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INTRODUCTION 
 

Gastric cancer ranks fourth in cancer incidence and 

second in cancer-related deaths, posing a serious threat 
to physical and mental health [1]. Chronic atrophic 

gastritis (CAG) is a common digestive system disease 

recognized as a precancerous lesion in gastric cancer 

[2]. CAG is usually associated with Helicobacter pylori 

infection, autoimmune reactions, and other factors,  

and its clinical manifestations include dyspepsia,  

upper abdominal pain, fullness after meals, and other 

symptoms [3]. Treatment of chronic atrophic gastritis 
mainly focuses on improving symptoms and inhibiting 

inflammatory responses [4]. Recently, some new drugs, 

such as immunomodulators and antioxidants, have 

shown efficacy in clinical trials [5, 6]. However, owing 
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ABSTRACT 
 

Chronic atrophic gastritis (CAG) is a chronic inflammatory disease and precancerous lesion in stomach cancer. 
Abnormal activation cellular ferroptosis further damages gastric tissue, which is susceptible to inflammation. 
Luteolin has powerful anti-inflammatory and regulatory potential for cellular ferroptosis. We aimed to clarify 
the involvement of luteolin in inflammation and ferroptosis during CAG. Luteolin targets were searched to 
identify intersecting genes in the chronic atrophic gastritis disease database. The AGE-RAGE pathway is a 
potential target of luteolin for the treatment of chronic atrophic gastritis and a binding site between luteolin 
and RAGE was predicted through a computer simulation of molecular docking. We established a CAG rat model 
using N-methyl-N-nitro-N-nitroguanidine. The therapeutic effect of luteolin on CAG was detected using western 
blotting, qPCR, hematoxylin and eosin staining, lipid oxidation (MDA), and Fe2+ assays. Luteolin inhibited the 
AGE-RAGE signaling pathway and reduced the inflammatory response in gastric tissues. Additionally, luteolin 
downregulated the concentration of (MDA) and Fe2+, and CAG downregulated the expression levels of ACSL4 
and NOX1 and upregulated the expression levels of FIH1 and GPX4 ferroptosis-related proteins, thus inhibiting 
the ferroptosis of gastric tissue cells, which had a therapeutic effect on CAG. 
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to their therapeutic and long-term side effects, further 

development has limitations [7, 8]. Therefore, it is 

important to identify more specific drugs with low 

toxicity and high efficacy to reverse CAG symptoms 

and reduce the incidence of gastric cancer. 

 

Natural drugs can be used for developing low-toxicity 

and high-efficiency targeted drugs [9, 10]. Luteolin is a 

naturally occurring flavonoid widely found in a variety  

of plants, such as comfrey and celery [11]. Recently, 

substantial progress has been made in the study of the 

pharmacological action of luteolin, which has a strong 

anti-inflammatory effect, inhibiting the expression of 

inflammatory factors, such as IL-1β and TNF-α [12].  

Its anti-inflammatory mechanism may be related to  

the inhibition of signaling pathway activation, such as 

AGE-RAGE [13]. In addition, luteolin has good binding 

activity with differentially expressed genes in individuals 

with CAG [14]. Thus, luteolin is a potential drug for the 

treatment of CAG. However, the mechanism of action of 

luteolin in CAG treatment remains unclear. 

 

Luteolin modulates iron cell death in different diseases, 

achieving different degrees of therapeutic effects [15]. 

Ferroptosis is a cellular stress response, recently 

attracting attention in many fields such as neuroscience, 

oncology, and immunology [16]. There is abnormal iron 

metabolism and ferroptosis in the gastric tissue of CAG 

[17]. Inducing gastric ferroptosis by inhibiting CAG  

can successfully hinder the progression of CAG [18], 

indicating that inhibiting CAG-induced ferroptosis is  

a new strategy for treating CAG. Luteolin inhibits 

ferroptosis in diseases, such as endometritis [19] and 

myocardial reperfusion injury [20]. However, whether 

luteolin activates or inhibits ferroptosis in CAG remains 

unclear. Therefore, our study focused on the initial 

mechanism of luteolin in the treatment of CAG and  

its relationship with ferroptosis, inflammation, and the 

AGE-RAGE signaling pathway in gastric tissue, with 

the aim of developing new natural drugs and providing 

new therapeutic strategies for the treatment of CAG. 

 

RESULTS 
 

Screening of potential therapeutic targets of luteolin 

in CAG 

 

The GSE153224 and GSE191139 datasets  

were downloaded from the GEO database 

(https://www.ncbi.nlm.nih.gov/gds). We analyzed the 

principal components of the two datasets, as shown in 

Supplementary Figure 1A. Subsequently, we plotted a 

volcano map of differential genes (Supplementary 

Figure 1B) and found that 2,732 differential genes 

were upregulated and 2,359 differential genes were 

downregulated. We obtained the TOP20 genes with 

the most pronounced differences to plot a clustered 

heat map (Supplementary Figure 1C). We did not find 

information of interest using the gene ontology (GO) 

functional enrichment map (Supplementary Figure 1D) 

or Kyoto Encyclopedia of Genes and Genomes 

(KEGG) functional enrichment map (Supplementary 

Figure 1E). 

 

We downloaded the luteolin-predicted target information 

from the ETCM database to identify gene intersections 

with the above differential genes. By plotting a Wayne 

diagram (Figure 1A), we identified 42 intersecting genes. 

Next, we plotted the clustering heatmap of the intersecting 

genes (Figure 1B), GO functional enrichment analysis 

(Figure 1C), KEGG functional enrichment analysis 

(Figure 1D), and a protein-protein interaction (PPI) 

network map of the intersecting genes (Figure 1E). We 

found that the differential genes were mainly enriched  

in the AGE-RAGE signaling pathway, and RAGE 

proteins were aberrantly expressed in the CAG disease 

dataset. RAGE is a potential target of luteolin in the 

treatment of CAG. The 2D and 3D molecular formulae  

of luteolin are shown in Figure 2A. We simulated the 

molecular docking of luteolin with RAGE using a 

computer, and the results showed a binding pattern of 

AGER and luteolin as shown in Figure 2B, the binding 

scores reflect the binding strength between the receptor 

and ligand. The free energy of binding calculated from the 

docking of AGER and luteolin was -6.5 kcal/mol, in 

which the binding of luteolin to AGER on the ILE120, 

HIS217, ARG218, and ARG221 contributes to the tight 

binding of proteins and compounds. In addition, luteolin 

can form hydrophobic interactions with ILE120, which 

further indicates the strong binding ability between 

luteolin and RAGE (Figure 2B). 

 
Luteolin ameliorates gastric injury and inflammation 

in CAG rats  

 
The MNNG model of CAG rats and subsequent luteolin 

treatment process are detailed in Figure 3A. The 

stomach tissue considerably improved after luteolin 

treatment (Figure 3B). We also observed the body 

weight changes of the rats during the modeling and 

treatment periods and found that the body weight of the 

rats in the MNNG-induced CAG model group increased 

slowly compared with that of the control group, 

whereas the body weight of the luteolin-treated group 

tended to increase faster than that of the model group, 

which proved that luteolin had a therapeutic effect, 

leading to a convergence of body weights in the 

luteolin-treated group compared with that of the normal 

rats (Figure 3C). Hematoxylin and eosin (HE) staining 

results clearly showed that the gastric mucosal intrinsic 

glands were significantly reduced in the CAG model 

group, with some tissue inflammation. Gastric mucosal 
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glands were increased, and inflammation was reduced 

in the luteolin-treated group (Figure 3D). 

 

We found that the expression levels of both IL-1β and 

TNF-α were elevated in CAG (Figure 4A). To further 

verify the anti-inflammatory effects of luteolin on CAG 

gastric tissues, we measured the expression of relevant 

inflammatory factors in rat serum using ELISA. The 

expression of IL-6, TNF-α, and IL-1β was significantly 

elevated and the expression level of IL-10 was reduced 

in the CAG group, whereas luteolin treatment was  

able to significantly attenuate the expression levels of 

IL-6, TNF-α, and IL-1β and enhance the expression 

level of IL-10 (Figure 4B). In addition, we also detected 

the changes in the mRNA expression of inflammatory 

factors by qPCR. Luteolin treatment significantly 

reduced the mRNA expression levels of IL-6, TNF-α, 

and IL-1β, and enhanced the expression level of IL-10 

mRNA (Figure 4C). These results further confirm the 

anti-inflammatory effects of luteolin. 

 

Luteolin can inhibit the ferroptosis in the gastric 

tissue of CAG rats 

 

After we confirmed that luteolin was able to inhibit 

inflammation in the CAG model, to further elaborate on 

the pharmacological effects of luteolin, we verified the 

effects of luteolin treatment on ferroptosis in gastric 

tissues of the CAG model by observing ferroptosis-related 

indices. We found that the expression levels of MDA and 

Fe2+ were significantly increased in the CAG model 

group, whereas luteolin treatment downregulated the 

expression levels of MDA and Fe2+ (Figure 5A).   

Next, we detected the expression of ferroptosis-related 

 

 
 

Figure 1. Screening of potential therapeutic targets for luteolin. (A) Drug targets and CAG differential genes were intersected to draw 

a Wayne diagram. (B) Heat map of intersecting gene clustering. (C) GO functional enrichment analysis. (D) KEGG functional enrichment 
analysis of intersecting genes. (E) Intersecting gene plot of the PPI network diagrams. CAG, chronic atrophic gastritis; GO, gene ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction. 

10920



www.aging-us.com 4 AGING 

 
 

Figure 2. Luteolin has a binding site with AGRE. (A) 2D and 3D molecular structures and relative molecular mass of luteolin.  
(B) Schematic of luteolin docking with AGRE. 
 

 
 

Figure 3. Luteolin has a therapeutic effect on rat CAG in vivo. (A) CAG animal modeling and treatment flowchart. (B) Top view of the 
rat gastric tissue anatomy. (C) Body weight curves of the rats. (D) HE staining of rat gastric tissues. CAG, chronic atrophic gastritis; HE, 
hematoxylin and eosin. 
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indexes by qPCR (Figure 5B) and western blotting 

(Figure 5C). The results showed that the protein and 

mRNA expression levels of ACSL4, COX2, and NOX1 

ferroptosis inducers were significantly increased in the 

CAG model group, while the protein and mRNA 

expression levels of the ferroptosis inhibitors, FIH1 and 

GPX4, were significantly decreased, suggesting that 

there was obvious ferroptosis in the gastric tissues of 

the CAG model group. Luteolin treatment significantly 

reduced ACSL4, COX2, and NOX1, and enhanced 

FIH1 and GPX4 protein and mRNA expression levels, 

which suggests that we luteolin can inhibit the 

ferroptosis of gastric tissues caused by the CAG model, 

and then reduce the gastric tissue damage. 

 

Luteolin inhibits the AGE-RAGE signaling pathway 

 

We found that RAGE was abnormally expressed in 

CAG disease (Figure 6A) to further elucidate the 

mechanism underlying the pharmacological effects of 

luteolin, changes in pathway-related proteins were 

detected using western blotting. CAG was able to 

enhance the expression levels of AGE and RAGE 

proteins. The expression levels of AGE and RAGE 

proteins significantly decreased after luteolin treatment 

(Figure 6B). We also examined NF-κB p65 and p-NF-

κB p65, related factors downstream of the AGE-RAGE 

signaling pathway. The result showed that CAG up-

regulated p-NF-κB p65/NF-κB p65, while luteolin was 

able to inhibit the expression level of p-NF-κB p65/ 

NF-κB p65 (Figure 6C). Therefore, it was confirmed 

that luteolin inhibits the activity of the AGE-RAGE 

signaling pathway. 

 

DISCUSSION 
 

To reduce the incidence of gastric cancer, it is crucial to 

prevent precancerous lesions in advance, and preventing 

chronic obscene gastritis is an important means to 

reduce the incidence of gastritis [21]. Recently, Chinese 

herbal medicines have made rapid progress in the 

treatment of CAG and are important in the development 

of CAG-specific drugs [22]. Luteolin has the natural 

advantages of low toxicity and high efficacy and has 

become a candidate drug for a variety of diseases [23]; 

its derivatives also show great potential in the field of 

 

 
 

Figure 4. Luteolin can reduce the inflammatory response in the gastric tissue of CAG rats. (A) Expression of IL-1 β and TNF-α in the 

CAG dataset. (B) Changes in Il-6, Il-10, Tnf-α, and Il-1β levels in rat serum were determined by ELISA experiments. (C) The level of mRNA 
changes in Il-6, Il-10, TNF-a, and Il-1b after luteolin treatment was determined by qPCR.  
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Figure 5. Luteolin inhibits ferroptosis in rat gastric tissue. (A) Changes in the levels of Fe2+ and MDA in gastric tissues of luteolin-
treated rats. (B) Changes in the mRNA expression of FIH1, COX2, ACSL4, GPX4, and NOX1 were detected using qPCR. (C) Western blot analysis 
of the protein expression levels of FIH1, COX2, ACSL4, GPX4, and NOX1.  
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diseases [24]. Luteolin has not previously been reported 

in CAG treatment. Based on bioinformatic analysis, we 

found that the differences between luteolin and CAG 

diseases were mainly concentrated in the AGE-RAGE 

signaling pathway, and luteolin also had strong binding 

sites for RAGE. RAGE is a potential therapeutic target 

for luteolin, which is consistent with predictions by 

others [13]. To our knowledge, the specific mechanism 

of the AGE-RAGE signaling pathway in CAG has not 

been reported, and AGE-RAGE signaling pathway is a 

malignant factor in various human diseases, including 

cancer, cardiovascular diseases, and nervous system 

diseases [25]. Abnormal RAGE expression was observed 

in the CAG disease database. Luteolin treatment 

significantly inhibited the activity of the AGE-RAGE 

signaling pathway and reduced the inflammatory 

response in the serum of CAG rats. Luteolin shows  

a strong anti-inflammatory effect, which has been 

confirmed in other diseases. 

 

CAG diseases are usually accompanied by ferroptosis  

in the gastric tissue, and CAG-induced ferroptosis is 

characterized by decreased levels of GPX4 and FTH and 

increased levels of 4-HNE [17]. Ferrimodulin is mainly 

located in parietal cells and is elevated in CAG gastric 

tissue [18]. Wang et al. used the STRING database to 

construct an interaction network of potential target  

genes for age-related maculopathy, ferroptosis, and 

Salvia miltiorrhiza/Fructus lycii. Notably, luteolin has  

a strong enrichment relationship with genes related  

to ferroptosis [26]. In our study, luteolin significantly 

inhibited the expression of Fe2+ and MDA in CAG  

rat stomach tissues, upregulated FIH1 and GPX4, 

downregulated the expression of ACSL4, COX2, and 

NOX1 protein and mRNA, and inhibited ferroptosis in 

stomach tissues. Notably, luteolin-mediated ferroptosis 

has different effects on different cells. Luteolin can 

induce ferroptosis in cancer cells such as prostate cancer 

[27], colorectal cancer [28], and renal cell carcinoma 

[29], while inhibiting ferroptosis in normal cells [19, 30]. 

Ferroptosis is mainly caused by the action of bivalent 

iron ion or ester oxygenase, which catalyzes the highly 

expressed unsaturated fatty acids on the cell membrane 

and causes liposome peroxidation, thus inducing cell 

death [31]. We suspect that this may be different from 

the metabolic level of ferroptosis in cancer and normal 

cells, as well as the level of Fe2+ ions produced by 

cancer cells [32], resulting in different effects of luteolin 

on ferroptosis in different cells. This theory needs to be 

tested in future experiments. 

 

 
 

Figure 6. Luteolin inhibits the activity of the AGE-RAGE signaling pathway. (A) RAGE expression in the CAG disease database.  

(B) Western blot. The protein expression levels of AGE and RAGE were determined. (C) Western blot assay was used to detect the protein 
expression levels of NF-κB p65 and p-NF-κB p65. 
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In conclusion, we demonstrated for the first time that 

luteolin inhibited the expression of the AGE-RAGE 

signaling pathway, inhibited ferroptosis in gastric tissue, 

and alleviated gastric tissue damage and inflammation  

in CAG models. Although our results were encouraging, 

there are some limitations. The relationship between 

luteolin inhibition of ferroptosis and the AGE-RAGE 

signaling pathway needs to be further verified by reverse 

validation experiments. Additionally, the metabolic 

processes of luteolin in the body are unknown and may 

affect its efficacy and safety. The anti-inflammatory 

mechanism of luteolin in CAG is unclear; subsequent 

studies should compare the therapeutic effects of luteolin 

with those of anti-inflammatory drugs. Therefore, future 

studies should focus on the metabolic process of luteolin 

in vivo and elucidate the in-depth mechanism of luteolin 

treatment of CAG, inhibition of ferroptosis, and resistance 

to inflammation to provide more information for its 

clinical application. 

 
In summary, the protective and therapeutic effects of 

luteolin on CAG via the inhibition of AGE-RAGE 

signaling pathways have been demonstrated. An in-

depth study and exploration of the mechanism of action 

are expected to provide new strategies and methods for 

the prevention and treatment of CAG. However, more 

attention is needed regarding the bioavailability of 

luteolin and its metabolic processes in vivo to provide 

more information for its clinical application. 

 

MATERIALS AND METHODS 
 
GSE153224 and GSE191139 datasets screened for 

differential genes 

 

The GSE153224 and GSE191139 database  

datasets were downloaded from the GEO database 

(https://www.ncbi.nlm.nih.gov/gds) and analyzed using 

the R packages “FactoMineR”, “factoextra”, and 

performed principal component analysis (PCA). 

Differential expression between the two groups was 

analyzed using the “limma” package. A total of 5091 

differentially expressed genes were obtained by screening 

according to a p-value < 0.05 and |logFC| > 1. The R 

package “ggplot2” was used to map the differentially 

expressed genes. The R package “pheatmap” was used to 

map the top 20 differentially expressed genes. The 5091 

genes analyzed in the GSE153224 and GSE191139 

datasets were enriched with GO and KEGG functions 

using the R package “clusterProfiler”, and the top results 

were displayed. 

 
Luteolin screening of potential therapeutic targets 

 

In the CTD database (https://ctdbase.org/), “Luteolin” 

was used as the key word and downloaded. The 

intersection of the Luteolin target with the differentially 

expressed genes obtained above resulted in 42 

intersection genes. The R package “pheatmap” was used 

to map the top 20 differentially expressed genes. For  

the intersection genes obtained above, GO and KEGG 

functional enrichment analysis were performed using 

the R package “clusterProfiler”, and the top ranked 

results were presented. 
 

Luteolin docked with AGER molecules 
 

First, the 3D structure of AGER (Protein Data  

Bank [Protein Data Bank, PDB] ID:4P2Y) was 

obtained from the PDB, and the SDF format of  

luteolin was obtained from the PubChem database 

(https://pubchem.ncbi.nlm.nih.gov) and converted to 

the PDB format using Open Babel. Proteins were 

dehydrogenated and charges were calculated and 

converted to pdbqt format using Autodocktools 1.5.7 

software. The ligands were hydrogenated, the torsional 

forces were determined, and converted to the pdbqt 

format. Docking box coordinates were determined and 

molecular docking operations were performed using 

AutoDock Vina software. pymol 2.1.0 was used for 

visualization to obtain 3D analytical maps. 
 

In vivo experiment 
 

Eighteen male Sprague-Dawley rats aged six to  

eight weeks, were kept at the Hebei University of 

Traditional Chinese Medicine. Adequate sterile feed 

and water were provided, and the formal experiment 

began after 7 days of feeding. The mice were randomly 

divided into three groups: control group (n = 6), 1-

Methyl-3-nitro-1-nitrosoguanidine (MNNG) group (n = 

6), and MNNG+Luteolin group (n = 6). According to 

the previous modeling method for chronic atrophic 

gastritis [33, 34], the control group had free access to 

drinking water and food, while the other groups had free 

access to MNNG (170 μg/mL) and irregular diet, and 

were given intragastric administration (MNNG, 170 

μg/mL) every other day for 16 weeks. After modeling 

was completed, the MNNG+Luteolin group was intra-

gastrically administered luteolin (80 mg/kg) once daily 

for 12 consecutive weeks [35, 36]. The weight changes 

in the rats were observed weekly. After treatment with 

luteolin, the rats in each group were euthanized by 

intraperitoneal injection of excessive anesthesia. The 

gastric tissues of the rats were subjected to pathological 

staining and molecular biology experiments. Luteolin 

(HY-N0162) and MNNG (HY-128612) were purchased 

from MedChem Express Biotechnology, Inc. (USA). 
 

qPCR 
 

Fresh rat gastric tissue was extracted from each group 

using an appropriate amount of TRIzol (Solarbio Life 
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Table 1. Primer sequences of the qPCR constructs. 

Name of gene Sequence (5' to 3') 

Forward ACSL4 CTGGGATCCAAGCCAGAAAA 

Reverse ACSL4 GCATCATCACTCCCTTGGGG 

Forward COX2 AGGAGCATCCTGAGTGGGAT 

Reverse COX2 AGGAGCATCCTGAGTGGGAT 

Forward FIH1 TCCTCCGGATCAGTTCGAGT 

Reverse FIH1 AGTTGGGGAAGCGCTCATAG 

Forward GPX4 GCCGGCTACAATGTCAGGTT 

Reverse GPX4 CATGGGACCATAGCGCTTCA 

Forward NOX1 GTTTCTTGGTTGGGGCTGAACA 

Reverse NOX1 TTCGACACACAGGAATCAGGA 

Forward IL-6 CACTTCACAAGTCGGAGGCT 

Reverse IL-6 TCTGACAGTGCATCATCGCT 

Forward IL-10 CCAGCAAAGGCCATTCCATC 

Reverse IL-10 TGGCAACCCAAGTAACCCTT 

Forward IL-1β GTGCTGTCTGACCCATGTGA 

Reverse IL-1β GATTCTTCCCCTTGAGGCCC 

Forward TNF-α CGTCAGCCGATTTGCCATTT 

Reverse TNF-α TCCCTCAGGGGTGTCCTTAG 

Forward GAPDH CATGGCCTTCCGTGTTCCTA 

Reverse GAPDH ACAGGAGACAACCTGGTCCT 

 

Sciences, R1100, China) solution, and total tissue 

RNA was extracted according to the manufacturer’s 

instructions. RNA concentration was determined using 

a NanoDrop One (Thermo Fisher Scientific, 840-

317400, China). cDNA was synthesized from reverse 

transcribed RNA using a first-strand synthesis kit 

(Solarbio Life Sciences, K16225). The one-step RT-

qPCR RTase mixture (Solarbio Life Sciences, T2210) 

was added, and the fluorescence quantitative PCR 

instrument (Thermo Fisher Scientific, ABI 7900HT, 

4351405) was set under the following conditions:  

50° C for 20 min, 95° C for 3 min, followed by: 45 

cycles of 95° C for 20 s, 60° C for 30 s. Machine data 

were saved and analyzed using the software provided 

by the ABI 7900HT fluorescence quantitative PCR 

instrument. The sequences of the QPCR primers are 

detailed in Table 1. 

 

Western blot assay  

 

Fresh rat stomach tissue from each group was extracted 

and incubated with tissue lysates at room temperature  

for 30 min to extract the protein solution. The protein 

concentration was determined using a BCA kit (Solarbio 

Life Sciences, PC0020). The voltage was set to 120 V for 

gel electrophoresis and the gel was transferred to a PVDF 

membrane after 75 min. Subsequently, the voltage was 

adjusted to 200 V. After 30 min, the PVDF membranes 

were incubated with 5% skim milk powder for 2 h. After 

incubation, the membrane was washed thrice with TBST, 

and the primary antibody was washed thrice with TBST 

after overnight incubation. After incubation with the 

secondary antibody for 2 h, a chemiluminescent solution 

was added and incubated for 10 s. The membranes were 

imaged using a chemiluminescence instrument (Thermo 

Fisher Scientific) to preserve the images for subsequent 

statistical analyses. NF-κB p65 (#AF5006, 1:1000), p-NF-

κB p65 (#AF2006, 1:1000), ACSL4 (DF12141, 1:1000), 

COX2 (AF7003, 1:1000), FIH1 (DF7354, 1:1000), GPX4 

(DF67012, 1:1000), NOX1 (DF8684, 1:1000), GAPDH 

(#AF7021, 1:5000), AGRE (BF8005, 1:1000), AGE 

(AF2006, 1:1000), Goat Anti-Rabbit IgG (H+L) HRP 

(#S0001, 1:10000), and goat anti-mouse IgG (H+L)  

HRP (#S0002, 1:10000) were purchased from Affinity 

Biosciences Company, Jiangsu, China. AGE (ab23722) 

and RAGE (ab216329) were purchased from Abcam, UK. 

 

HE stain 

 

Rat stomach tissues of appropriate size were fixed in a 

tissue fixative and dehydrated with an alcohol gradient 

for transparency. The tissues were then embedded in 

dipping wax, cooled, sectioned, stained according to  

the procedure of the HE staining kit (Solarbio Life 

Sciences, G1120), covered with coverslips, sealed, dried 

naturally, photographed with a microscope (Olympus 

Corporation, BX53), and preserved for subsequent 

analyses. 
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Fe2+ and MDA content assay 

 

Fresh stomach tissues were extracted from each  

group. Cell samples were processed according to the 

requirements of the Iron Content Assay Kit (Merck, 

MAK025, Germany), the concentration of Fe2+ in  

the cells was detected, and the OD value (593 nm)  

was detected using SpectraMax Mini multifunctional 

enzyme marker. The cells were processed according to 

the requirements of the MDA assay kit (Beyotime 

Biotechnology, S0131S, China), and OD value (532 nm) 

was detected using a SpectraMax Mini multifunctional 

enzyme marker. 

 

Statistical analysis 

 

GraphPad Prism 9.5.0 software was adopted for data 

analysis. The unpaired tissues were assessed by the 

Wilcoxon rank-sum test, and other data were evaluated 

using one-way ANOVA, followed by the post hoc 

comparisons with Tukey’s honestly significant difference 

test. P<0.05 indicates the difference is statistically 

significant. 

 

Availability of data and materials 

 

The datasets used and/or analyzed during the current 

study are available from the corresponding author on 

reasonable request. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. CAG screen for differentially expressed genes. (A) GSE153224 and GSE191139 datasets were subjected to 

principal component analysis (PCA) for both sets of samples. (B) Differential genes were plotted in volcano plots. (C) Differential genes were 
plotted in clustered heat maps. (D) Differential gene GO functional enrichment analysis. (E) Differential gene KEGG functional enrichment 
analysis. 
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