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INTRODUCTION 
 

Senescent cells have been widely characterized [1–5]. 

Different research lines have extensively demonstrated 

that senescent cells accumulate in different tissues during 

aging, where they guide the aging process through local 

and systemic signals. While aging is characterized by  

an accumulation of senescent cells associated with a loss 

of tissue fitness, senescence per se is a strong barrier to 

tumor progression [6–8]. These findings hold exciting 

promise in the combat of both cancer and aging. In fact, 

expression of tumor-suppressor factors (Sp53/Sp16/SArf), 

was shown per se to increase the lifespan of rodents, 

supporting the hypothesis that the benefits of senescence 

may outweigh the deleterious effects of its accumulation 

later in age, at least in small rodents [9, 10]. This may 

relate to a protective background in a cancer-prone model 

such as the WT C57BL/6 mice in ad libitum diet [11]. 

 

Induction of senescence, triggered by internal or  

external signals, results in a committed cell cycle 
arrest. Oncogenic induced senescence (OIS), originally 

observed as a strong barrier against cancer (and initially 

described after H-RasG12V expression in IMR-90 cells), 

presents sustained expression of p16 and p53 activation, 

something also observed during replicative induced 

senescence [7, 12–14]. 

 
Although one could not distinguish senescent tumor cells 

(STC) from non-tumoral senescent cells, it is suggested 

that STC are derived during cancer progression. 

Furthermore, current cancer treatments could generate 

senescent cells in the tumor vicinity. Radiotherapy, or 

other tumor-targeted therapies, have been shown to 

induce senescence in the tissues surrounding tumors, 

which have the capacity to fuel cancer progression [15] 

through mechanisms further explored in this review. 

Rather than senescent cells originated directly from 

tumor cells, the myriad of cell states around or within 

the tumor microenvironment is the guiding force of 

tumor-associated senescent cells (TASCs). Hereafter, 

we will use the term TASCs to refer to the different 

types of senescent cells coexisting in the core tumor and 

its vicinity.  

 
How TASCs could be used to design novel anticancer 

strategies was recently addressed [16, 17]. Here, we  

will discuss the latest advances on our knowledge 
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ABSTRACT 
 

Two recent seminal works have untangled the intricate role of tumor-associated senescent cells in cancer 
progression, or regression, by guiding our immune system against cancer cells. The characterization of these 
unique, yet diverse cell populations, should be considered, particularly when contemplating the use of 
senolytics, which are drugs that selectively eliminate senescent cells, in a cancer framework. Here, we will 
describe the current knowledge in this field. In particular, we will discuss how the presence of senescent cells in 
tumors could be used as a therapeutic target in immunogenic cancers and how we may hypothetically design 
an adaptive anti-aging vaccine. 
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concerning the capacity of senescent cells to guide the 

immune system towards different types of cancer. 

Furthermore, we will integrate this information with 

new anti-aging senolytic-based strategies. 

 

TASCs have both tumor-suppressive and 

oncogenic impacts 
 

Senescence is evolutionarily regarded as a 

developmental anti-cancer program. However, this 

unique perception of senescence has been challenged by 

our improved understanding of the intricate role of 

senescent cells during the aging process. Depending on 

their background, TASCs can promote tumor growth 

and aggressiveness, or function as a strong barrier to 

cancer progression. DNA damage, oncogene activation 

and mutations in tumor suppressor genes may induce 

TASCs to prevent tumor formation [7, 18–20]. For 

instance, senescence induced by telomere dysfunction 

and oncogenic signaling (and further accelerated by 

oncogene-induced DNA replication stress) is a biological 

response of cells from human cancer precursor lesions 

and may work as a tumor-suppressive mechanism 

through cell cycle arrest [3, 21].  

 

As opposed to their tumor-suppressive effects, TASCs 

may also have an oncogenic impact. The senescence-

associated secretory phenotype (SASP) is an intercellular 

strategy employed by senescent cells to communicate 

with the surrounding tissues and to signal the senescence 

process, through the release of chemokines, cytokines, 

growth factors and enzymes [22]. Cellular stressors  

can activate the DNA damage response, which, when 

persistent, can induce transcription factors and signaling 

pathways that trigger SASP release and affect its 

composition [23, 24]. The SASP is regulated at the 

messenger RNA transcription, stability, translation, and 

secretion levels [24]. SASP components include cytokines 

(such as interleukin-6 [IL-6], tumor necrosis factor α, 

tissue growth factor β, and others), chemokines (such as 

C-C motif ligand 2 and C-X-C motif ligand 2), bioactive 

lipids, reactive oxygen species (ROS), and noncoding 

DNA or RNA molecules [23]. In 30-70% senescent cells, 

the SASP contains molecules with pro-inflammatory,  

pro-apoptotic, and pro-fibrotic effects. In the remaining 

70-30% senescent cells, the SASP is thought to contain 

growth and regenerative factors, which can possibly 

reduce the levels of apoptosis, fibrosis, and tissue 

destruction [23]. The SASP can also amplify its signals 

through autocrine and paracrine positive feedback loops 

[24]. Moreover, some SASP components can propagate 

senescence properties to neighboring or distant non-

senescent cells [23]. 
 

Evidence suggests that the SASP could lead to  

an inflammatory microenvironment supporting tumor 

progression and drug extrusion causing chemotherapy 

resistance. In these processes, IL-6, C-X-C motif 

chemokine ligand 10 and metaloproteinases 3/9 play 

pivotal roles [7, 25–31]. Supporting the oncogenic 

impact of TASCs, senescence was shown to support 

melanoma progression [32]. Furthermore, the increase 

of senescence and the inflammatory microenvironment 

triggered by the SASP was shown to facilitate renal cell 

carcinoma metastasis [33]. In mice, senescent dermal 

fibroblasts generated a SASP signature that promoted 

carcinoma growth after co-transplantation. Importantly, 

this response was observed only in immune-competent 

mice demonstrating the critical role of the immune 

system (in particular through IL-6) in the spreading of 

senescence signaling [29, 34]. 

 
The presence of senescent cells in cancer has been 

widely characterized. A body of preclinical studies 

globally demonstrates that cancer therapies (e.g. 

radiotherapy or chemotherapy) cause the accumulation 

of senescent cells, both in tumors (TASCs) and in the 

surrounding healthy tissues of the cancer patient. 

Because of the dual effect of senescent cells in cancer 

therapy, a two-step therapeutic approach has been 

proposed, in which radiation and chemotherapy induce 

senescence (with anticancer effects) and, subsequently, 

senescent cells are selectively cleared, to minimize 

tumor fueling [35]. These studies suggest that, for 

optimized cancer treatment, senescence should be 

transiently induced and subsequently eliminated. 

 
Strategies to tackle senescent cells have been widely 

described [36, 37]. In this framework, the use of 

senolytics, which are compounds that specifically 

eliminate senescent cells by inducing their apoptosis, 

holds great promise in enhancing the effectiveness of 

cancer therapy and minimizing its side effects [38]. 

Senolytics are broadly divided into first and second-

generation. First-generation senolytics are natural 

products with multiple molecular targets and include the 

anticancer agent dasatinib and the natural flavonoid 

quercetin. These compounds target ephrins 1/3 and 

phosphatidylinositol 3-kinase, respectively, which are 

critical for senescent cell survival [39]. Clinical trials  

in aging-related diseases, including heart, kidney, liver, 

muscular, and neurological diseases, have shown  

that the combined effects of these two compounds  

killed senescent cells [23]. Second-generation senolytics 

include compounds and nanoparticles activated through 

contact with the increased lysosomal content or 

increased senescence-associated β-galactosidase activity 

of senescent cells. Other second-generation senolytics 

include SASP inhibitors and inducers of sodium-

potassium pump-dependent apoptosis [23]. Since 

senescence phenotypes are heterogeneous, senolytic 

effects are also heterogeneous, depending on the cell 
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type and the mechanism that triggered senescence. 

Therefore, the simultaneous use of more than one 

senolytic has been tested to tackle senescent cell 

heterogeneity [39]. Senolytic mechanisms include the 

triggering of the intrinsic pathway of apoptosis, by 

increasing p53 release or targeting anti-apoptotic 

members of the B-cell lymphoma protein 2 family. 

Other senolytic mechanisms include the simultaneous 

inhibition of multiple cellular pathways or the depletion 

of metabolites that are essential for senescent cell 

survival. Additional mechanisms include the aggravation 

of cellular stresses, such as destabilization of proteostasis, 

accumulation of ROS, or mitochondrial dysfunction. 

Since senescent cells are already under stress, these 

strategies can promote their selective elimination [39]. 

 

In a cancer framework, Patil and colleagues recently 

demonstrated that treatment of irradiated mice with  

a small molecule that tackles senescent cells (the 

senolytic agent ABT-737) was sufficient to reduce 

radiation-enhanced tumor growth through the control  

of the expression of 12-lipoxygenase (12-LOX),  

a molecule mediating the deleterious effects of 

senescence. These data demonstrate how radiation-

induced senescence could support tumor growth, and 

identified a key component (12-LOX) of the oncogenic 

microenvironment [40]. Another compound, ABT- 

263, has demonstrated powerful senolytic activity 

against senescent breast cancer cells generated by 

radiation or chemotherapy [41]. Of note, several 

senolytic compounds are currently under clinical trials 

[42]. Moreover, senolytics are also promising in 

overcoming the decline in the immune fitness of the 

elderly, which is partially caused by immune cell 

senescence [43].  

 

TASCs and other senescent cells share cancer 

antigens  
 

Marin et al. and Chen et al. have recently demonstrated 

how senescent cells could be used to guide the immune 

system against cancer [16, 17]. In fact, previous 

evidence demonstrated that TASCs could lead to the 

elimination of established tumors when injected into 

tumor-bearing mice, through the mobilization of an 

antitumoral cytotoxic T lymphocytes response [44]. 

This observation has been strengthened by recent 

studies. In cell lines derived from mouse models of 

melanoma and pancreatic carcinoma, TASCs were 

induced through the conjunction of radiotherapy and 

inhibition of DNA repair. These senescent cells were 

shown to express immunostimulatory cytokines that 

could activate cytotoxic T lymphocytes. When TASCs 
were injected into tumor-bearing mouse models, an 

antitumor immune response was generated, indicating 

that vaccination with senescent cells could halt tumor 

growth [17]. Using a p53-restorable liver cancer model, 

Chen and colleagues corroborated previous findings  

and unveiled the paradoxical effect of senescent cells  

on tumor biology [16]. In their model, a combination  

of different SASP programs, in conjunction with 

differential IFNγ outputs, was shown to influence  

the oncogenic and tumor-suppressive dual effect of 

senescence in (liver) cancer. In fact, different SASP 

programs may predict patient outcomes in ovarian  

and breast cancer through a differential modulation of  

a senescence program [45, 46]. These studies have 

improved our understanding of the impact of TASCs  

on cancer regression and potential relapse. 

 
TASCs may also help training the immune system 

against cancer, revealing their adjuvant capacity. Liu 

and colleagues demonstrated that mouse colon and 

mammary carcinoma cell lines treated with radiation 

and veliparib to generate cancer senescent cells  

could induce the maturation of co-cultured dendritic  

cells, leading to efficient priming of cytotoxic T 

lymphocytes. Injecting these TASCs into tumor-

bearing mice increased inflammation and suppressed 

tumor growth, enhancing the radiotherapy effect and 

blocking colonization by tumor cells [47]. TASCs 

could source a combination of immunostimulatory  

and immunosuppressive molecules, whose equilibrium 

may critically affect the outcome of immunotherapy 

[48]. MHC class I overexpression on TASCs depends 

on paracrine type I interferon signaling. TASCs  

are naturally antigenic, displaying antigens that  

can be targeted by CD8-positive T cells. Importantly, 

some of these antigens are exclusive of senescent  

cells.  

 
Senescent cells can also release damage-associated 

molecular patterns, including ATP, at levels 

comparable to cells undergoing immunogenic cell 

death, being able to efficiently transfer antigens to 

dendritic cells. This ability suggests that inducing 

senescence of tumor cells would significantly enhance 

their adjuvanticity. Senescent melanoma and pancreatic 

cancer cells transplanted into immunocompetent mice 

prevented tumor development upon re-inoculation with 

identical proliferating cancer cell types. Nevertheless, 

when tumors were already established, inoculation 

with senescent cancer cells could delay, but not fully 

stop, tumor progression. Moreover, the induction of 

senescence in four distinct patient-derived primary 

cancer cells lines resulted in high levels of stimulation 

of their own tumor-infiltrating lymphocytes, with 

anticancer effects by enhancing the immunogenicity  

of these cancer cells [17, 48]. These effects were 
critically mediated by the enrichment of TASCs and 

senescent cells in unique peptides, which were able to 

activate strong immune responses. 
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The above-mentioned studies demonstrate that TASCs 

could effectively repurpose the immune system against 

cancer cells. Therefore, it is likely that TASCs can  

also guide the immune system against other types of 

senescent cells, with a potential impact on the aging 

process. 
 

Cancer immunotherapy could also be anti-aging 
 

Senescent cells are directly related to aging and aging-

related diseases. As such, their selective targeting would 

be an asset for the prevention and treatment of those 

diseases. Moreover, as discussed in the previous sections, 

the dual role of TASCs in cancer therapy raises the 

convenience of their removal after transient exposure to 

the tumor microenvironment. From these concepts, an 

immunotherapeutic approach for the selective elimination 

of senescent cells would be convenient. 

Currently available immunotherapeutic approaches  

are generally not indicated to be selective for TASCs. 

For example, many immunotherapy approaches are 

available for breast cancer [49] including different 

subtypes such as triple-negative breast cancer [50]. 

None of those immunotherapy approaches seems to 

have been designed to specifically target TASCs, which 

have shown increased resistance to immunotherapy 

[51]. Whether cancer immunotherapy approaches  

can selectively target senescent cells is an aspect  

that is generally poorly discussed in the literature. 

Interestingly, two of the most valuable immunotherapy 

targets, programmed death-ligand 1 (PD-L1) and 

cytotoxic T lymphocyte antigen 4 (CTLA4) [52],  

are positively correlated with senescence. PD-L1 is 

upregulated in senescent cells [53], which accumulate 

with aging and have increased resistance to immune 

surveillance [54]. Moreover, CTL4 was shown to be 

 

 
 

Figure 1. Senescent cell-derived vaccines: sources of specific antigens for cancer immunotherapy. (A) Here, we propose that 

senescent cells could be exploited for developing immunotherapeutic vaccines for cancer patients. (B) Senescent cells used in the 
development of these vaccines could be isolated from tissues or tumors. Senescent cells have outstanding features that could be exploited 
for cancer immunotherapy. These include high levels of type II interferon γ (IFNγ) signaling, which lead to abundant antigen presentation on 
the cell surface, through the major histocompatibility complex (MHC) class I. Senescent cells also secrete a vast array of antigens and 
adjuvants, which can be internalized and subsequently displayed by dendritic cells. Both senescent and dendritic cells can further activate 
CD8+ T cells with antigens common to senescent and cancer cells, empowering CD8+ T cells with an anti-tumor immune capacity. 
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upregulated in aged human individuals [55]. As such, 

immunotherapies targeting PD-L1 or CTL4 may also 

have some specificity against senescent cells. 

 

A major limitation of cancer immunotherapies is the 

risk of senescence of their effector cells, which 

compromises their therapeutic role. The chimeric 

antigen receptor T (CAR-T) and the T cell receptor-

engineered T (TCR-T) cell therapies are two successful 

immunotherapy approaches that exploit T cells. One of 

their major limitations is the risk of T cell senescence, 

for which strategies to reverse senescence have been 

tested [56]. Senescent T cells have been proposed as 

potential targets for cancer immunotherapy, through the 

prevention or reversal of their senescent state [57]. 

Therefore, the development of senescence-specific 

immunotherapies would be also beneficial to already 

available cancer immunotherapies. 

 

Importantly, some strategies are already available to 

induce the selective elimination of senescent cells.  

In mice, CD4+ T cells were able to target oncogene-

induced senescent hepatocytes through MHC-II 

recognition [58]. Also in mice, natural killer cells could 

eliminate senescent fibroblasts through the recognition 

of the NKG2D receptor on their surface [59]. These 

findings encourage the development of cost-effective 

senescent cell-specific immunotherapy approaches [42]. 

 

CONCLUSION 
 

The exploitation of the patient’s immune system to 

eliminate cancer cells has long been tested through the 

development of innovative strategies with remarkable 

success and high expectations [60–66]. Our growing 

understanding of the immune system has allowed the 

design of novel anticancer therapies. However, tumor 

cells are generally poor antigen-presenting cells, 

evading the immune response in early stages of the 

pathophysiology [67] and restricting immunotherapeutic 

efficacy to only a minor group of cancers [68, 69]. 

Nevertheless, targeting of senescent cells in the context 

of cancer and aging may upsurge as an alternative to 

this critical limitation, through the selective activation 

of a T cell-specific response against senescent cells 

within the tumor or its vicinity. 

 
Recent evidence supports the use of TASCs as sources of 

peptide antigens and adjuvants for anticancer vaccine 

development (Figure 1A). Their SASP provides abundant 

release of stimulatory cytokines, which, in conjunction 

with high levels of antigen presentation, generates a 

robust tumor specific T cell response (Figure 1B).  
As discussed here, this approach will potentiate their 

adjuvanticity in cancer targeting, allowing the design  

of stronger and directed immunotherapeutic strategies. 

Moreover, since cancer and senescent cells share 

common antigens, this immunotherapeutic approach 

could also be effective against aging and age-related 

diseases. Therefore, cancer immunotherapy based on 

TASCs and other types of senescent cells may achieve 

exciting outcomes beyond cancer therapy. 
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