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INTRODUCTION 
 

Lung cancer, one of the most common and lethal 

malignancies worldwide, poses a significant threat to 

human health [1]. Smoking is considered the primary 

risk factor for lung cancer. Despite smoking being a 

major cause, other factors such as air pollution, 

exposure to asbestos, radon, nickel, arsenic, soot, and 

tar also significantly impact the incidence of lung 

cancer. Symptoms of lung cancer include dyspnea, 

chest discomfort, wheezing, bloody mucus, and 

hoarseness, along with more subtle symptoms like 

fatigue, loss of appetite, and unexplained weight loss 
[2]. Lung cancer is primarily categorized into two types: 

non-small cell lung cancer and small cell lung cancer. 

The distribution of pathological types varies in different 
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ABSTRACT 
 

A deep understanding of the biological mechanisms of lung cancer offers more precise treatment options for 
patients. In our study, we integrated data from the Gene Expression Omnibus (GEO) and The Cancer Genome 
Atlas (TCGA) to investigate lung adenocarcinoma. Analyzing 538 lung cancer samples and 31 normal samples, 
we focused on 3076 autophagy-related genes. Using Seurat, dplyr, tidyverse, and ggplot2, we conducted single-
cell data analysis, assessing the quality and performing Principal Component Analysis (PCA) and t-SNE analyses. 
Differential analysis of TCGA data using the “Limma” package, followed by immune infiltration analysis using 
the CIBERSORT algorithm, led us to identify seven key genes. These genes underwent further scrutiny through 
consensus clustering and gene set variation analysis (GSVA). We developed a prognostic model using Lasso Cox 
regression and multivariable Cox analysis, which was then validated with a nomogram, predicting survival rates 
for lung adenocarcinoma. The model’s accuracy and universality were corroborated by ROC curves. 
Additionally, we explored the relationship between immune checkpoint genes and immune cell infiltration and 
identified two key genes, HLA-DQB1 and OLR1. This highlighted their potential as therapeutic targets. Our 
comprehensive approach sheds light on the molecular landscape of lung adenocarcinoma and offers insights 
into potential treatment strategies, emphasizing the importance of integrating single-cell and genomic data in 
cancer research. 

mailto:guoliang700@163.com
https://orcid.org/0000-0002-3341-0191
mailto:lijuanjuan700@126.com
https://orcid.org/0000-0002-1431-492X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


www.aging-us.com 2 AGING 

regions; for instance, previous studies have shown a 

higher proportion of squamous carcinoma among 

patients who smoke and drink [3]. With advances in 

etiological research and precision medicine, the 

incidence and mortality rates of lung cancer are 

changing globally. Data from Canada indicate a 

significant reduction in lung cancer mortality rates by 

approximately 4% annually since 2015. Understanding 

the epidemiological characteristics of lung cancer is 

crucial for its prevention and treatment. Current 

treatments for lung cancer include minimally invasive 

surgery, targeted therapy, and immunotherapy [4]. 

Transcriptomics plays a vital role in the treatment of 

lung cancer by identifying genes closely associated with 

lung cancer through comparisons between the 

genotypes of lung cancer and normal lung tissues [5]. 

Recent studies also highlight the safety and 

effectiveness of personalized tumor treatments, such as 

the application of long non-coding RNA (lncRNA) in 

the treatment of lung cancer [6]. 

 

Autophagy, a self-repair and self-cleaning mechanism 

in cells, and single-cell research play a crucial role in 

lung cancer, offering insights into the complexity of the 

disease and the development of new treatment 

strategies. Autophagy demonstrates a complex “double-

edged sword” effect in the progression and treatment of 

lung cancer [7]. It can suppress tumors by clearing 

damaged organelles, maintaining cellular homeostasis, 

and protecting normal cells. However, it also plays a 

role in the survival and drug resistance of tumor cells. 

For instance, EGFR-TKI drugs, well-studied in tumor-

targeted therapy, can induce autophagy in tumor cells. 

The effect of autophagy here is twofold, sometimes 

promoting the survival of tumor cells [8]. Future 

research should focus on developing new models for 

studying autophagy, investigating the specific 

mechanisms of autophagy as a cell death or survival 

function in EGFR inhibition, and strategies for 

combining EGFR-TKI with autophagy-regulating drugs 

at different stages of the tumor and treatment [9]. 

Single-cell sequencing technology also plays a key role 

in lung cancer research, allowing researchers to reveal 

the molecular mechanisms of tumor cell metastasis and 

identify new circulating tumor cell (CTC) biomarkers 

[10]. For example, whole-genome sequencing has 

revealed cancer-associated single nucleotide variations. 

Moreover, bioinformatics analysis based on the TCGA 

database has successfully constructed a prognostic risk-

scoring model for lung adenocarcinoma based on 

autophagy-related genes, providing new strategies for 

personalized treatment of lung cancer [11]. In summary, 

autophagy and single-cell research offer new 
perspectives and directions for the treatment of lung 

cancer, helping develop more effective treatment 

methods. Through these studies, we can gain a deeper 

understanding of the biological mechanisms of lung 

cancer, offering more precise treatment options for 

patients. 

 

METHODS 
 

Data collection and organization 

 

We sourced our data from the Gene Expression 

Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) 

and The Cancer Genome Atlas (TCGA) (https://portal. 

gdc.cancer.gov/) databases [12]. Single-cell data for 

lung adenocarcinoma were obtained from the GEO 

database, specifically the GSE117570 dataset, for 

subsequent analysis. From TCGA, we included 31 

normal samples and 538 lung cancer samples for further 

study. A total of 3076 autophagy-related genes were 

identified from the GENECARD database, along with 

the corresponding clinical pathological information 

downloaded from TCGA [13]. 

 

Single-cell data analysis 

 

The data from the GEO database were processed and 

analyzed for single-cell data using Seurat, dplyr, 

tidyverse, and data tables were employed for data 

handling and transformation; and ggplot2, ggpubr, and 

ggsci were used for data visualization [14]. To assess 

data quality, we calculated the expression ratio of 

mitochondrial genes and ribosomal protein genes in 

each cell. Based on these ratios, potential low-quality 

cells were filtered out. Subsequently, data from all 

samples were merged into a single Seurat object for 

unified downstream analysis. We then normalized the 

data, selected variable features, and conducted Principal 

Component Analysis (PCA) [15]. PCA helped us 

understand the main sources of variation in the data and 

provided a basis for subsequent clustering analysis. We 

also performed non-linear dimensionality reduction 

using the t-SNE algorithm for better visualization of cell 

similarities. Finally, cells were clustered based on 

expression characteristics, and different cell populations 

were identified and annotated using specific marker 

genes. Key genes in monocyte cells were selected for 

further analysis [16]. 

 

Key gene selection 

 

Differential analysis of TCGA data was performed 

using the “Limma” package in R [17], followed by an 

immune infiltration analysis. We then estimated the 

proportion of immune cell infiltration in each lung 

cancer sample using the CIBERSORT algorithm [18]. 

Based on the results of immune infiltration, a weighted 

gene co-expression network analysis was performed 

using the `WGCNA` package [19]. We first conducted 
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sample clustering to detect and remove outliers and then 

chose an appropriate soft threshold to ensure a scale-

free network distribution. Modules were constructed, 

and those related to monocyte cells were identified. 

Intersection analysis was then conducted among 

autophagy genes, WGCNA genes, and monocyte cell-

related genes from single-cell data. 

 

Consensus clustering analysis of key genes 

 

From the data obtained above, 7 key genes were 

identified for further analysis. All these genes were 

present in TCGA. We performed a consistent 

unsupervised clustering analysis using the 

“ConsensusClusterPlus” package in R [20], employing 

the K-Means algorithm to generate different clustering 

subtypes based on the expression of key genes. Each 

cluster had a significant sample size. The clusters 

exhibited high intra-cluster similarity and low inter-

cluster similarity. To uncover the biological differences 

between molecular subtypes, gene set variation analysis 

(GSVA) was performed using gene sets compiled from 

MSigDB (C2.Cp.ke.v7.2) [21]. 

 

Comprehensive analysis of different molecular 

subtypes 

 

To evaluate the differences between the two clusters, 

we explored the association of different clusters with 

the prognosis and clinical characteristics of lung 

adenocarcinoma patients. Kaplan-Meier curves 

generated using the R packages “survival” and 

“survminer” were used to compare survival times [22]. 

 

Model construction 

 

Next, we constructed a prognostic model using these 7 

key genes. The “glmnet” package in R was used for 

Lasso Cox regression analysis to reduce the risk of 

overfitting related to prognostic genes. Multivariable 

Cox analysis was employed to select candidate model 

genes and develop a prognostic model, which was 

validated based on the training set [23]. The Key Gene-

Score was calculated as follows: Σ (Coefi × Expi), 

where Coefi represents the risk coefficient, and Expi 

represents the expression of each gene. Patients were 

divided into two groups based on the median risk score 

for Kaplan-Meier survival analysis and receiver 

operating characteristic (ROC) curve analysis. The 

“ggplot2” package was used for PCA (Principal 

Component Analysis) and t-SNE (t-distributed 

Stochastic Neighbor Embedding) analysis [24]. 

Subsequently, the dataset was divided into high-risk and 
low-risk groups, and KM survival analysis and ROC 

curves for each group were performed to validate the 

universality and accuracy of the model [25]. 

Development of a nomogram 

 

A nomogram was created using the “nomoR” package, 

incorporating the risk score and clinical characteristics 

of lung adenocarcinoma patients [26]. Each variable 

was assigned a score, and the total score for each 

sample was calculated by summing these scores. 

Calibration plots were used to depict the predicted 

values of 1-year, 3-year, and 5-year survival events 

compared to the virtual observed values. Finally, gene 

immune checkpoint analysis was conducted to 

distinguish between the high and low groups, followed 

by a drug sensitivity analysis. 

 

RESULTS 
 

Differential analysis and WGCNA analysis 

 

We conducted a differential analysis of tumor data 

from The Cancer Genome Atlas (TCGA), categorizing 

adjacent tissue as the normal group and the cancer 

tissue as the diseased group. Using a threshold of p < 

0.05 and an absolute logfc value greater than 1, we 

identified 7400 differential genes. Figure 1A displays 

a heatmap of these differential genes, while Figure 1B 

shows a volcano plot of the same. Figure 1C presents 

the results of data quality control post-normalization. 

 

Further, we conducted an immune infiltration analysis 

of the TCGA data. A differential analysis of immune 

cells between the normal and diseased groups is 

displayed in Figure 2A. Significant differences were 

observed in various cell clusters, such as naïve B cells, 

plasma cells, activated memory CD4 T cells, M0 

macrophages, and notably, monocytes. We chose to 

focus primarily on monocytes for further analysis. 

Using the WGCNA method, we analyzed the 

monocyte cell-related modules in the immune process 

(Figure 2B), dividing cells into different modules 

based on monocyte cell scoring. Genes from modules 

with a p-value less than 0.05 were selected for 

subsequent analysis. Figure 2C shows the results of 

clustering. 

 

Key gene selection 

 

We downloaded single-cell data from GSE117570, with 

the clustering annotation results shown in Figure 3A, 

dividing cells into 10 distinct clusters, including M1, 

M2, and monocyte cells. We selected genes from 

monocyte cells for further analysis. Next, we intersected 

genes from single-cell monocyte cells, genes identified 

through WGCNA, and autophagy-related genes, as 

illustrated in Figure 3B, yielding 7 key genes: OLR1, 

TREM1, SERPINA1, HLA-DRB5, HLA-DQA2, LYZ, 

and HLA-DQB1. 
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Identification of key gene-related subtypes in lung 

cancer 

 

Having identified 7 key genes from the lung cancer 

dataset, we assessed their prognostic value using 

univariate Cox regression and Kaplan-Meier analysis, 

selecting genes with a P-value < 0.05. We then 

classified lung cancer patients based on the expression 

profiles of these 7 key genes using a consensus 

clustering algorithm (Figure 4A, 4B). Our findings 

indicated that k = 2 was the optimal variable for 

dividing the dataset into clusters A and B (Figure 4B). 

Survival analysis of these two clusters indicated a 

significant difference, as shown in Figure 4C. 

Further, we conducted a GSVA analysis of these two 

clusters. It was observed that these clusters exhibited 

significant differences in pathways such as 

KEGG_LEISHMANIA_INFECTION, KEGG_JAK_ 

STAT_SIGNALING_PATHWAY, KEGG_T_CELL_ 

RECEPTOR_SIGNALING_PATHWAY, and KEGG_ 

INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PR

ODUCTION (Figure 5A). The heatmap in Figure 5B 

shows the correlation of these clusters with clinical 

information of lung cancer patients. Additionally, an 

ssgsea analysis revealed notable differences between 

these clusters in various immune cells, such as 

Activated CD4 T cell, Activated CD8 T cell, Monocyte, 

etc., (Figure 5C). 

 

 
 

Figure 1. Display of differential analysis results. (A) Heatmap of differential genes; (B) Volcano plot of differential genes; (C) 

Distribution of differential genes after normalization. 
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Model analysis 

 

Initially, lung cancer patients were randomly divided 

into a training set and a test set in a 7:3 ratio. The best 

model was then selected through LASSO regression 

analysis, leaving the minimal likelihood deviation of 

genes and multivariable Cox regression analysis based 

on the Akaike information criterion (AIC) value (Figure 

6A, 6B). Patients with a CRG_score lower than the 

median risk score were considered low-risk, while those 

with scores above the median were considered high-

risk. To assess the model’s predictive capability, we 

calculated scores for the test set and the entire cohort 

and conducted ROC analysis to verify predictive 

 

 
 

Figure 2. WGCNA analysis results. (A) Box plot of immune cell differences between groups; (B) Selection of modules associated with 
immune cells; (C) Distribution of subgroups in data. 

 

 
 

Figure 3. Single-cell data analysis. (A) Clustering annotation results of single-cell data; (B) Venn diagram for key gene selection. 



www.aging-us.com 6 AGING 

 
 

Figure 4. Clustering analysis results. (A) CDF plot of clustering; (B) Display of clustering results. (C) Survival analysis of different subgroups. 

 

 
 

Figure 5. Analysis of subtypes based on key genes. (A) GSEA analysis results of different cluster outcomes. (B) Heatmap of cluster 

subgroups and clinical characteristics; (C) ssgsea analysis results of different clusters. 
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accuracy. ROC curves in Figure 6F–6H show that the 

CRG-Score’s 1-year, 3-year, and 5-year survival rates 

in the training cohort were 0.630, 0.593, and 0.573, 

respectively. In the validation cohort, the 1-year, 3-year, 

and 5-year survival rates were 0.639, 0.598, and 0.620, 

respectively, with survival curves of all three groups 

indicating significance (Figure 6C–6E). 

 

Further, we created heatmaps, PCA, and t-SNE 

distribution diagrams for the key genes, demonstrating 

significant dimensions of high and low score ancestors. 

Figure 7A–7C show heatmaps of key genes, while 

Figure 7D–7I display survival status and survival time 

between different models. 

 

Nomogram and immune analysis 

 

For clinical application, we created a nomogram to 

estimate the survival rate of lung cancer patients, based 

on the correlation between risk scores and patient 

prognosis. Using this nomogram, we estimated the 1-

year, 3-year, and 5-year OS (Figure 8A). Furthermore, 

we compared the predictive accuracy of the nomogram 

with other clinical variables, indicating that 

 

 
 

Figure 6. Survival curves and ROC analysis of the risk model in training and testing groups. (A, B) Lasso analysis display; (C–E) 

Survival curves showing prognostic survival status for different models; (F–H) ROC curves predicting 1-year, 3-year, and 5-year survival 
sensitivity and specificity based on risk scores in training, testing, and entire cohorts. 
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the nomogram provided better survival prediction 

(Figure 8B). 

 

We first examined the expression relationship of 

immune checkpoint genes between high and low 

groups, noting significant differences in several immune 

checkpoints (Figure 9A). Using CIBERSORT, we 

associated key genes with immune cell infiltration. Stars 

indicate significant correlations; the deeper the color, 

the stronger the correlation, as evident with these two 

genes showing clear relevance to monocytes (Figure 

9B), and most being significantly correlated with 

immune cells. Drug sensitivity analysis revealed these 

key genes to have apparent correlations with several 

drugs (Figure 9C). 

 

DISCUSSION 
 

In lung cancer research, monocytes, particularly 

inflammatory monocytes, play a crucial role in the 

progression of the disease. Studies have linked these 

cells with lung squamous carcinoma, where they 

contribute to tumor growth through the promotion of 

fibrin cross-linking [27]. These monocytes are 

intimately associated with secretory-type lung cancers, 

influencing the tumor microenvironment by fostering 

 

 
 

Figure 7. Risk heatmap. (A–C) Risk heatmap display for different groups; (D–I) Survival time and survival status between low-risk and 

high-risk groups in training, testing, and entire cohorts. 

 

 
 

Figure 8. Nomogram. (A) Nomogram calibration chart; (B) Model nomogram. 
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tumor growth, angiogenesis, metastasis, chemotherapy 

resistance, and immune suppression. Moreover, 

alterations in these cells within the tumor micro-

environment are tied to overall patient survival, 

especially as they differentiate into tumor-associated 

macrophages and dendritic cells. The current limitations 

in lung cancer treatment include an insufficient 

understanding of the disease’s complex heterogeneity 

and resistance to existing therapies. The development of 

precision target therapies, especially the introduction of 

immune checkpoint inhibitors, has revolutionized lung 

cancer treatment [28]. However, the success rate 

remains limited, with up to 70% of patients being non-

responsive to these treatments. Thus, monocytes and 

their derivatives, such as tumor-associated macro-

phages, emerge as potential new therapeutic targets. A 

deeper understanding of the role of monocytes in the 

tumor microenvironment could lead to more effective 

treatment strategies, thereby improving the prognosis 

for lung cancer patients [29]. 

 

In a recent study on lung cancer, we made significant 

discoveries through an integrated analysis of data from 

the Gene Expression Omnibus (GEO) and The Cancer 

Genome Atlas (TCGA). Initially, we harnessed single-

cell data for lung adenocarcinoma from the GEO 

database, particularly the GSE117570 dataset, along 

with lung cancer sample data from TCGA, which 

provided a wealth of information for our investigation. 

Delving deep into this data, we identified 3076 

autophagy-related genes and extracted relevant clinical 

pathological information. In terms of single-cell data 

analysis, we employed tools such as Seurat for data 

quality control, normalization, and Principal 

Component Analysis (PCA), as well as t-SNE for non-

linear dimension reduction. These steps enabled us to 

clearly identify and annotate different cell populations, 

especially monocytes, laying a crucial foundation for 

our subsequent research. Moving forward, we used the 

“Limma” package for differential analysis of TCGA 

data and coupled it with the CIBERSORT algorithm to 

estimate the proportion of immune cell infiltration in 

lung cancer samples. These analyses highlighted the 

significant role of monocytes in lung cancer. Through 

weighted gene co-expression network analysis using the 

WGCNA package, we further identified gene modules 

closely related to monocytes and delved into these 

genes. 

 

Key findings include the selection of 7 critical genes 

through consensus clustering analysis, upon which we 

built a prognostic model for lung cancer. The Lasso Cox 

regression and multivariable Cox analysis helped reduce 

the risk of overfitting in our model, ensuring its 

accuracy and reliability. Additionally, we developed a 

predictive nomogram and validated its accuracy in 

forecasting 1-year, 3-year, and 5-year survival events 

using calibration plots. Among the key genes identified 

were HLA-DQB1 and OLR1. The HLA-DQB1 gene, a 

part of the human leukocyte antigen (HLA) complex

 

 
 

Figure 9. Immune infiltration analysis of key genes. (A) Immune checkpoint differential box plot; (B) Correlation analysis between 

key genes and immune infiltration; (C) Drug sensitivity analysis. 
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gene family, encodes a vital protein in the immune 

system, crucial for distinguishing self from non-self 

proteins. Studies have shown that lower expression 

levels of HLA-DQB1 in lung adenocarcinoma tissue 

correlate with a reduced recurrence rate in patients, 

indicating its significant role in the immune response 

and prognosis of lung adenocarcinoma [30]. The OLR1 

gene, coding for an oxidized low-density lipoprotein 

receptor, is associated with tumor metastasis and 

apoptosis. Although its direct link to lung cancer is not 

explicitly established, its role in tumor biology suggests 

a potential impact on lung cancer progression. These 

two genes could play key roles in the pathogenesis and 

treatment of lung cancer [31]. However, our study has 

limitations. Since the data were sourced from public 

databases, we couldn’t control the quality and 

consistency of sample collection and processing. 

Moreover, our research focused mainly on gene 

expression data, while other aspects of the lung cancer 

microenvironment, such as intercellular communication 

and the role of the tumor extracellular matrix, are also 

critical factors affecting treatment outcomes. Future 

research will require validation in larger, independent 

sample cohorts and should consider these additional 

aspects of the tumor microenvironment. 
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