June 3, 2024  Published: June 26, 2024 

 
Copyright: © 2024 Tsushima et al. This is an open access article distributed under the terms of the Creative Commons 
Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 
 

ABSTRACT 
 

Senescent cells contribute to tissue aging and underlie the pathology of chronic diseases. The benefits of 
eliminating senescent cells have been demonstrated in several disease models, and the efficacy of senolytic 
drugs is currently being tested in humans. Exercise training has been shown to reduce cellular senescence in 
several tissues; however, the mechanisms responsible remain unclear. We found that myocyte-derived factors 
significantly extended the replicative lifespan of fibroblasts, suggesting that myokines mediate the anti-
senescence effects of exercise. A number of proteins within myocyte-derived factors were identified by mass 
spectrometry. Among these, pigment epithelium-derived factor (PEDF) exerted inhibitory effects on cellular 
senescence. Eight weeks of voluntary running increased Pedf levels in skeletal muscles and suppressed 
senescence markers in the lungs. The administration of PEDF reduced senescence markers in multiple tissues 
and attenuated the decline in respiratory function in the pulmonary emphysema mouse model. We also 
showed that blood levels of PEDF inversely correlated with the severity of COPD in patients. Collectively, these 
results strongly suggest that PEDF contributes to the beneficial effects of exercise, potentially suppressing 
cellular senescence and its associated pathologies. 

mailto:msugimot@tmig.or.jp
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


www.aging-us.com 2 AGING 

leading causes of mortality, according to the  

World Health Organization Global Health Estimates 

(https://www.who.int/data/gho/data/themes/mortality-

and-global-health-estimates/). Pulmonary emphysema 

is a major component of COPD, which is characterized 

by the permanent collapse of alveolar walls. Despite 

its prevalence and impact, there is currently no cure 

for this disease. Cellular senescence was shown to  

be enhanced in the epithelial cells of lung tissue in 

patients with emphysema [9]. Semi-genetic elimination 

of senescent cells using ARF-DTR mice, which 

express the diphtheria toxin receptor under the Arf 

promoter/enhancer, or p16-3MR mice, which express 

the herpes simplex virus thymidine kinase under  

the Ink4a promoter/enhancer, demonstrated that 

senescence enhanced pulmonary inflammation, thereby 

exacerbating their pathologies [10–12]. The senolytic 

intervention significantly reduced alveolar destruction 

and restored pulmonary function in these mice. 

Moreover, ABT-263 (Navitoclax), a BH3 mimetic that 

inhibits anti-apoptotic B-cell lymphoma (BCL)-2 

family member proteins and elicits senolytic activity 

[13], produced similar outcomes by decreasing 

senescent cells and mitigating emphysema-associated 

pathologies in the elastase model [10]. These findings 

suggest the potential of preventive and therapeutic 

strategies for emphysema that specifically target 

senescent cells. Collectively, these studies highlight 

the detrimental role of cellular senescence and the 

potential of targeting senescent cells for the prevention 

and treatment of emphysema.  

 
While there is currently no cure for COPD, aerobic 

training has been shown to exert positive effects by 

alleviating dyspnea and increasing exercise tolerance 

in patients with moderate COPD [14, 15]. However, 

the mechanisms underlying the beneficial effects of 

exercise training in COPD remain unclear. In contrast, 

a systematic review highlighted the potential of chronic 

physical training to decrease cellular senescence in 

peripheral T cells in humans or various tissues in 

rodents [16], which may imply that a reduction in 

cellular senescence mediates the beneficial effects of 

aerobic training in patients with COPD. Nevertheless, 

the specific mechanisms by which exercise training 

affects cellular senescence in tissues have not yet been 

elucidated. Exercise can stimulate the secretion of 

myokines, which is believed to contribute to the 

protection against several chronic diseases, including 

dementia and metabolic diseases [17]. Patients with 

COPD often experience muscle atrophy, which can be 

a risk factor for mortality [18], suggesting the potential 

involvement of myokines in their pathologies. 

 
In the present study, we investigated myocyte-

secreted factors with the potential to suppress  

cellular senescence, aiming to explore their protective 

effects against lung disease. We identified pigment 

epithelium-derived factor (PEDF) as a potential 

mediator of the suppression of senescence in response 

to exercise training. The expression of Pedf in skeletal 

muscle and blood PEDF levels were elevated in mice 

that underwent 8 weeks of voluntary exercise. PEDF 

exhibited the capacity to inhibit cellular senescence in 

cultured fibroblasts, and its administration effectively 

reduced senescence markers in lung and adipose 

tissues, mitigating pathologies in an elastase-induced 

pulmonary emphysema model. Moreover, an analysis 

of human samples indicated that serum PEDF levels 

were associated with respiratory parameters in 

patients with COPD. Therefore, the present results 

strongly suggest the potential of PEDF as a myokine 

linking exercise training to the suppression of 

senescence. 

 

RESULTS 
 

Myoblast-derived factor(s) suppressed cellular 

senescence  

 

To investigate whether myokines play a role in 

mediating the exercise-induced suppression of cellular 

senescence, we initially examined the impact of 

factors derived from myoblasts on the replicative 

lifespan of cells. We cultured MEFs according to the 

3T3 protocol [19]. MEFs were exposed to control 

media (control med) or C2C12-CM during the  

culture (1:1 dilution with 10% serum/medium). MEFs 

exposed to control med ceased their proliferation by 

passage 5 (Figure 1A). In contrast, when cultured in 

the presence of C2C12-CM, these cells exhibited a 

markedly higher rate of proliferation that persisted 

until passage 7. To clarify whether the senescence 

program was affected by C2C12-CM, we examined 

the expression of Cdkn2a (Ink4a and Arf) in these 

cells. The results obtained showed that the expression 

of both Ink4a and Arf was higher in passage 4 (P4) 

than in passage 2 (P2), (Figure 1B, 1C). However, 

MEFs exposed to C2C12-CM had lower levels of 

Ink4a and Arf than those exposed to control med. 

Consistently, cells expressed lower levels of p16 INK4a 

(Figure 1D) and a smaller number of cells expressed 

p19ARF than control cells following exposure to 

C2C12-CM (Figure 1E, 1F). Additionally, p21 protein 

level decreased in the presence of C2C12-CM (Figure 

1D). We further assessed SA-β-gal in MEFs at P4  

and found that a significantly lower number of cells 

were positive for SA-β-gal in C2C12-exposed MEFs 

(Figure 1G, 1H). Collectively, these results suggest 

that factor(s) present in C2C12-CM possess the  

ability to extend the replicative lifespan of MEFs by 

suppressing cellular senescence. 

https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/
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PEDF mediated the suppressive effect of C2C12-CM 

on cellular senescence 

 

We attempted to identify the factor(s) within C2C12-

CM that are responsible for suppressing cellular 

senescence. Proteins included in control med and 

C2C12-CM were separated by SDS-PAGE and 

visualized using silver staining (Supplementary Figure 

1). We found distinct proteins in C2C12-CM in the 

range of 37-75 kD. These proteins were subsequently 

analyzed by mass spectrometry to identify the proteins 

in C2C12-CM. Among 841 proteins detected in C2C12-

CM by mass spectrometry (Supplementary Table 1),  

62 proteins were annotated as extracellular proteins 

(Supplementary Table 2). We further filtered candidate 

factors based on two criteria from the literature: 1) an 

increased blood concentration in response to exercise 

and 2) the potential to modify stress signals or cellular  

 

 
 

Figure 1. Myocyte-derived factors suppress cellular senescence. (A) Wild-type MEFs were cultured according to the 3T3 protocol in 

the presence of a control medium or C2C12-CM (1:1 dilution with DMEM containing 10% serum). Data represent the average value of 
triplicate samples ± SD. (B, C) Total RNA was isolated from cells and the expression of Ink4a (B) or Arf (C) was analyzed by real-time PCR. 
Values were normalized to Gapdh in each sample. (D) The expression of p16INK4a and p21 was analyzed by immunoblotting. β-Actin was used 
as a loading control. (E) An immunofluorescence analysis was performed using the p19ARF antibody. Cells were counterstained with DAPI. 
Scale bar, 100 μm. (F) The number of p19ARF-positive cells was counted in (E). (G) Cells (passage 4) were stained for SA-β-gal. Scale bar, 100 
μm. (H) The number of SA-β-gal-positive cells was counted in each sample. Scale bar, 100 μm. Values represent means ± SD. Data were 
analyzed by a one-way ANOVA and Tukey’s post-hoc analysis (B, C, F) or the Student’s t-test (H). *P <0.05, **P <0.01, and ***P <0.001. 
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senescence. The selection of proteins identified by mass 

spectrometry based on these criteria resulted in the 

selection of PEDF (also known as Serpinf1 or Epc-1)  

as a candidate protein. Previous studies demonstrated 

that the expression of PEDF was induced during the 

myotube differentiation of human myoblasts [20] and 

its concentration increased in response to persistent 

training or exercise in both humans and mice [21, 22]. 

Moreover, PEDF has been shown to delay cellular 

senescence by reducing oxidative stress in human 

mesenchymal stem cells [23], and its deletion 

accelerated senescence in the retinal pigment epithelium 

of mice [24]. In the present study, we observed a 

significant decrease in Pedf expression in both the 

tibialis anterior (TA) and soleus (SOL) muscles of  

aged animals (Supplementary Figure 2). Therefore, 

PEDF was subjected to further analyses in the context 

of senescence and myokines in C2C12-CM. 

 

To investigate the potential role of PEDF in the 

suppression of cellular senescence, MEFs at P3 were 

cultured in the presence of C2C12-CM pre-treated  

with either a control or neutralizing antibody against 

PEDF. After 3 days, we observed an increase in the 

population of MEFs with the control antibody (Figure 

2A). The addition of anti-PEDF significantly inhibited 

cell proliferation. Additionally, anti-PEDF increased the 

expression of Cdkn2a (Ink4a and Arf) and the encoded 

proteins, p16INK4a and p19ARF (Figure 2B, 2C). 

 

To further validate the effects of PEDF on cellular 

senescence, we investigated whether treatment with 

recombinant PEDF effectively inhibited senescence  

in MEFs. After 3 days, an increase in cell numbers  

was observed in PEDF-treated samples without any 

noticeable change in cell viability (Figure 2D, 2E). 

PEDF also significantly suppressed the expression of 

Ink4a, Arf, and p21 as well as their corresponding 

proteins (Figure 2F, 2G) and reduced the number of  

SA-β-gal-positive cells (Figure 2H, 2I). These results 

strongly support the crucial role of PEDF in mediating 

the anti-cellular senescence effect of C2C12-CM. 

 

We then examined PEDF signaling pathways in  

MEFs. Although the detailed molecular mechanisms 

mediating the PEDF signal remain unclear, it has  

been observed to lead to the activation of AKT, ERK, 

and p38, while down-regulating the Wnt/β-catenin 

signal [25, 26]. Additionally, PEDF has been reported 

to bind to and down-regulate the expression of the 

ATGL protein by promoting its ubiquitin/proteasome-

dependent degradation [27]. However, in the present 

study, the PEDF treatment did not affect the 

phosphorylation of AKT, ERK, or p38 or the protein 

level of β-catenin or ATGL in MEFs (Supplementary 

Figure 3). Apart from its effects on these signaling 

pathways, PEDF has been shown to reduce oxidative 

stress, which is considered to contribute to the PEDF-

mediated suppression of cellular senescence [23].  

In our experiments, we observed a dose-dependent 

reduction in intracellular ROS levels (Figure 2J), 

suggesting that PEDF extended the replicative lifespan 

of MEFs by mitigating oxidative stress. 

 

Exercise stimulated PEDF expression while 

concurrently reducing cellular senescence 

 

Due to the potential of PEDF as a myokine and its 

ability to delay cellular senescence in vitro, we were 

prompted to investigate its effects in a mouse exercise 

model. Since senescent cells become detectable in  

lung tissues as early as 6 months old [28], and their 

elimination has been shown to induce protective effects 

in lung disease models [10, 11], we conducted an 8-

week voluntary wheel running regimen for 6-month-old 

mice. Control mice were maintained in cages without a 

running wheel. During this regimen, mice maintained 

an average daily running distance of more than 2 km 

without a significant change in their body weights 

(Supplementary Figure 4A, 4B). The expression of Pedf 

was increased in TA and SOL (Figure 3A), and serum 

PEDF levels were also elevated in the exercise group 

(Figure 3B). These results are consistent with previous 

findings indicating the increased expression of PEDF in 

human muscle and elevated serum PEDF levels in mice 

in response to training [21, 22]. 

 

Habitual physical activity and long-term exercise 

training have been shown to diminish the expression  

of p16INK4a in T lymphocytes among humans, while 

voluntary exercise has been associated with a reduction 

in senescence markers, including Cdkn2a and SA-β-

gal, across various tissues, including the heart, liver, 

muscles, kidneys, and fat, in mice [16]. We also 

observed that the expression of senescence markers, 

including Ink4a, Arf, p21, and SA-β-gal, in lung tissues 

was lower in the exercise group than in the control 

group (Figure 3C–3E). Similarly, the expression of 

SASP-related genes, such as Interleukin (Il)-1b,  

Il-6, and Matrix metalloproteinase (Mmp)-12 [28], in 

the lungs was significantly decreased in the exercise 

group (Figure 3F). These results strongly suggest  

the potential of exercise training to reduce cellular 

senescence in the lungs. Although a slight change  

was noted in the cell composition of bronchoalveolar 

lavage fluid (BALF, Supplementary Figure 4C–4F), 

we did not observe a difference in pulmonary function 

between the groups (Supplementary Figure 4G–4I). 

Therefore, the present results were consistent with our 

previous findings showing that the genetic elimination 

of lung senescent cells at this age did not affect lung 

function [10]. 
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Figure 2. PEDF mediates the anti-cellular senescence effects of C2C12-CM. (A–C) MEFs were cultured in the presence of C2C12-CM 

treated with a control or PEDF antibody for 3 days. (A) Cell numbers were counted and relative changes in cell numbers in 3 days were 
plotted. (B) Total RNA was isolated from MEFs and the expression of Ink4a and Arf was analyzed by real-time PCR. Values were normalized to 
Gapdh in each sample. (C) p16INK4a and p19ARF levels were analyzed by immunoblotting. β-Actin was used as the loading control. (D) MEFs 
were cultured in the presence of a recombinant of PEDF (100 ng/mL) for 3 days. Changes in cell numbers were plotted. (E) Cell viability was 
determined by the trypan blue exclusion assay. (F) The expression of Ink4a, Arf, and p21 was analyzed by real-time PCR. Values were 
normalized to Gapdh in each sample. (G) p16INK4a, p19ARF, and p21 levels were analyzed by immunoblotting. β-Actin was used as a loading 
control. (H) Cells were stained for SA-β-gal. Scale bar, 100 μm. (I) The percentage of SA-β-gal-positive cells was plotted. (J) Cells were 
stimulated with the indicated concentrations of recombinant PEDF for 3 days. Intracellular ROS levels were analyzed in each sample, and 
relative values were plotted against the average of the control sample. Values represent means ± SD. Data were analyzed by the Student’s  
t-test (A, B, D–F, I) or a one-way ANOVA and Tukey’s post-hoc analysis (J). *P <0.05, **P <0.01, and ***P <0.001. 
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Figure 3. Voluntary exercise up-regulates PEDF and suppresses cellular senescence. Six-month-old wild-type mice were subjected 

to voluntary exercise for 8 weeks. (A) Total RNA was isolated from skeletal muscles (TA and SOL) and Pedf levels were analyzed by real-time 
PCR. Values were normalized to 18S rRNA in each sample. (B) Serum PEDF levels were analyzed by ELISA. (C) The expression of Ink4a, Arf and 
p21 in the lungs was analyzed by real-time PCR. Values were normalized to Gapdh in each sample. (D) Lung sections were stained for SA-β-
gal. Arrowheads indicate SA-β-gal-positive cells. Scale bar, 100 μm. (E) The number of SA-β-gal-positive cells was counted in each sample.  
(F) The expression of Il-1b, Il-6, and Mmp-12 in lung total RNA was analyzed by real-time PCR. Values were normalized to 18S-rRNA in each 
sample. Values represent means ± SEM. Data were analyzed by the Student’s t-test. *P <0.05, **P <0.01, and ***P <0.001. 
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The administration of PEDF reduced cellular 

senescence in tissues 

 

We investigated the relationship between elevated 

PEDF levels and the observed reduction in cellular 

senescence following exercise training. Mice were 

administered a recombinant PEDF protein for 4 weeks. 

Notably, Ink4a, Arf, and p21 in lung tissues were 

decreased in the PEDF-treated group (Figure 4A). We 

also observed a marked reduction in the number of 

SA-β-gal-positive cells in lung tissues in the PEDF-

treated group (Figure 4B, 4C). We then expanded our 

analysis to other tissues. Ink4a, Arf, and p21 were 

decreased in adipose tissue in the PEDF-treated group, 

(Supplementary Figure 5A), and SA-β-gal activity was 

significantly reduced following the PEDF treatment 

(Supplementary Figure 5B).  

 

To gain further insights into the role of PEDF in 

suppressing senescence during exercise, we examined 

the expression of the Il-1b, Il-6, and Mmp-12 genes. 

While the expression of all of these genes in lung 

tissue decreased in response to exercise (Figure 3F), 

we specifically noted the significant down-regulation 

of Mmp-12 expression in both lung and fat tissues  

of PEDF-treated animals (Supplementary Figure 6). 

Collectively, these results strongly suggest the ability 

of PEDF to reduce cellular senescence in multiple 

tissues. 

 

PEDF ameliorated the pathology of emphysema in 

mice 

 

We previously demonstrated that the semi-genetic  

or pharmacological elimination of senescent cells in 

the lungs protected against pulmonary emphysema 

induced by elastase or cigarette smoking in 6-month-

old mice [10, 11]. Based on the ability of PEDF to 

suppress cellular senescence in lung tissue in mice,  

we investigated whether it also exerted protective 

effects in a mouse emphysema model. Mice were  

pre-administered with a recombinant PEDF protein 

and were then subjected to an elastase (PPE) treatment 

in order to induce pulmonary emphysema, as shown  

in Figure 5A. While PPE does not affect the Ink4a  

and Arf levels in the lung tissues [10], senescence 

markers were decreased in the lung tissues of the 

PEDF-treated group, indicating that cellular senescence 

was also diminished following the PEDF treatment  

in the elastase-induced emphysema model (Figure 5B). 

A morphometric analysis of inflated lung sections 

revealed that PPE induced a massive alveolar collapse 

(compare PBS/PBS and PBS/PPE in Figure 5C,  

5D), which was diminished by pre-administration of 

PEDF, suggesting that PEDF suppressed PPE-induced 

alveolar collapse. Consistently, a spirometric analysis 

demonstrated that the PEDF treatment significantly 

protected against PPE-induced pulmonary dysfunction 

(Figure 5E–5H). The administration of PEDF did not 

affect the cell composition of BALF in the PPE-induced 

emphysema model (Supplementary Figure 7), which 

was consistent with our previous findings showing  

that PPE only induced the transient accumulation of 

inflammatory cells following its installation [10]. 

Collectively, these results suggest that the PEDF 

treatment effectively protects against pulmonary 

emphysema by inhibiting cellular senescence. 

 

To clarify the relevance of PEDF in human pathology, 

we investigated whether serum PEDF levels correlated 

with respiratory function in patients diagnosed with 

COPD (Supplementary Table 3). Serum PEDF levels in 

20 patients were measured by ELISA and respiratory 

function parameters were assessed by the forced 

expiratory volume in 1 second per forced vital capacity 

of the lung (FEV1/FVC). A weak correlation was 

observed between serum PEDF level and respiratory 

function through linear regression analysis (r=0.48 and 

P=0.03, Supplementary Figure 8), suggesting a potential 

involvement of PEDF in the pathology of COPD in 

humans. 

 

Potential of miR-127 as a mediator of the PEDF-

induced inhibition of cellular senescence  

 

The results presented above strongly indicated the 

potential of PEDF to suppress cellular senescence, 

thereby mediating the beneficial effects of exercise 

training in mice. Although we demonstrated that PEDF 

reduced intracellular ROS levels in MEFs (Figure 2J), 

the underlying mechanisms remain unclear. Therefore, 

we attempted to identify factor(s) that potentially 

mediate the function of PEDF. We performed an RNA 

sequencing analysis of MEFs (P3) stimulated or not 

with recombinant PEDF. We identified 40 differentially 

expressed genes, including 16 up-regulated genes and 

24 down-regulated genes, between control and PEDF-

treated cells (Figure 6A and Supplementary Table 4). 

Of these genes, miR-127, which was down-regulated  

by PEDF in MEFs, was previously shown to increase 

during senescence and promote cellular senescence in 

mouse and human fibroblasts [29, 30]. The PEDF-

mediated down-regulation of miR-127 in MEFs was 

further confirmed by real-time PCR (Figure 6B). miR-

127 directly targets BCL-6, and its down-regulation has 

been shown to contribute to the induction of senescence 

by miR-127 [31]. Therefore, we examined BCL-6 

expression levels in MEFs. BCL-6 protein expression 

levels were higher in PEDF-treated MEFs than in 

control cells (Figure 6C), suggesting a role for the miR-

127-BCL-6 axis in the regulation of senescence by 

PEDF. 
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We subsequently examined miR-127 levels in the lung 

tissues of PEDF-treated animals. A slight decrease was 

observed in miR-127 levels in PEDF-treated animals, 

which indicated that PEDF exhibited the ability to 

down-regulate miR-127 in vivo (Figure 6D). Notably, 

miR-127 levels were significantly reduced in the  

lungs of mice subjected to voluntary exercise for 8 

weeks (Figure 6E). Collectively, these results strongly 

suggest that PEDF is intricately linked to the anti-

senescence effects of exercise through its suppression 

of miR-127. 
 

DISCUSSION 
 

Regular physical activity plays a crucial role in 

promoting healthy aging and is beneficial in the 

management of chronic diseases, such as COPD  

[32, 33]. Conversely, physical inactivity contributes to 

the development of chronic diseases [34]. However, 

the specific mechanisms that mediate the effects of 

exercise remain unclear. Habitual physical activity has 

been associated with lower levels of p16INK4a in the 

immune cells of healthy humans [35–37]. Similarly, 

the expression of senescence markers was reduced  

in the heart, vessels, endothelium, and adipose tissues 

of animals undergoing prolonged voluntary exercise 

[38–41]. Recent advances in the field of cellular 

senescence, particularly studies using senolysis models, 

have provided compelling evidence for the involvement 

of senescence in the pathologies of many chronic 

diseases [6]. Therefore, anti-senescence effects may 

mediate the beneficial outcomes of exercise. 

 

We herein focused on myokines, particularly those  

up-regulated in response to exercise, as potential 

mediators of the anti-senescence effects of exercise. 

Several factors have been identified as myokines,  

with some demonstrating exerkine properties that 

benefit the cardiovascular, metabolic, immune, and 

neurological systems [42]. Among these, irisin has 

been shown to suppress cellular senescence [43, 44], 

and its blood concentration has been associated  

with physical activity [45]. In addition, irisin levels 

inversely correlated with the severity of COPD in 

patients [46], and were increased by exercise training 

in both humans and animal models [45, 47]. However, 

irisin was not detected in C2C12-CM, which has  

the potential to extend the replicative lifespan of  

MEFs (Figure 1), indicating that irisin is unlikely to 

mediate the anti-senescence effects of C2C12 cells. 

We identified PEDF as a potential suppressor of 

cellular senescence that is included in C2C12-CM. The 

inactivation of PEDF increased senescence markers, 

and its administration was sufficient to reduce 

senescence in MEFs (Figure 2), suggesting that PEDF 

mediates the anti-senescence effects of C2C12-CM.  

 

 
 

Figure 4. PEDF suppresses cellular senescence in lung tissues. A recombinant PEDF protein (10 μg/kg body weight) was 

intraperitoneally injected twice a week for 4 weeks. (A) The expression of Ink4a, Arf, and p21 in lung total RNA was analyzed by real-time 
PCR. Values were normalized to Gapdh in each sample. (B) Lung tissues were stained for SA-β-gal. Arrowheads indicate SA-β-gal-positive 
cells. Scale bar, 50 μm. (C) The number of SA-β-gal-positive cells was counted in each sample. Values represent means ± SEM. Data were 
analyzed by the Student’s t-test. *P <0.05 and **P <0.01. 
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The increase in blood PEDF has been demonstrated in 

the aerobic training model [22]. Pedf expression is 

enhanced in muscles following the training, which 

could contribute to the changes in systemic PEDF 

levels. While we cannot exclude the possibility of 

PEDF production in other tissues or the contribution of 

other myokines/exerkines to the suppression of cellular 

senescence during exercise, the administration of PEDF 

to mice also reduced senescence markers in the lung 

and fat. However, the effect of PEDF administration  

on SASP expression is limited (Supplementary Figure 

6) compared to that of the exercise training (Figure  

3F). These findings suggest that PEDF may not be  

the sole factor responsible for mediating senescence 

suppression by exercise. Other factors may collaborate 

with PEDF to elicit the beneficial effect of exercise 

training. While we used female mice in this study  

due to their increased susceptibility to COPD [48],  

our previous analysis revealed that senescent cell 

elimination elicits protective effects against COPD-

associated pathology [10]. However, it should be 

carefully determined whether the production and 

function of PEDF vary between genders. 

 

Although PEDF did not affect previously defined 

signals in MEFs, it decreased intracellular ROS levels 

(Figure 2), as was previously observed in human 

mesenchymal stem cells [23]. The specific signaling 

pathways connecting PEDF to ROS or the suppression 

of senescence remain unclear. However, our RNA 

 

 
 

Figure 5. PEDF protected lung tissues from PPE-induced emphysema. (A) Experimental design. A recombinant PEDF protein was 

injected intraperitoneally twice a week for 4 weeks. PPE (5 units) was intranasally administered 2 weeks after the first dose of PEDF. Mice 
were analyzed 3 weeks after the PPE treatment. (B) Total RNA was isolated from lung tissues and the expression of Ink4a, Arf, and p21 was 
analyzed by real-time PCR. Values were normalized to Gapdh in each sample. (C) Representative images of control and PEDF-treated mouse 
lung sections. Sections were stained with hematoxylin and eosin. Scale bar, 100 μm. (D) Alveolar mean linear intercepts were measured.  
(E–H) A pulmonary function test was performed. Lung compliance (E), capacity (F), tissue damping (G), and tissue elastance (H) are shown. 
Values represent means ± SEM. Data were analyzed by the Student’s t-test (B), or a one-way ANOVA and Tukey’s post-hoc analysis  
(D–H). *P <0.05, **P <0.01, and ***P <0.001. 
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Figure 6. Involvement of miR-127 in PEDF signaling. (A) An RNA sequencing analysis was performed on MEFs stimulated with a 

recombinant PEDF protein. A volcano plot of RNA sequencing data is shown. A full list of RNA sequencing data is available in the Gene 
Expression Omnibus database (accession number; GSE241459). (B) The expression of miR-127 (-loop, -5p, and -3p) in MEFs was analyzed by 
real-time PCR. Values were normalized to U6 snRNA in each sample. (C) The expression of BCL-6 in MEFs was analyzed by immunoblotting. β-
Actin was used as a loading control. (D, E) miR-127 levels in the lungs of mice subjected to the PEDF treatment (D, Figure 4) or voluntary 
wheel running (E, Figure 3) were analyzed by real-time PCR. miR-127 levels were normalized to U6 snRNA in each sample. Values represent 
means ± SD (B) or means ± SEM (D, E). Data were analyzed by the Student’s t-test. *P <0.05, **P <0.01, and ***P <0.001. 
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sequencing analysis showed that miR-127 was down-

regulated in both cultured cells and lung tissues after the 

administration of PEDF or voluntary exercise (Figure 

6). A previous study revealed that miR-127 levels were 

increased in senescent fibroblasts [30]. Conversely,  

the ectopic expression of miR-127 has been shown  

to induce senescence [29, 31]. One of the targets of 

miR-127 is Bcl-6 [31]. BCL-6 has been shown to 

prevent the increase in intracellular ROS levels induced 

by genotoxic agents [49], which may explain the 

observed reduction in ROS levels in MEFs (Figure 2J). 

Furthermore, the overexpression of BCL-6 has been 

shown to suppress cellular senescence in mouse 

fibroblasts [50]. A PEDF stimulation increased BCL-6 

levels in MEFs, indicating a potential role for the miR-

127/BCL-6 pathway in the PEDF signal. However, 

BCL-6 protein levels were below the detection limit in 

the lung tissues of mice, and other miR-127 targets or 

PEDF signaling pathways may also contribute to the 

outcome of PEDF administration or exercise training. 

Further studies are required to define the PEDF signal 

that suppresses cellular senescence. 

 
Cellular senescence was previously shown to be 

accelerated in the lung tissues of patients with COPD  

[9]. Furthermore, the conditional ablation of senescent 

cells attenuated emphysema-associated pathologies in 

mouse models [10, 28]. The present results indicate that 

PEDF restored pulmonary function in an emphysema 

model while concurrently decreasing the number of 

senescent cells. This supports the hypothesis that PEDF 

may mediate the positive effects of exercise by 

suppressing senescence. Physical activity is the most 

significant prognostic factor for patients with COPD,  

and exercise therapy is commonly used to decelerate 

progression in these patients [33]. The severity of COPD 

is frequently associated with sarcopenia [51], suggesting 

the involvement of myokines in the pathology. Exercise 

training, which may restore muscle mass, could therefore 

be an effective approach to maintaining pulmonary 

function in COPD. Indeed, we discovered a weak, but 

important correlation between blood PEDF levels and 

respiratory function in COPD patients, indicating the 

involvement of PEDF in the pathology of COPD in 

humans. Additionally, blood PEDF levels in humans 

were much higher than those observed in mice 

(Supplementary Figure 8), possibly due to the disparity in 

muscle mass amount between the two species, which 

could facilitate the detection of blood PEDF in humans. 

Therefore, blood PEDF levels may be utilized to predict 

the severity or risk of emphysema. 

 
Possible links between PEDF and neurological diseases, 

such as dementia and age-related macular degeneration 

(AMD), have been reported [52–54]. Cellular sene-

scence has been implicated in these diseases [55, 56]. 

Additionally, physical activity has been associated  

with a decreased risk of dementia and AMD [57, 58]. 

These findings suggest the involvement of PEDF in 

suppressing cellular senescence, which may be linked to 

these neurological disorders. Furthermore, we observed 

the significant down-regulation of Pedf expression in the 

skeletal muscle of aged animals (Supplementary Figure 

2). Since cellular senescence is known to contribute to 

frailty in aged animals [59], the decrease in PEDF levels 

associated with aging may contribute to senescence-

induced frailty. PEDF is expressed in a wide variety of 

tissues, as reported in the Gene Expression Omnibus 

database. Future studies are needed to investigate 

whether PEDF levels change in other tissues during aging 

as well as the mechanisms by which PEDF in other 

tissues may affect aging and disease phenotypes. 

 

While senolysis is promising based on its efficacy in 

animal models, its application to humans requires 

caution due to its potential adverse effects. Exercise 

therapy may be a safer approach to providing senolytic 

or seno-suppressive treatment [16]. However, some 

studies reported contradictory increases in senescence 

markers with forced exercise in animals [60, 61], 

suggesting that the impact of exercise on cellular 

senescence is affected by the type and intensity of 

exercise. Based on the present results, PEDF represents 

an alternative to controlling cellular senescence. 

However, the physiological activity of PEDF remains 

unclear. Further investigations are warranted to clarify 

the specific mechanisms and pathways through which 

PEDF may contribute to aging and disease phenotypes, 

offering valuable insights for potential therapeutic 

interventions. 

 

MATERIALS AND METHODS 
 

Animals 

 

Six-month-old female C57BL/6J mice were purchased 

from Japan SLC Inc. and maintained under specific 

pathogen-free conditions with a 12-h light/dark cycle, 

constant temperature, and ad libitum access to food 

(CRF-1, Oriental Yeast Co., Ltd.) and drinking water. 

As the exercise model, mice were independently housed 

in a cage with a 15-cm running wheel with a rotation 

sensor (ML-321, Marukan Co., Ltd.). 

 

Regarding the administration of PEDF, a  

recombinant PEDF protein (PKSM040786, Elabscience 

Biotechnology Inc.) diluted with phosphate-buffered 

saline (PBS) was intraperitoneally injected at a dose of 

10 µg/kg body weight twice a week for 4 weeks. 

 

The pulmonary emphysema model was prepared  

as previously described [62]. Five units of porcine 
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pancreatic elastase (PPE) (EC134, Elastin Products 

Company, Inc.) in 100 µl PBS was intranasally 

administered using a standard pipette tip. 

 

Cell culture 

 

Mouse embryonic fibroblasts (MEFs) were prepared 

from C57BL/6J embryos (embryonic day 13.5). MEFs 

were maintained in Dulbecco’s Modified Eagle Medium 

(DMEM, 045-30285, Fujifilm Corp.) supplemented 

with 10% fetal bovine serum (FBS), non-essential 

amino acids (11140050, Thermo Fisher Scientific Inc.), 

10 μg/mL gentamicin (15710064, Thermo Fisher 

Scientific Inc.), and 55 μM 2-mercaptoethanol.  MEFs 

were cultured in atmospheric O2 (20%) and 5% CO2 

according to the 3T3 protocol [19]. Cell viability was 

evaluated by the trypan blue exclusion test. 

 

C2C12 cells were maintained in DMEM supplemented 

with 10% FBS and gentamicin. To induce terminal 

differentiation, cells were cultivated in DMEM 

supplemented with 2% horse serum and Insulin-

Transferrin-Selenium (41400045, Thermo Fisher 

Scientific Inc.) for 2 days. Conditioned media were then 

collected from differentiated C2C12 cells, filtered, 

aliquoted, and stored at -80°C until used. Conditioned 

media were diluted with an equal volume of MEF 

medium for use on MEFs. To neutralize PEDF, the 

conditioned media were incubated with anti-PEDF  

(5 μg/mL, PAB972Mu02, Cloud-Clone Corp.) at room 

temperature for 1 hour before use. 

 

Mass spectrometry 

 

Proteins in control media and conditioned media 

prepared from differentiated C2C12 myoblasts (C2C12-

CM) (200 μL) were analyzed by mass spectrometry. 

Albumin was removed using the ProMax Albumin 

Removal kit (24351, Polysciences Inc.). Samples were 

reduced with 20 mM Tris (2-carboxyethyl) phosphine at 

80°C for 10 minutes, followed by alkylation with 30 

mM iodoacetamide at room temperature for 30 minutes. 

Proteins were digested with 500 ng Trypsin/Lys-C Mix 

(V5071, Promega Corp.) at 37°C overnight. 

 

Extracted peptides were then separated via nanoLC 

(Ultimate 3000 RSLCnano LC system, Thermo Fisher 

Scientific Inc.), and the LC eluent was coupled to  

an electrospray-ionization source attached to the Q 

Exactive HF-X mass spectrometer (Thermo Fisher 

Scientific Inc.). MS/MS spectra were analyzed using 

Scaffold DIA (Proteome Software, Inc.). Significance 

thresholds were selected based on the peptide false 

discovery rate (FDR) and protein FDR, and data were 

considered to be significant when each showed a value 

less than 0.01. 

Real-time PCR 

 

Tissue samples were collected after the pulmonary 

function tests (described below), snap-frozen, and 

stored at -80°C until used. TA and SOL were  

collected from the hind limb, and the right lung lobes 

were used for the RNA analysis. Total RNA was 

extracted using TRI Reagent® (TR118, Molecular 

Research Center, Inc.) according to the manufacturer’s 

instructions. RNA was reverse-transcribed using the 

PrimeScript RT Reagent Kit with gDNA Eraser 

(RR047A, Takara Bio Inc.). Real-time PCR was 

performed on a CFX Connect Real Time System (Bio-

Rad Laboratories, Inc.) using the following primers: 

Arf, 5’-GCCGCACCGGAATCCT-3’ (sense) and 5’-

TTGAGCAGAAGAGCTGCTACGT-3’ (antisense); 

Gapdh, 5’-AATGGTGAAGGTCGGTGTG-3’ (sense) 

and 5’-GAAGATGGTGATGGG CTTCC-3’ 

(antisense); Il-1b, 5’-GAATGCCACCTTTTGAC 

AGTG-3’ (sense) and 5’-CTGGATGC TCTCATC 

AGGACA-3’ (antisense); Il-6, 5’-TAGTCCTTCCTAC 

CCCAATTTCC-3’ (sense) and 5’-TTGGTCCTTAGCC 

ACTCCTTC-3’ (antisense); Ink4a, 5’-CCCAACGCCC 

CGAACT-3’ (sense) and 5’-GCAGAAGAGCTGCTA 

CGTGAA-3’ (antisense); p21, 5’-CGAGAACGGTGG 

AACTTTGAC-3’ (sense) and 5’-CAGGGCTCAGGTA 

GACCTTG-3’ (antisense); Mmp-12, 5’-CTGCTCCCA 

TGAATGAC AGTG-3’ (sense) and 5’-AGTTGC 

TTCTAGCCCAAAGAAC-3’ (antisense); Pedf, 5’-

CCAACTTC GGCTACGATCTGT-3’ (sense) and  

5’-TCTGTTCGATGTTCAGCTCCC-3’ (antisense); 18S 

rRNA, 5’-AGTCCCTGCCCTTTGTACACA-3’ (sense) 

and 5’-GATCCGAGGGCCTCACTAAAC-3’ (antisense).  

 

MicroRNA was analyzed using the Mir-X™ miRNA 

qRT-PCR TB Green® Kit (Z8314N, Takara Bio Inc.). 

The following primers were used to detect miR-127:  

miR-127 loop, 5’-GGCTCTGATTCAGAAAGATC-3’; 

miR-127-5p, 5’-CTGAAGCTCAGAGGGCTCTGAT-3’; 

miR-127-3p. 5’-TCGGATCCGTCTGAGCTTGGCT-3’.  

 

RNA sequencing 

 

Total RNA was extracted from MEFs cultured  

in the presence or absence of 100 ng/mL of  

PEDF for 24 hours using NucleoSpin RNA  

(740955, MACHEREY-NAGEL Inc.) according to  

the manufacturer’s instructions. The quality of RNA  

was assessed using an Agilent 2100 Bioanalyzer 

(Agilent Technologies, Inc.). mRNA was isolated  

from total RNA using the NEBNext® Poly(A)  

mRNA Magnetic Isolation Module (E7490, New 

England Biolabs, Inc.). Libraries were generated using 

the NEBNext® Ultra™II Directional RNA Library 

Prep Kit (E7760, New England Biolabs, Inc.) and 

sequenced on Illumina NovaSeq 6000 (Illumina, Inc.) 
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at Rhelixa, Inc. Raw paired-end sequence reads were 

evaluated for quality using FastQC (Version 0.11.7; 

https://www.bioinformatics.babraham.ac.uk/projects/fa

stqc/) [63]. Trimmomatic software (Version 0.38) was 

employed to trim low-quality bases (<20) and remove 

adapter sequences [64]. The specific parameters used 

for this process were as follows: ILLUMINACLIP: 

path/to/adapter.fa:2:30:10, LEADING:20, TRAILING:20, 

SLIDINGWINDOW:4:15, MINLEN:36. Processed 

reads underwent alignment to the reference genome 

using the RNA-seq aligner HISAT2 (Version 2.1.0) 

[65]. The resulting .sam files from HISAT2 were  

then converted to the .bam format using Samtools 

(Version 1.9). The featureCounts tool (Version 1.6.3) 

was then applied to .bam files in order to estimate  

the abundance of uniquely mapped reads [66]. Raw 

read counts underwent normalization using relative  

log normalization, and a differential expression 

analysis was performed using DESeq2 (Version 

1.24.0) [67]. Full data are available from the Gene 

Expression Omnibus database of the National Center 

for Biotechnology Information (accession number: 

GSE241459). 

 

Immunoblotting 

 

Lysates were prepared using a buffer containing 10 mM 

Na-phosphate (pH 7.2), 150 mM NaCl, 2 mM EDTA, 

0.1% SDS, 1% Na-deoxycholate, and 1% NP-40 and 

protease inhibitors. Lysates were separated by SDS-

PAGE and transferred to PVDF membranes (Merck 

KGaA). Proteins were detected with antibodies to 

p19ARF, p21, BCL-6, phospho-ERK1/2 (sc-32748, sc-

6246, sc-7388, and sc-136521; all from Santa Cruz 

Biotechnology, Inc.), β-Actin, β-catenin, phospho-Akt 

(ser473), phospho-p38 (#12620, #9562, #4060, and 

#9211; all from Cell Signaling Technology, Inc.), 

adipose triglyceride lipase (ATGL) (55190-1-AP, 

Proteintech, Inc.), and p16INK4a [68]. Antibodies were 

diluted to 1:200 (BCL-6), 1:500 (p16INK4a, p19ARF, p21, 

phospho-Akt (ser473), phospho-ERK1/2, and ATGL), 

1:1000 (β-catenin, phospho-p38), or 1:2000 (β-Actin) 

with a blocking buffer containing 5% skim milk, 0.1% 

Tween 20 in Tris-buffered saline (pH 7.5, TBS), or a 

blocking buffer containing 4% bovine serum albumin, 

and 0.1% Tween 20 in TBS for phospho-Akt, phospho-

ERK1/2, and phospho-p38 antibodies. 

 

Morphometry 

 

The lungs were inflated by injecting Mildform®20N 

(Fujifilm Corp.) and fixed for 10 minutes at constant 

pressure (25 cmH2O) [62]. Paraffin-embedded tissues 

were sectioned (thickness of 5 μm) and stained with 

hematoxylin and eosin. At least eight randomly selected 

fields per mouse were photographed. Test lines were 

randomly drawn on the images, and intercepts with the 

tissue structure were counted for each line. Airway and 

vascular structures were eliminated from the analysis. 

 

Immunofluorescence 

 

MEFs were seeded onto coverslips and fixed with  

4% paraformaldehyde for 20 minutes. Cells were 

permeabilized in 0.5% Triton X-100 and immunostained 

using p19ARF (1:200 dilution, sc-32748, Santa Cruz 

Biotechnology, Inc.). The sites of antibody binding were 

visualized using Cy3-conjugated anti-rat IgG (1:200 

dilution, 712-165-153, Jackson ImmunoResearch Inc.) 

and mounted using DAPI Fluoromount-G® (0100-20, 

Southern Biotechnology Associates Inc.). Fluorescence 

images were acquired using a fluorescence microscope 

(BX-X710, Keyence Corp.).  

 

Senescence-associated β-galactosidase (SA-β-gal) 

staining 

 

Frozen 10-µm-thick lung sections were fixed with 4% 

paraformaldehyde for 20 minutes and stained using the 

Cellular Senescence Detection Kit-SPiDER-bGal (SG03, 

Dojindo Molecular Technologies, Inc.). Sections were 

mounted using DAPI Fluoromount-G®. 

 

Adipose tissue (1-cm squares) and MEFs were stained 

using an SA-β-gal staining Kit (#9860, Cell Signaling 

Technology, Inc.). In adipose tissue staining, images in 

the RGB format were analyzed using ImageJ. The blue-

green signal intensity per tissue area was quantified in 

each sample.  

 

ROS assay 

 

MEFs were seeded on a 96-well plate (10,000 

cells/well) and treated with PEDF for 24 hours. 

Intracellular ROS levels were analyzed using a ROS 

Assay Kit - Highly Sensitive DCFH-DA- (R252, 

Dojindo Molecular Technologies, Inc.) according to the 

manufacturer’s instructions. Fluorescence intensity was 

measured by a microplate reader (the VICTOR Nivo 

Multimode Microplate Reader, PerkinElmer Inc.). 

 

Pulmonary function tests 

 

Pulmonary function tests were performed using  

a flexiVent system (Emka Technologies, Inc.) as 

previously reported [28]. Mice were euthanized by an 

intraperitoneal injection of pentobarbital sodium (100 

mg/kg body weight) and connected to the flexiVent 

system. They were ventilated at a respiratory rate of 159 

breaths per minute with a tidal volume of 10 mL/kg 

against a positive end-expiratory pressure of 3 cmH2O. 

Deep inflation, Snapshot-150, Quickprime-3, and a 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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pressure-volume loop with a constantly increasing 

pressure were consecutively performed 3 times in each 

mouse. 

 

Analysis of bronchoalveolar lavage fluid (BALF) 

cells 

 

BALF cells were analyzed as previously reported  

[10]. In brief, BALF cells were prepared with 1 mL of 

PBS containing 5 mM EDTA, and cells were collected 

from BALF by mild centrifugation. Collected cells were 

attached to glass slides using StatSpin Cytofuge 

(Beckman Coulter, Inc.) and subjected to modified 

Giemsa staining with a Diff-Quick stain kit (Sysmex 

Corp.). 

 

Enzyme-linked immunosorbent assay 

 
Mouse blood samples were collected from the 

abdominal vena cava prior to conducting pulmonary 

function tests using a 24G needle (a minimum of 0.3 

mL blood sample was obtained from each mouse). 

Samples were analyzed using a Mouse PEDF, PEDF 

ELISA Kit (CSB-E08820m, Cusabio Technology, 

LLC). Human sera (information including age, sex,  

and pathology are listed in Supplementary Table 3) 

were purchased from ProteoGenex Inc. and PEDF 

levels were analyzed using a Human PEDF ELISA kit 

(RD191114200R, BioVender R&D). 

 

Statistical analysis 

 

A two-tailed unpaired Student’s t-test was used to 

compare two sets of experimental data. A one-way 

ANOVA was performed to compare more than two sets 

of data. When the statistical model was proven to be 

significant, differences between combinations of the 

two groups were analyzed using the Tukey-Kramer test. 

Data were analyzed by GraphPad Prism 7.0 (GraphPad 

Software Inc.). Significance was represented by asterisks 

as follows: *P <0.05, ** P <0.01, and *** P <0.001. No 

statistical method was used to select the sample size. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Detection of proteins secreted by differentiated C2C12 cells. Equal volumes of control media and C2C12-

CM were loaded onto SDS-PAGE. Proteins present in samples were detected using silver staining. 
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Supplementary Figure 2. Pedf expression is reduced in the skeletal muscle of aged animals. Total RNA was isolated from skeletal 

muscles (TA and SOL), and the expression of Pedf was analyzed by real-time PCR. Values were normalized to Gapdh in each sample. Values 
represent means ± SEM. Data were analyzed by the Student’s t-test (h). *P <0.05. 

 

 
 

Supplementary Figure 3. Effects of PEDF on signaling molecules. MEFs were stimulated with PEDF for 24 hours. The phosphorylation 

or expression of the indicated proteins was analyzed by immunoblotting. β-Actin was used as a loading control. 
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Supplementary Figure 4. Total running distance during voluntary exercise and its effects on body weight and lung 
parameters. (A) The cumulative running distance of mice in Figure 3. (B) Changes in body weights during voluntary exercise. (C) The number 

of total BALF cells was counted in each mouse. (D–F) BALF cells were analyzed by modified Giemsa staining. The number of macrophages  
(D), lymphocytes (E), and granulocytes (F) in each BALF sample was counted. (G–I) Mice were subjected to pulmonary function tests. 
Compliance (G), tissue damping (H), and tissue elastance (I) are shown. Values represent means ± SEM. Data were analyzed by the Student’s 
t-test. *P <0.05 and ***P <0.001. 
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Supplementary Figure 5. PEDF suppresses cellular senescence in adipose tissue. (A) The expression of Ink4a, Arf, and p21 in 

perigonadal adipose tissues was analyzed by real-time PCR. Values were normalized to Gapdh in each sample. (B) Left, Fat tissues were 
stained for SA-β-gal. Representative images are shown. Scale bar, 5 mm. Right, SA-β-gal intensity was analyzed in each sample. Values 
represent means ± SEM. Data were analyzed by the Student’s t-test. *P <0.05. 

 

 
 

Supplementary Figure 6. Effects of PEDF on the expression of SASP-related factors. Total RNA was isolated from the lung (A) and 

adipose tissues (B) of mice in Figure 4, and the expression of the indicated genes was analyzed by real-time PCR. mRNA levels were 
normalized to Gapdh in each sample. Values represent means ± SEM. Data were analyzed by the Student’s t-test. *P <0.05 and ***P <0.001. 
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Supplementary Figure 7. PEDF does not affect BALF cells. (A) BALF was prepared from mice in Figure 5, and the total cell number in 

BALF was counted. (B–D) BALF cells were analyzed by modified Giemsa staining. The numbers of macrophages (B), lymphocytes (C), and 
granulocytes (D) in each BALF sample were counted. Values represent means ± SEM. Data were analyzed by the Student’s t-test. 

 

 
 

Supplementary Figure 8. Serum PEDF levels correlate with pulmonary function in patients with COPD. Detailed patient 

information is presented in Table S2. Pearson’s correlation and a simple linear regression between serum PEDF levels and FEV1/FVC in 
patients with COPD (n = 20). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

 

Supplementary Table 1. Mass spectrometry data. 

 

Supplementary Table 2. List of proteins annotated as secreted. 

 

Supplementary Table 3. Patient information. 

 

Supplementary Table 4. Differentially expressed genes in control vs. PEDF stimulated MEFs detected by RNA-
Seq. 

 


