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INTRODUCTION 
 

Clear cell renal cell carcinoma (ccRCC), whose global 

prevalence and mortality rates have shown significant 

annual increases, is the most frequent and aggressive 

histological kidney cancer subtype [1, 2]. Early-stage 

ccRCC cases are mostly curable with radical resection, 

however, more than one third of patients develop post-
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ABSTRACT 
 

The genomic landscape of clear cell renal cell carcinoma (ccRCC) has a considerable intra-tumor heterogeneity, 
which is a significant obstacle in the field of precision oncology and plays a pivotal role in metastasis, 
recurrence, and therapeutic resistance of cancer. The mechanisms of intra-tumor heterogeneity in ccRCC have 
yet to be fully established. We integrated single-cell RNA sequencing (scRNA-seq) and transposase-accessible 
chromatin sequencing (scATAC-seq) data from a single-cell multi-omics perspective. Based on consensus non-
negative matrix factorization (cNMF) algorithm, functionally heterogeneous cancer cells were classified into 
metabolism, inflammatory, and EMT meta programs, with spatial transcriptomics sequencing (stRNA-seq) 
providing spatial information of such disparate meta programs of cancer cells. The bulk RNA sequencing (RNA-
seq) data revealed high clinical prognostic values of functionally heterogeneous cancer cells of three meta 
programs, with transcription factor regulatory network and motif activities revealing the key transcription 
factors that regulate functionally heterogeneous ccRCC cells. The interactions between varying meta programs 
and other cell subpopulations in the microenvironment were investigated. Finally, we assessed the sensitivity 
of cancer cells of disparate meta programs to different anti-cancer agents. Our findings inform on the intra-
tumor heterogeneity of ccRCC and its regulatory networks and offers new perspectives to facilitate the designs 
of rational therapeutic strategies. 
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operative disease recurrence with localized or distant 

metastasis. The insidious clinical manifestations and 

invasive nature of such disease largely contributes to 

metastases at initial diagnosis [3]. Despite the advances 

in pharmacological management of metastatic ccRCC, 

the survival outcomes for such patients are poor, with  

5-year overall survival (OS) outcomes of 10% [4, 5]. 

Thus, there is a need to investigate the mechanisms 

involved in regulating tumor invasiveness, which might 

aid in identification of novel avenues for dissemination 

of cancer cells in microenvironments. 

 
Intra-tumor heterogeneity, an essential feature in cancer 

biology and clinical oncology, directly contributes to 

cancer metastasis, drug resistance, and recurrence [6–8]. 

Intrinsic or acquired resistance to anti-cancer drugs is  

a major clinical challenge [4, 9]. In the personalized 

precision medicine era, ccRCC cases in large-scale 

cohort studies can be classified into divergent cancer 

subtypes based on molecular typing. In this scenario, 

individuals vary in terms of genetic background and 

tumorigenic phenotypes that contribute to cancer relapse 

as well as in capacities of cancer cells to respond to 

treatment modalities [10, 11]. Such precise classification 

is of significance in providing a conceptual scaffold of 

revealing the intra-tumor heterogeneity among individual 

ccRCC patients [12]. Previous studies in this field were 

focused on bulk RNA-sequencing (RNA-seq), resolution 

of which is insufficient to investigate the genetic 

heterogeneity at the single-cell level, masking fateful 

alterations of transcriptomic spectrum in the most 

susceptible cell subsets of the tumor microenvironment 

(TME). Advances in single-cell omics have facilitated  

the mapping of cellular heterogeneities in an unbiased 

fashion, thereby independently disclosing cellular 

identities and functions based on priori defined labeling 

strategies. The aforementioned molecular classifications 

based on RNA-seq have been eclipsed by single-cell 

technologies [13–15]. Functional heterogeneities among 

cancer cells are not as clearly defined as cellular 

identities, which involves alterations of the expression 

spectrum of various genes in disparate functional 

modules [16, 17]. Molecular classifications of cancer 

cells are frequently affected by sampling and batch 

effects [18], and the single-sample based non-negative 

matrix factorization (NMF) algorithm presents promising 

performance in disentangling the intricate cellular states 

in heterogeneous cancer cell subpopulations [17, 19, 20]. 

Spatial localization of cancer cells will reveal their 

functional heterogeneities [21, 22]. Given the loss of 

spatial location information of single cells during tissue 

dissociation, spatial omics provide an opportunity to 

overcome this challenge. 

 
We investigated the transcriptomic and epigenomic 

features of functionally heterogeneous ccRCC cells in 

the TME by integrating single-cell RNA sequencing 

(scRNA-seq) and transposase-accessible chromatin 

sequencing (scATAC-seq) data. Spatial transcriptomics 

sequencing (stRNA-seq) data was used to obtain 

spatial information of functionally heterogeneous 

cancer cells. Our study provides novel approaches  

for integrating single-cell multi-omics and spatial 

omics to elucidate on the basic mechanisms of intra-

tumor heterogeneity and its associated regulatory 

networks. Our findings inform on identification of 

novel therapeutic targets, and crafting of a framework 

for making personalized treatment decisions for 

ccRCC patients.  

 

RESULTS 
 

Integration analysis of single-cell transcriptome and 

epigenome profiles of ccRCC  

 

The workflow of the presented study was shown in 

Figure 1. To dissect the transcriptomic and epigenomic 

profiles of ccRCC at single-cell resolution, scRNA-seq 

and scATAC-seq data were downloaded from the NCBI 

SRA database, with accession number PRJNA768891 

(for information of data see Supplementary Table 1). 

After quality control, a total of 28,639 single-cell 

transcriptomes were retained for subsequent analyses 

(Supplementary Figure 1A, 1B). Cell identities were 

defined using canonical marker genes as previously 

described [18, 23, 24]. Sixteen cell types were 

identified in scRNA-seq data (Figure 2A). The average 

number and relative proportions of each cell type  

are shown in Figure 2B. Expression levels of marker 

genes of corresponding cell types are presented in 

Figure 2C. A total of 25,733 cells were generated  

from scATAC-seq data after quality control filtering 

(Supplementary Figure 1C, 1D). Cell identities of 

scATAC-seq were annotated in a supervised manner 

based on Seurat’s label-transfer algorithm (Figure 2D 

and Supplementary Figure 1E). Single-cell epigenome 

profiles were perfectly assigned to specific cell types 

(Figure 2D, 2E), which was verified by normalized 

chromatin accessibility profiles for each cell type and 

marker genes (Figure 2F). Most of the cell clusters  

in scATAC-seq were mapped to their corresponding 

cell subpopulations in scRNA-seq, apart from prolife-

rative CD8+ T and fibroblast cells, in tandem with  

research of the data source [23]. We also defined two  

distinct cell types, viz., fibroblast cells predominantly 

expressing COL1A1 and COL1A3 in scRNA-seq,  

as well as plasma cells highly expressing IGHG1  

and MZB1 in scRNA and scATAC-seq. Relative 

abundances of cell types, particularly endothelial cells 

and ccRCC cells, exhibited marked differences between 

samples (Figure 2B, 2E), highlighting inter-tumoral 

heterogeneity among individual ccRCC patients. 
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Figure 1. The workflow of the presented study. In this study, we approached the functional heterogeneity of cancer cells from a single-

cell multi-omics perspective, classifying them into metabolism, inflammatory, and EMT meta programs. Spatial transcriptome sequencing 
provided spatial information about these distinct meta programs within cancer cells. Bulk-RNA data revealed the high clinical prognostic 
value of the functional heterogeneity of cancer cells. Transcription factor regulatory networks and motif activities unveiled key transcription 
factors regulating the functional heterogeneity of ccRCC cancer cells. Interactions between different meta programs cancer cells and other 
cellular subpopulations in the tumor microenvironment were demonstrated using cellphoneDB. Finally, we assessed the sensitivity of cancer 
cells from different meta programs to various anticancer drugs. 
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Figure 2. Single-cell transcriptome and epigenome profiles of ccRCC. (A) UMAP embedding of cells from scRNA-seq data. (B) Bar 

plots showing the number and fraction of each cell type in different samples in scRNA-seq data. (C) Dot plot displaying the expression 
patterns of marker genes for each cell type in scRNA-seq data. (D) UMAP embedding of cells from scATAC-seq data. (E) Bar plots showing the 
number and fraction of each cell type in different samples in scATAC-seq data. (F) Chromatin accessibility profiles of marker genes for each 
cell type in scATAC-seq data. 
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Single-cell multi-omics and spatial omics revealed 

functionally heterogeneous ccRCC cells 

 

To resolve the heterogeneity of ccRCC cells in multi-

omics, we analyzed the cancer cells in the TME. The 

NMF algorithm is advantageous in interpreting tumor 

heterogeneity, marginally influenced by batch effects, 

thereby obtaining factors with biological interpretability 

via non-negative matrix factorization. The cNMF 

algorithm implemented in python [25] showed that 

cancer cells from the three ccRCC cases could be 

classified into ten programs (Supplementary Figure  

2A, 2B). Based on similarities between programs,  

three meta programs covered by all ccRCC cases were 

identified (Figure 3A), which reflected the complicated 

phenotypes of functionally heterogeneous cancer cells 

in ccRCC TME. There were significant variations in 

transcriptomic profiles of such meta programs, all of 

which were functionally defined as inflammatory meta 

program, metabolism meta program, and EMT meta 

program based on pathway enrichment analysis of  

their specific characteristic gene expression signatures 

(Figure 3A, 3B and Supplementary Tables 2, 3). The 

inflammatory meta programs were mainly enriched in 

inflammatory responses, complement, interferon gamma 

responses, and IL2 STAT5 signaling pathway. The EMT 

meta program was significantly enriched in epithelial 

mesenchymal transition, coagulation, myogenesis, and 

angiogenesis, while metabolism meta program was 

highly enriched in hypoxia, xenobiotic metabolism, 

glycolysis, fatty acid metabolism, and reactive oxygen 

species pathway. The metabolism meta program 

accounted for the largest proportion of cancer cells, 

implying that ccRCC is a hypermetabolic disease, as 

evidenced by abnormal accumulation of lipid droplets 

in cancer tissues and cell lines, and its close association 

with lipid metabolism pathways [24, 26]. Annotation of 

cancer cell clusters in scRNA data with corresponding 

clusters in scATAC data revealed that the three meta 

programs manifested elevated expression and chromatin 

opening (Supplementary Figure 3A) of cancer-specific 

markers (CA9 and NDUFA4L2). There was a loss of 

chromosome 3p and amplification of chromosome 5q  

in all three meta programs (Supplementary Figure  

3B). Pseudotime analysis showed that cancer cells in 

EMT meta programs were at the beginning of the 

differentiation trajectory, while cancer cells of the 

metabolism meta program were predominant at the 

trajectory terminus, representing the specific physio-

logical states of the functionally heterogeneous cancer 

cells in the TME. Thus, EMT is a crucial process in 

cancer developments (Figure 3C). 

 

There were high correlations between disparate meta 

programs. Stromal cells, i.e., fibroblasts, endothelial cells 

and mesangial cells exhibited a high degree of similarity. 

Moreover, various immune cells exhibited similarities. 

These results suggest that even though cancer cells of the 

EMT meta program and inflammatory meta program were 

functionally and phenotypically close to stromal cells and 

immune cells, respectively, they still have significant 

transcriptomic variations in their nature (Figure 3D).  

Due to the loss of spatial location information of scRNA-

seq during tissue disassociation, we spatially localized 

the cancer cells of different meta programs using spatial 

transcriptomics (Figure 4A). Cancer cells of the EMT 

meta program were uniformly distributed at margins  

of tumors and perivascular areas, and such geographic 

location corroborates the functional definition of EMT 

meta programs. We hypothesized that ccRCC cells  

can activate the EMT through close contacts with  

stromal cells in local environments, and specified cancer 

cells of identical meta program in perivascular areas 

synergistically contribute to hematogenous dissemination 

via the vascular system. The metabolism meta program 

was mainly located in the tumor center, which could  

be a consequence of hypoxia and xenobiotic metabolism. 

We parsed the spatial transcriptomics, combing with 

single-cell multi-omics data, thereby elucidating on key 

functions assumed by heterogeneous ccRCC cells.  

 

Transcriptional characterization of signature genes in the 

three meta programs was performed and validated using 

the scATAC-seq and stRNA-seq data (Figure 4B, 4C and 

Supplementary Figure 4A–4D), with results disclosing 

that the metabolism meta program specifically expressed 

REG1A, a molecular marker for ccRCC [27]. The 

inflammatory meta program exhibited high expression  

of IL10RA, which is closely associated with interferon 

receptors and mediates immunosuppressive signaling  

of IL10, thereby inhibiting pro-inflammatory cytokine 

secretion [28]. The EMT meta program characteristically 

expressed COL1A1, which is preferentially expressed in 

fibroblasts. Transcriptional profiles of the EMT process 

suggests that such cancer cells may have fibroblast-like 

phenotypes and an ability to secrete fibronectin [29]. The 

three characteristic genes are barely expressed in major 

cell types of normal kidney tissues (Supplementary 

Figure 4E–4G). We validated the staining of signature 

genes of such three meta programs using tumor samples 

collected in clinical settings (Figure 4D). The signature 

genes were co-localized with the ccRCC-specific marker 

(CA9) in cancer tissues [30], revealing the existence of 

such three types of functionally heterogeneous cancer 

cells in the TME of ccRCC cases. 

 

Infiltrations of functionally heterogeneous cancer 

cells were closely associated with prognosis of 

ccRCC patients 

 

We assessed the relative abundance of the three meta 

programs in 490 ccRCC cases from the TCGA database 
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Figure 3. Functionally heterogenous cancer cells in ccRCC. (A) Heatmap of pairwise correlations of ten intra-tumoral programs derived 

from three ccRCC samples, with the right plot revealing functional characteristics of different meta programs based on functional enrichment 
analysis. (B) Heatmap showing the specific characteristic gene expression of three meta programs of functionally heterogenous cancer cells. 
Characteristic genes of three meta programs were marked by the color. (C) Pseudotime analysis of three meta programs of functionally 
heterogenous cancer cells based on Monocle2. The numbers 1, 2, and 3 represent node changes in cell differentiation, where nodes 1 and 2 
have fewer branches, while node 3 is the main node of cell differentiation. (D) Pairwise correlation plot of cell types identified in scRNA-seq 
data, illustrating similarities between different cell types in ccRCC. 
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Figure 4. Spatial location information and signature gene characteristics of functionally heterogeneous cancer cells in ccRCC. 
(A) Spatial location information of functionally heterogeneous cancer cells revealed by stRNA-seq, illustrating the distribution of cancer cells 
in tumor lesions. (B) Signature gene characteristics of functionally heterogeneous cancer cells in scRNA-seq data, showing the expression 
levels of signature genes of different meta programs. (C) Spatial expression patterns for signature gene characteristics of functionally 
heterogeneous cancer cells in stRNA-seq data. (D) Signature gene characteristics of functionally heterogeneous cancer cells validated by 
clinical samples of ccRCC using immunofluorescence. 
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using CIBERSORTx, thereby revealing the associations 

between the functionally heterogeneous cancer cells  

and survival outcomes of patients. The metabolism  

meta program cases were highly abundant in the  

TCGA cohort, followed by EMT and inflammatory 

meta programs (Supplementary Figure 5A). Higher 

infiltration levels of heterogeneous cancer cells of  

the metabolism meta program were associated with 

favorable prognostic outcomes, whereas infiltrations  

of the EMT meta program were associated with  

poor outcomes (Figure 5A). However, there were no 

significant correlations between ccRCC cases in the 

inflammatory meta program and prognostic outcomes  

of patients. Further, we performed ssGSEA analysis 

based on characteristic genes (Supplementary Table 3) 

of each meta program and explored the relationships 

between ssGSEA scores and prognostic outcomes. 

There were significant associations between ssGSEA 

scores of characteristic genes in each meta program and 

prognosis of ccRCC patients (Figure 5A). 

 

We further performed univariate and multivariate  

Cox analyses for the effects of cancer cell infiltration 

abundance, ssGSEA scores of characteristic genes,  

and clinical indicators (age, gender, and stage) on 

prognostic outcomes. Univariate Cox analysis revealed 

identical trends as those obtained from the Kaplan-

Meier survival analysis (Figure 5B). After excluding  

the effects of confounding factors, such as age, gender, 

and stage, we performed multivariate Cox analysis on 

ssGSEA scores and infiltration abundance of cancer 

cells of different meta programs, which showed that 

infiltration abundance as well as ssGSEA scores of meta 

metabolism and EMT meta programs were independent 

prognostic factors; the EMT meta program played an 

adverse role, while the metabolism program played a 

protective role in survival outcomes of ccRCC (Figure 

5B). The ssGSEA scores were significantly correlated 

with infiltration abundance of cancer cells in different 

meta programs, indicating that ssGSEA scores can 

reflect, to some extent, the infiltration levels of 

functionally heterogeneous cancer cells (Supplementary 

Figure 5B). 

 

Identification of specific transcription factors of 

functionally heterogeneous cancer cells  

 

Program-specific transcription factors were identified 

by combining scRNA and scATAC data. First,  

we investigated the transcription factor regulatory  

network of functionally heterogeneous cancer cells in  

different meta programs based on scRNA-seq data 

using pySCENIC. Transcription factor motif activities  

were inferred using chromVAR packages based on 

scATAC-seq data, whereby chromatin accessibility of 

transcription factor binding sites were characterized  

at the DNA level. Program-specific transcription 

factors were identified using both pySCENIC and 

motif activity analysis combined with transcription 

factor footprint analysis (Figure 6A, 6B). In the 

metabolism meta program, we identified transcription 

factor MYC, with results of co-expressed downstream 

target genes of transcription factors showing that  

it was closely associated with the hypoxia-related 

signaling pathway. In the EMT meta program, we 

identified transcription factors EGR1, FOS and  

JUNB, with downstream target genes being associated 

with epithelial mesenchymal transition, myogenesis, 

and the angiogenesis signaling pathway. Moreover, 

transcription factors ELF1 and CREM were found in the 

inflammatory meta program, with downstream target 

genes being predominantly enriched in inflammatory 

responses, complement, interferon gamma responses, 

and IL2 STAT5 signaling pathways (Figure 6A, 6B 

and Supplementary Figure 5C). 

 

Construction of intercellular communication networks 

of functionally heterogeneous cancer cells and other 

cell identities in the TME 

 

To establish the crosstalks among various cellular 

identities in the TME, we investigated ligand- 

receptor pair expression in different cell clusters using 

CellphoneDB. We specifically focused on interactions 

between functionally heterogeneous cancer cells of 

different meta programs and other cell subpopulations 

in the microenvironment. Cancer cells of the EMT  

meta program exhibited abundant ligand receptor pairs  

with endothelial cells, fibroblasts, proliferative CD8+ T 

cells, dendritic cells and mesangial cells (Figure 7A), 

and there were more interactions with such cell types 

when compared with other meta programs (Figure 7B). 

This shows the close intercellular crosstalk between 

cancer cells of the EMT meta program with other cell 

identities in the TME. Both immune and mesangial  

cells interacted with cancer cells of the EMT program 

via the FGFR2 receptor of the FGF family (Figure  

7C), with evidence indicating the pivotal role of FGFR2 

in mediation of EMT and cancer cell angiogenesis  

[31]. The EMT program exhibited a unique secretory 

phenotype, characterized by powerful abilities of 

secreting collagen fibers and enriched communication 

with mesangial cells (Figure 7D), which were directly 

associated with cell migration and focal adhesion 

regulation. The inflammatory meta program presented 

highly enriched crosstalks with most immune cells, 

when compared with other meta programs (Figure 7B). 

Ligand LGALS9 with its receptors (CD44, CD47, and 

HAVCR2) showed that the inflammatory meta program 

also interacted with immune cells, implying that it is a 

cysteine/galactose binding protein that can compromise 

the functions of NK and T cell to facilitate cancer cell 
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Figure 5. Clinical values of functionally heterogeneous cancer cells in ccRCC. (A) Kaplan-Meier survival analysis of TCGA ccRCC 

cohort based on infiltration levels calculated by CIBERSORTx analysis (up) and ssGSEA score calculated by characteristic genes (down) of 
functionally heterogeneous cancer cells. The grouped metrics are based on the optimal cutoff value, and the numbers in parentheses 
represent the ccRCC sample size. (B) Univariate and multivariate Cox analyses showing the associations between clinical indicators (age, 
gender, and stage), infiltration levels and ssGSEA scores with patients’ survival outcomes (the prognostic value of functionally heterogeneous 
cancer cells of the three meta programs). 
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immune escape [32]. Ligands of IL1 receptor inhibitor 

with receptors of IL1RN and IL1B shared similar roles 

in immune escape and tumor metastasis (Figure 7D).  

 

Crosstalks and phenotypic descriptions between 

functionally heterogeneous cancer cells of disparate 

meta programs and other cell populations were 

validated using spatial information provided by stRNA-

seq. The EMT meta program exhibited stronger abilities 

in interacting with other cell types in the TME, with 

their distribution being located at tumor margins and 

perivascular areas. Interactions of the metabolism meta 

program were also demonstrated by their locations in 

the center of the tumor, which was corroborated by 

attenuations of interactions between cancer cells of  

the metabolism meta program and other cell identities  

in the TME. 

Sensitivity assessment of anti-cancer agents to 

functionally heterogeneous cancer cells  

 

We investigated the sensitivity of functionally 

heterogeneous cancer cells in different meta programs 

to anticancer agents based on therapeutic target  

genes. We focused on mainstream drugs currently in 

clinical trials and Food and Drug Administration 

(FDA)-approved drugs for clinical management of 

ccRCC. The functionally heterogeneous cancer cells 

presented varying responses to various anticancer 

drugs. Targeted drugs for VEGFA have been studied  

in kidney cancer. Other polypeptide factors that share 

similar functions and structural homology to VEGFA 

have been recently identified, spanning placenta growth 

factor (PIGF), VEGF-B, VEGF-C, VEGF-D and 

VEGF-E, constituting the VEGF family [33]. VEGFA 

 

 
 

Figure 6. Identification of specific transcription factors of functionally heterogeneous cancer cells in ccRCC TME.  
(A) Heatmap of the results of pySCENIC analysis in scRNA-seq data, revealing the putative transcription factors associated with different 
meta programs. The right heatmap shows motif activities in scATAC-seq data, indicating the activities of transcription factor binding 
motifs in different cell types. (B) Transcription factor footprint analysis of disparate meta programs. The footprint analysis is for 
computing the normalized Tn5 insertion frequency for each position surrounding AP-1 motif instances. Different colors represent 
different meta programs. 
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Figure 7. Intercellular communication networks orchestrated by functionally heterogeneous cancer cells and other cellular 
identities in ccRCC TME. (A) Heatmap plot of the number of ligand-receptor pairs across disparate cell clusters. (B) Radar plot of 

quantitative comparisons of ligand-receptor pairs across cancer cells in disparate meta programs. (C) Dot plots of mean interaction strengths 
of ligand-receptor pairs between functionally heterogeneous cancer cells, with dot sizes indicating the P-value and colored by the average 
expression level of the receptor in cancer cells. The plot for expression levels of the receptor in functionally heterogeneous cancer cells.  
(D) The plot showing the expression levels of the ligand in functionally heterogeneous cancer cells. 
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was highly expressed in different meta programs, 

indicating that such cell subpopulations were 

susceptible to Bevacizumab. Expression of VEGFB 

were also elevated in cancer cells. Antitumor drugs 

targeting VEGFB have not been reported, however, 

based on structural similarities between VEGFB  

and VEGFA, development of targeted drugs against 

VEGFB has tremendous potential for ccRCC 

management. Likewise, CDK4, EGFR, and MAP2K2 

were highly expressed in the three meta programs,  

all of which play critical roles in development of 

anticancer agents (Figure 8). 

 

 
 

Figure 8. Sensitivity analysis of anti-cancer agents to functionally heterogeneous cancer cells based on expression level of 
therapeutic target genes. 



www.aging-us.com 13 AGING 

Physiologically, CD52 is a cell surface glycoprotein  

that is expressed on mature lymphocytes. Its  

associated monoclonal antibodies, anti-CD52, including 

alemtuzumab and analogues, are intended for treatment 

of multiple sclerosis and B cell chronic lymphocytic 

leukemia [34], with its specific expression patterns being 

observed in the inflammatory meta program. The 

therapeutic target genes, such as CDK6, HDAC2 and 

PIGF, exhibited enhanced expression levels in the EMT 

meta program, confirming that drugs targeting these 

genes may have significant therapeutic responses in such 

cancer cell subpopulations. Most of the therapeutic 

target genes were exclusively expressed on functionally 

heterogeneous cancer cells, with the exception of 

ERBB2 expression in collecting duct principal cells  

of normal renal epithelium (Supplementary Figure 6). 

These results elucidate on the mechanisms underlying 

the biological significance of functionally heterogeneous 

cancer cells in the TME, thereby providing a framework 

for studying cell-cell interactions and drug effects in 

ccRCC microecosystems. 
 

DISCUSSION 
 

Intra-tumor heterogeneity is pertinent to metastasis, 

recurrence, and therapeutic resistance of cancer, which 

are closely associated with variations in survival rates 

within cancer patients [6–8]. In this study, we assessed 

the transcriptomic and epigenetic landscape of  

ccRCC using scRNA and scATAC data, functionally 

characterizing heterogeneous cancer cells on multiple 

dimensions, combined with stRNA-seq to project the 

spatial orientation of divergent cancer cells and assess 

their biological variations in the TME. Currently, due 

to complex expression patterns of functional module 

genes, elucidation of functional states of cancer cells  

is in the infancy [16, 17]. The cell subpopulations 

identified by conventional dimensionality reduction 

analysis (e.g., Seurat) in single-cell analysis are 

vulnerable to sampling bias or integration [35], and  

the established transcriptomic profiles could not reflect 

the biological characteristics of cancer cells, masking 

the essential aberrations and slightly observable tran-

scriptomic spectrum in susceptible cell subpopulations 

[18]. We found that cancer cells in the ccRCC TME 

can be classified into three meta programs using the 

cNMF algorithm, spanning inflammatory, metabolism, 

and EMT programs based on the pathway enriched 

with their characteristic gene expression signatures. 

Such shared meta programs are covered by all  

ccRCC cases in single-cell data. When tracing spatial 

locations of cancer cells in different meta programs by 

stRNA-seq, we noticed that cancer cells of the EMT 

program were uniformly distributed in the margins and 

perivascular regions of the tumor lesion, while cancer 

cells of the metabolism program enriched in hypoxia 

and xenobiotic metabolism-related pathways were 

mainly located in the center of the tumor lesion, 

confirming the functional status of various cancer 

cells. Based on relative proportions of cancer cells of 

disparate meta programs calculated by CIBERSORTx, 

the infiltration abundance of cancer cells of the  

EMT program was associated with worse clinical 

outcomes of ccRCC patients, while relative fractions 

of cancer cells of the metabolism program were 

correlated with favorable prognostic outcomes of 

ccRCC cases in the TCGA database. This shows that 

functional classification of cancer cells has a high 

prognostic value. 

 

scATAC-seq is a state-of-the-art method for revealing 

epigenetic regulation at the DNA level. Compared to 

scRNA-seq data analysis, which infers activity changes 

in transcription factors based on expression profiles  

of target genes regulated by the transcription factor 

regulatory network, scATAC-seq can demonstrate the 

coordinated interactions of transcription factors with 

arrays of transcription factor binding sites from the 

DNA level [36, 37]. Regulation of target genes by 

transcription factors exerts bidirectional effects of 

transcriptional activation or functional repression. 

Therefore, it is important to integrate scATAC-seq  

and scRNA data to infer and mutually validate the 

regulation of transcription factors of different meta 

programs. We revealed the transcription factors that 

regulate the functional characteristics of cancer cells 

with different meta programs through scATAC and 

scRNA-seq. We identified the functional characteristic 

transcription factors that are involved in the regulatory 

network orchestrated by cancer cells via scATAC- 

seq and scRNA-seq analyses. The MYC specifically 

regulated the metabolism programs, while the down-

stream target genes co-expressed with MYC were 

enriched in hypoxia-related signaling pathways. The 

role of MYC in tumor metabolism has been reported. It 

enhances the expression level of bioenergetic-related 

genes controlling glucose, glutamine, fatty acid and 

cholesterol metabolism, thereby activating metabolic 

reprogramming of cancer cells [38–40]. Our results 

underlined the pivotal stage of MYC as an upstream 

oncogene in promoting the metabolic states of ccRCC 

cells. We noted that transcription factors (EGR1,  

FOS and JUNB) specifically regulate the EMT meta 

program, with target genes being enriched in EMT, 

myogenesis, and angiogenesis signaling pathways. The 

EGR1 promotes cancer cell EMT by initiating the 

transcription of E-cadherin transcriptional inhibitors 

(i.e., SNAIL and SLUG), thereby promoting the 

invasive and metastatic properties of cancer cells. An 

identical role of EGR1 has been reported in prostate 

[41], liver [42], and ovarian cancers [43]. Besides,  

FOS and JUNB are proto-oncogenes, the proteins of 
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which are key subunits of the AP-1 transcription  

factor, and are invariably associated with the EMT 

process [44–46]. In the inflammatory program, we 

identified a regulatory pattern of the transcription 

factors (ELF1 and CREM), whose essential roles in 

immune regulation and inflammatory responses have 

been reported [47–49]. Their corresponding target 

genes were found to be enriched in inflammatory 

responses, complement, interferon gamma responses 

and the IL2 STAT5 signaling pathway. We tentatively 

postulated that the effects of transcription factors 

(ELF1 and CREM) on ccRCC cells are involved in 

immune regulation, however, the involved molecular 

mechanisms have yet to be established. The scRNA-

seq and scATAC-seq revealed the transcription factor 

regulatory network of functionally heterogeneous cancer 

cells during malignant phenotypes and metastasis  

of ccRCC TME, which is as an integrative avenue 

facilitating the acquisition of cancer hallmarks and 

informing cancer precision treatment, e.g., targeted 

therapy. 

 

Then, we investigated the interactions between 

functionally heterogeneous cancer cells and cell 

subpopulations in the TME based on ligand receptor 

pairs using CellphoneDB. The connecting bonds 

between ligand molecules and their corresponding 

receptors on cell surfaces are imperative for exertion 

of biological functions of certain cell types. We  

noted that the EMT program presented abundant 

crosstalks with other cell subpopulations in the  

TME, while interactions between the metabolism 

program and other cell subpopulations were markedly 

mitigated. These findings were corroborated with the 

spatial localization information provided by stRNA-

seq. CellphoneDB indicated that FGFR, as an EMT 

receptor, may have indispensable effects on functional 

maintenance of such tumor cells, with which the 

corresponding ligand cells, especially macrophages 

and mesenchymal stromal cells, manifested the most 

abundant crosstalks, elucidating the close association 

of the two immune cell subtypes with the EMT of 

cancer cells. These findings are in tandem with  

those of previous studies [50–52], which reported  

on the functions of FGFR in mediating EMT and 

angiogenesis of cancers [31], thereby highlighting  

the great potential of targeting FGFR, especially  

the FGFR2 receptor, in reversing the EMT process  

of ccRCC. The LGALS9-related ligands and receptors 

are of significance in functionally heterogeneous 

cancer cells of the inflammatory program, which is 

involved in cancer cell immune escape. Pharma-

cological modalities with antagonists or antibodies 

blocking such interactions may provide a potential  

and promising strategy for clinical management of 

ccRCC. 

Surgical resection is the preferable treatment  

option for patients with localized ccRCC. Due to its 

insidious onset and progressive nature, most cases 

present terminal with inoperable advanced stages  

and receive systemic chemotherapies. Benefits from 

standard chemotherapies are poor, and a majority of 

the responders develop resistance, resulting in limited 

survival outcomes. Intra-tumor heterogeneity has a 

major role in tumor relapse and drug resistance [1, 6, 

7, 53]. We analyzed the molecular profiles of key 

molecules for current targeted therapies in functio-

nally heterogeneous ccRCC cells. We analyzed the 

molecular profiles of key molecules for mainstream 

targeted therapies in functionally heterogeneous  

cancer cells. We found that increased expression of 

VEGFA in cancer cells of the three types of programs, 

mediated the benefits of Bevacizumab treatment, a 

humanized monoclonal antibody against VEGFA, in 

ccRCC treatment. Particularly, VEGFB, which is a 

newly identified target sharing similar structures with 

VEGFA [54], exhibited enhanced expression level  

in cancer cells. Translational studies have elucidated 

on the therapeutic potentials of targeting VEGFB. 

Moreover, CDK4, EGFR, and MAP2K2 exhibited 

moderately high expression levels in cancer cells, with 

drugs targeting such therapeutic molecules presenting 

encouraging results in cancer therapy, but their clinical 

applications in kidney cancer are rarely reported [55–

57]. Apart from molecular targets expressed in cancer 

cells of the three types of programs, CD52, CDK6, 

HDAC2, and PIGF were specifically expressed in 

inflammatory or EMT meta programs, indicating that 

drugs against these targets may respond in specific 

cancer cell subpopulations. 
 

This study has various limitations. First, even though 

we described functionally heterogeneous cancer cells of 

meta programs that generally present in all three ccRCC 

cases in the dataset based on the cNMF algorithm,  

the number and features of meta programs could be 

somewhat divergent as the sample size was expanded. 

Second, we provided preliminary insights on potential 

targets to varying heterogeneous cancer cells, however, 

the value of such therapeutic targets should be validated 

in large-scale, multicenter prospective cohorts. 

 

CONCLUSIONS 
 

Our study revealed the transcriptomic and epigenomic 

features of functionally heterogeneous cancer cells in 

ccRCC TME using single-cell multi-omics data, then 

spatially localized heterogeneous cancer cells with spatial 

omics, thereby providing preliminary insights into the 

intra-tumor heterogeneity of ccRCC and its regulatory 

network. Our findings will inform on development of 

rational therapeutic strategies. 
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MATERIALS AND METHODS 
 

Data acquisition 

 

Raw data for ccRCC scRNA-seq and scATAC- 

seq were downloaded from the National Center for 

Biotechnology Information (NCBI) Sequence Read 

Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) 

database with BioProject number PRJNA768891 [23]. 

After conducting initial quality control on the raw data 

based on the report of Cell Ranger, we included samples 

with the following sample IDs in the scRNA-seq data-

set: SRR16213611, SRR16213612, and SRR16213614. 

Additionally, we included samples with the following 

sample IDs in the scATAC-seq dataset: SRR16213608, 

SRR16213609, and SRR16213610. Meanwhile, we 

acquired the scRNA-seq data of kidneys from three 

human donors as the normal controls from Liao et. al’s 

study [58]. We also downloaded spatial transcriptomics 

analysis data performed on ccRCC primary tumors 

using paraffin-embedded (FFPE) sections from the Gene 

Expression Omnibus (GEO) database with accession 

number GSE175540, including four samples with 

sample IDs GSM5924033, GSM5924035, GSM5924037, 

and GSM5924040, which were relatively well in 

histological structure of sections [59]. Bulk RNA-seq 

data for ccRCC were obtained from the Genomic Data 

Commons (GDC) portal (https://portal.gdc.cancer.gov/) 

of The Cancer Genome Atlas (TCGA) database, and 

after filtering out samples with incomplete follow- 

up information and those with follow-up information 

less than one month, 490 cases were included for 

analysis. 

 

Processing of scRNA-seq data  

 

The FASTQ raw data files of scRNA-seq were  

mapped to the reference genome GRCh38-2020-A, and 

were processed via Cell Ranger (version 6.1.2, 10x 

Genomics) with default parameters. The Seurat package 

in R software was used for analyses of scRNA-seq data. 

The SCTransform, RunPCA and RunUMAP functions 

were used for dimensionality reduction, clustering, and 

visualization. Low-quality cells with < 200 or > 5000 

covered genes were filtered out, while cells with > 10% 

mitochondrial RNA contents were also removed. The 

Harmony (version 1.0) package was used for batch 

effects removal. Cell-type specific marker genes were 

identified using the FindAllMarkers function of Seurat 

package, thus manually annotating each cell type in 

scRNA-seq.  

 

scATAC-seq data processing  

 

FASTQ raw data files of scATAC-seq data were 

processed via Cell Ranger-atac-2.1.0 using default 

parameters, which were aligned to the human reference 

genome (GRCh38-2020-A-2.0.0). Then, scATAC-seq 

was analyzed using the Signac pipeline (version 1.6.0) 

in R, with the RunT-FIDF, RunSVD, and RunUMAP 

functions being used for dimensionality reduction  

and clustering. Further cell filtering was performed as 

follows: cells with nucleosome signal scores < 4 and 

transcriptional start site (TSS) enrichment scores > 3. 

Cell peak region fragments > 1000 or < 20000, and 

blacklist ratio < 0.05 were retained for subsequent 

analyses. Batch effects across samples were removed 

using the Harmony (version 0.1.1) package. Gene 

activities were quantified via the GeneActivity function 

in Signac, including 2 kb upstream of the transcriptional 

start site and gene body. We annotated the cell types in 

scATAC-seq data according to cell identities in scRNA-

seq data using the TransferData function in Seurat 

package. Chromatin accessibility of the corresponding 

marker gene was used for cell type annotations. Motif 

activity scores in each cell were analyzed using the 

chromVAR (version 1.20.0) package. Transcription 

factor footprint analysis was conducted using the 

Footprint function. 

 
stRNA-seq data processing  

 

Analysis of stRNA data was performed using the 

Seurat (version 4.2.0) package. Spots with < 300 

detected genes or > 30% mitochondrial genes were 

filtered out. SCTransform, RunPCA and RunUMAP 

functions were used for normalization and downscale 

clustering. Cell types in scRNA data were mapped to 

spatial locations using the TransferData function in 

Seurat package. 

 
NMF analysis and module identification 

 

The consensus non-negative matrix factorization 

(cNMF) algorithm was used to infer gene expression 

programs from scRNA-Seq data with the cNMF python 

pipeline (version 1.4) based on count matrix of cancer 

cells across samples. Each matrix was decomposed into 

different programs using the cNMF algorithm for 300 

iterations. Then, the number of decomposition programs 

with higher stability and lower error probability was 

selected by setting the K value, further filtering  

the inconsistent iterations with the threshold value, 

thereby choosing the optimal matrix decomposition. 

After matrix decomposition, cells of programs below  

a threshold value of 0.03 were excluded. Correlation 

analyses were performed to identify programs with 

shared biological functions in different samples. The 

meta programs were defined via hierarchical clustering 

with cluster_method=“complete”. Finally, the top 50 

genes with the highest loading were defined as 

functional gene sets for disparate meta programs. 

https://www.ncbi.nlm.nih.gov/sra
https://portal.gdc.cancer.gov/
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Single-cell copy number variation analysis 

 

The inferCNV (version 1.10.1) package was used to infer 

copy number variations of cells based on gene count 

expression matrix with T cells as the normal reference. 

This allowed the differentiation of cancer cells from 

normal cells. The AnnoProbe (version 0.1.6) package 

was used to generate the reference gene set, containing a 

gene ordering file from the human GRCh38 assembly 

with positions of each gene’s chromosomal start and end. 

 

Pseudotime trajectory analysis 

 

Pseudo-time analysis and reconstruction of the 

differentiation trajectory of distinct cell lineages  

were performed using the Monocle (version 2.22.0) 

package. Count matrix was used as the input matrix  

while functions within the Monocle package were  

used for data normalization and preprocessing. Genes  

with higher dispersion were selected to analyze the  

differentiation characteristics of specific cell populations. 

The reduceDimension and orderCells functions were 

used for dimensionality reduction and cell sorting. 

 

Identification of specific transcription factors for 

cancer cells 

 

Analyses of specific transcription factors for cancer cells 

in different meta programs were performed by integrating 

scRNA and scATAC data. Regarding the scRNA data, 

we defined the regulatory networks of transcription 

factors with target genes in meta programs by 

pySCENIC. Then, the top 50 transcriptional regulatory 

networks that are essential for biological functions of 

each meta program were selected. For the scATAC data, 

DNA sequence motif analysis of transcription factors 

involved in regulatory networks was performed using  

the RunchromVAR function of the chromVAR package, 

thereby quantifying DNA binding of transcription factors 

in specific sequences. Finally, transcription factors with 

program-specific motif activities and footprints were 

selected to define specific transcriptional regulators of 

cancer cells in meta programs. 

 

CIBERSORTx analysis 

 

CIBERSORTx is an emerging machine-learning 

approach that is designed to assess the abundance of 

certain cell types in bulk RNA-seq data. This approach 

has been described as “digital cytometry”. In this study, 

CIBERSORTx was used to enumerate the relative 

proportions of cancer cells in meta programs of the 

ccRCC cohort in the TCGA database. The associations 

between infiltrating levels of different cancer cell types 

and survival outcomes of ccRCC cases were determined 

via Cox analysis and Kaplan-Meier (KM) survival 

curves, which were performed using survival (version 

3.3-1) and survminer (version 0.4.9) packages. The 

grouping condition of ccRCC samples is based on 

surv_cutpoint function of survminer R package. The 

optimal cutoff value is selected, and the sample size 

with the lowest grouping is set not less than 30% of the 

total sample size. 

 

Cell-cell communication analysis 

 

Python-based CellPhoneDB (version 2.0.0) was used  

to assess crosstalks between cell subpopulations. 

Normalized data matrices were used for subsequent 

analyses, with p > 0.05 being set as the threshold for 

excluding ligand-receptor pairs. Radar plots were 

established to visualize the number of differential  

cell communications using the ggiraphExtra package 

(version 0.3.0). 

 

Functional enrichment analysis 

 

Functional enrichment analysis of the top 50 feature 

gene sets of meta programs was performed using the 

enricher function of clusterProfiler package (version 

4.2.2), based on the 50 hallmark gene sets downloaded 

from the Molecular Signatures Database (MSigDB). 

Adjusted p < 0.05 indicated significant differences. 

Single-sample gene set enrichment analysis (ssGSEA) 

of the top 50 feature gene sets in the TCGA ccRCC 

cohort was performed using the GSVA package. 

 

Immunofluorescence analysis 

 

Tumor tissues were obtained from ccRCC patients who 

had been subjected to radical resection using a protocol 

approved by The First Affiliated Hospital of Guangxi 

Medical University. The paraffin-embedded ccRCC 

sections were deparaffinized using a dewaxing agent. 

Then, antigen repair was performed by heating with 

citric acid solution (Servicebio, G1202), followed by 

inactivation of endogenous peroxidase using 3% H2O2. 

Then, the ccRCC sections were blocked using 3% 

bovine serum albumin (BSA) (Servicebio, GC305010) 

for 30 min and thereafter incubated overnight at  

4° C with primary antibodies (anti-REGA1 (Abcam, 

ab47099), anti-IL10RA (Bioss, bs-18131R), or anti-

COL1A1 (ZEN BIO, R26615)). The ccRCC sections 

were washed thrice using PBS, incubated with goat 

anti-rabbit IgG H&L (HRP) (Servicebio, GB21303) for 

50 min and thereafter with CY3-tyramide (Servicebio, 

G1223) for 10 min. Then, antigen repair was repeatedly 

performed to remove the first type of primary antibody, 

followed by overnight incubation at 4° C in the 

presence of anti-CA9 (Servicebio, GB112005). The 

next day, the ccRCC sections were washed using PBS 

and incubated with anti-rabbit IgG (Alexa Fluor 488 
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Conjugate) (Servicebio, GB25303) for 50 min. Finally, 

the sections were stained with DAPI (Servicebio, 

G1012), and sealed using the anti-fluorescence quencher 

(Servicebio, G1401). 

 
Statistical analysis 

 

All data analyses were conducted using the R software 

(version 4.1.2). Spearman correlations between different 

cell clusters were calculated using the Cor function of R 

package stats (version 4.1.2). Clustering of cancer cells 

was performed using “complete” in R. The Kruskal-

Wallis test was performed for differential analysis  

of infiltration abundance of cancer cells in disparate 

meta programs. p< 0.05 was the threshold for statistical 

significance. 

 
Availability of data and materials 

 
Raw data for ccRCC scRNA-seq as well as scATAC- 

seq were downloaded from the National Center  

for Biotechnology Information (NCBI) Sequence  

Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) 

database with BioProject number PRJNA768891. The 

transcriptional data of kidneys from three human donors 

were the normal controls from the Gene Expression 

Omnibus (GEO) database with accession number 

GSE131685. Spatial transcriptomics data were performed 

on ccRCC primary tumors using paraffin-embedded 

(FFPE) sections from the GEO database with accession 

number GSE175540. Bulk RNA-seq data for ccRCC 

were obtained from the Genomic Data Commons (GDC) 

portal (https://portal.gdc.cancer.gov/) of The Cancer 

Genome Atlas (TCGA) database. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Quality control and sample integration of scRNA-seq and scATAC-seq data. (A) Violin plots showing 

quality control indices of scRNA-seq data, including the number of genes detected per cell, count of reads per cell, percentage of 
mitochondrial genes detected per cell, percentage of ribosomal genes detected per cell, and percentage of hemoglobin genes detected per 
cell. (B) Sample integration of scRNA-seq data. (C) Violin plots showing quality control indices of scATAC-seq data, including nucleosome 
signal scores per cell, TSS enrichment scores per cell, blacklist ratio, and fractions of reads in peaks. (D) TSS enrichment score (left) and 
fragment length (right) of each sample in scATAC-seq data. (E) Sample integration of scATAC-seq data.  
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Supplementary Figure 2. Identification of functionally heterogeneous cancer cells in ccRCC based on cNMF algorithm.  
(A) Stability and error curve for inferring gene expression program numbers. The blue circle indicates the optimal number of gene expression 
program per sample, while the heatmap shows Euclidean distance of programs across replicates. (B) Heatmap showing characteristic gene 
expression of programs in each sample. Right box shows the characteristic gene of different programs. 
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Supplementary Figure 3. Molecular characteristics of functionally heterogeneous cancer cells of different meta programs in 
ccRCC. (A) Transcriptional expression levels and chromatin accessibility of CA9 and NDUFA4L2 in different meta programs of cancer cells.  

(B) Heatmap showing large-scale copy number variations for cancer cells. Red indicates amplification while blue indicates deletion. T cells 
were used as reference cells to infer copy number variations of cancer cells. 
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Supplementary Figure 4. Expression profiles of signature genes in heterogeneous cancer cells of three meta programs and in 
normal kidney cells. (A) Chromatin accessibility of REGA1, IL10RA and COL1A1 in three meta programs. (B–D) Spatial expression patterns 

for REGA1, IL10RA and COL1A1 in stRNA-seq data. (E) UMAP embedding of cells from normal kidneys in scRNA-seq data. (F) Dot plot for 
expression patterns of marker genes for different cell types of normal kidneys in scRNA-seq data. (G) Expression levels of REGA1, IL10RA and 
COL1A1 for different cell types from normal kidneys in scRNA-seq data. 
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Supplementary Figure 5. Characteristics of heterogeneous cancer cells and associated transcription factor regulatory 
networks. (A) Estimated proportions and differential analysis of relative abundance of functionally heterogeneous cancer cells calculated by 

CIBERSORTx. (B) Correlations between infiltration level of heterogeneous cancer cells of disparate meta programs calculated by CIBERSORTx 
and ssGSEA scores calculated by characteristic genes of meta programs. (C) Functional enrichment analysis results of downstream target 
genes of specific transcription factors in disparate meta programs. 
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Supplementary Figure 6. Expression level of therapeutic target genes in normal kidneys based on scRNA-seq data. 
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Supplementary Tables 
 

 

Supplementary Table 1. Data source and quality control in this study. 

Data type Tissue type Database Data ID Sample ID 
Sample 

number 
Quality control 

Cell 

number 

scRNA ccRCC SRA PRJNA768891 
SRR16213611, SRR16213612, 

SRR16213614 
3 minGene>200, maxGene<5000, pctMT<10 27644 

scRNA 
Normal 

Kidney 
GEO GSE131685 

GSM4145204, GSM4145205, 

GSM4145206 
3 minGene>200, maxGene<2500, pctMT<30 22960 

scATAC ccRCC SRA PRJNA768891 
SRR16213608, SRR16213609, 

SRR16213610 
3 

peak_region_fragments > 1000, 

peak_region_fragments < 20000, 

blacklist_ratio < 0.05, nucleosome_signal < 

4, TSS.enrichment > 3 

26301 

stRNA ccRCC GEO GSE175540 
GSM5924033, GSM5924035, 

GSM5924037, GSM5924040 
4 minGene>300, pctMT<30 17871 

bulk-RNA ccRCC  
GDC-

TCGA 
- - 490 - - 

 

Supplementary Table 2. Functional enrichment analysis of HALMARK term for characteristic gene of meta 
programs. 

ID GeneRatio geneID Count Cluster 

GLYCOLYSIS 9/36 CYB5A/ENO1/MIF/TPI1/TXN/CLDN3/GAL3ST1/PGK1/PKM 9 Metabolism_program 

XENOBIOTIC_METABOLISM 6/36 TMEM176B/CYB5A/CYP27A1/SPINT2/PGRMC1/ECH1 6 Metabolism_program 

REACTIVE_OXYGEN_SPECIES_

PATHWAY 
3/36 TXN/MGST1/PRDX2 3 Metabolism_program 

HYPOXIA 5/36 ENO1/MIF/TPI1/GAPDH/PGK1 5 Metabolism_program 

FATTY_ACID_METABOLISM 4/36 MIF/ACAA2/ALDH1A1/ECH1 4 Metabolism_program 

INFLAMMATORY_RESPONSE 25/9 CYBB/PLAUR/IL1B/IL10RA/CD48/GPR183/PDE4B/TNFRSF1B/ADGRE1 9 Inflammation_program 

KRAS_SIGNALING_UP 25/9 FCER1G/CTSS/PLAUR/LAPTM5/CD37/IL1B/IL10RA/CLEC4A/TNFRSF1B 9 Inflammation_program 

IL2_STAT5_SIGNALING 6/25 FGL2/CD86/IL10RA/CD83/CD48/TNFRSF1B 6 Inflammation_program 

ALLOGRAFT_REJECTION 6/25 SRGN/CTSS/CD86/IL1B/LY86/SPI1 6 Inflammation_program 

TNFA_SIGNALING_VIA_NFKB 6/25 PLAUR/IL1B/CD83/GPR183/PDE4B/PLEK 6 Inflammation_program 

COMPLEMENT 5/25 FCER1G/CTSS/PLAUR/FCN1/PLEK 5 Inflammation_program 

INTERFERON_GAMMA_RESPO

NSE 
5/25 IFI30/FGL2/CD86/IL10RA/PDE4B 5 Inflammation_program 

EPITHELIAL_MESENCHYMAL_

TRANSITION 
18/23 

COL1A2/COL1A1/FN1/FAP/BGN/SPARC/IGFBP2/CTHRC1/COL5A1/VEGFC

/COL3A1/COL6A3/COL6A2/MMP2/HTRA1/PTHLH/TIMP1/SPOCK1 
18 EMT_program 

COAGULATION 7/23 FN1/SPARC/PLAU/MMP2/C1R/HTRA1/TIMP1 7 EMT_program 

MYOGENESIS 6/23 COL1A1/SPARC/IGFBP7/COL3A1/COL6A3/COL6A2 6 EMT_program 

UV_RESPONSE_DN 4/23 COL1A2/COL1A1/IGFBP5/COL3A1 4 EMT_program 

ANGIOGENESIS 2/23 COL3A1/TIMP1 2 EMT_program 
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Supplementary Table 3. Top 50 specific characteristic gene of meta programs. 

Inflammatory meta programs EMT meta programs Metabolism meta programs 

LILRB2 COL1A2 TMEM176B 

IFI30 COL1A1 TMEM176A 

FCER1G FN1 NAT8 

AIF1 FAP ANXA4 

TMSB4X MFAP4 CYB5A 

SRGN BGN ENO1 

S100A4 AC110285.2 MIF 

TYROBP SPARC CXCL14 

CYBB CPE IMPA2 

HLA.DRA GGT5 TPI1 

LYZ IGFBP7 FXYD2 

CTSS IGFBP2 PEBP1 

PLAUR SFRP2 CLU 

FGL2 PPP1R26.AS1 TMEM37 

CSTA MEDAG ACAA2 

CD86 IGFBP5 CYP27A1 

LAPTM5 CTHRC1 GAPDH 

CORO1A COL5A1 HINT1 

COTL1 PLTP UGT2B7 

STX11 PLAU LY6E 

MS4A6A VEGFC ALDH1A1 

HLA.DPA1 COL3A1 TXN 

ARHGDIB AL359541.1 CLDN3 

HLA.DPB1 GJB2 RACK1 

GMFG OLFM2 SPINT2 

CD37 SLC28A3 BBOX1 

CLEC7A CLEC3B BNIP3 

IL1B HAS2.AS1 TNFAIP6 

LY86 COL10A1 GAL3ST1 

IL10RA COL6A3 SLC17A3 

SPI1 CREB3L1 NDUFA4L2 

LILRB4 COL6A2 PGK1 

CLEC4A ARL4C PDZK1IP1 

CD83 AC124067.2 LINP1 

CD48 TMC3.AS1 PKM 

CD53 AC020910.2 SMIM24 

LST1 MMP2 PGRMC1 

FCN1 POPDC3 AZGP1 

GPR183 C1R CUBN 

PDE4B HTRA1 MGST1 

PLEK GAP43 ITM2B 

HLA.DRB1 PTHLH SLC3A1 

TNFRSF1B P4HA3 PRDX2 

C1orf162 KRTAP5.10 KRT18 

VSTM1 TIMP1 RTN4 

BTK SPOCK1 SNHG29 

LILRA5 LGI2 MPC2 

ABI3 RAB39A COX6A1 

PILRA RRS1.AS1 ECH1 

ADGRE1 DPT ACMSD 

 


