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INTRODUCTION 
 

Gastric carcinoma (GC) is one of the most frequently 

diagnosed digestive system malignant tumor that ranks 

fifth for morbidity and fourth for tumor-related 

mortality around the world [1]. The prognosis of GC 

patients is closely correlated with the pathological 

stage of the tumor, the 5-year survival rate for patients 

diagnosed with advanced pathological stage or distant 

metastatic carcinoma declines to approximately 5% 

because of missed the opportunity to be subjected to 

surgical treatment, and the median survival of those 

who did not receive adjuvant therapy is less than 1 

year [2, 3]. However, a proportion of GC patients are 

diagnosed with advanced stage when first visit, which 

is responsible for the poor prognosis [4]. Besides, 

some patients will suffer relapse from micro-metastatic 

lesions that have disseminated at the time of surgery. 

More disconcertingly, because the heterogeneity in 

individuals is great, only a subset of GC patients is 
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ABSTRACT 
 

Background: Recent advances in immunotherapy have elicited a considerable amount of attention as viable 
therapeutic options for several cancer types, the present study aimed to explore the immunotherapy-related 
genes (IRGs) and develop a prognostic risk signature in gastric carcinoma (GC) based on these genes. 
Methods: IRGs were identified by comparing immunotherapy responders and non-responders in GC. Then, GC 
patients were divided into distinct subtypes by unsupervised clustering method based on IRGs, and the 
differences in immune characteristics and prognostic stratification between these subtypes were analyzed. An 
immunotherapy-related risk score (IRRS) signature was developed and validated for risk classification and 
prognosis prediction based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts. 
Besides, the predictive ability of the IRRS in immunotherapy response was also determined. 
Results: A total of 63 IRGs were identified, and 371 GC patients were stratified into two molecular subgroups 
with significantly different prognosis and immune characteristics. Then, an IRRS signature comprised of three 
IRGs (CENP8, NRP1, and SERPINE1) was constructed to predict the prognosis of GC patients in TCGA cohort. 
Importantly, external validation in multiple GEO cohorts further confirmed the universal applicability of the 
IRRS in distinct populations. Furthermore, we found that the IRRS was significantly correlated with patient’s 
responsiveness to immunotherapy, GC patients with low IRRS are more likely to benefit from existing 
immunotherapy. 
Conclusions: The risk score could serve as a robust prognostic biomarker, provide therapeutic benefits for 
immunotherapy and may be helpful for clinical decision making in GC patients. 
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sensitive to non-surgical management, including 

chemotherapy, radiotherapy, and targeted therapy, and 

many who initially respond develop resistance over 

time [5]. The traditional risk classification is mainly 

dependent on the tumor, lymph node, metastasis (TNM) 

staging system, which ignores the great heterogeneity 

of the primary tumor. Thus, exploring novel biomarkers 

to accurately forecast the progression and prognosis of 

GC is urgently needed.  

 
Nowadays, immunotherapeutic techniques have achieved 

great success as anti-cancer therapy for many types of 

malignant tumors through reactivating host immunity 

against tumor cells [6]. It is widely accepted that tumor 

microenvironment (TME) act as a decisive role in 

initiation and progression of malignant tumors. Immune 

dysfunction of the host significantly impaired the body’s 

anti-tumor immunological surveillance, which lead to 

the development of cancer [7]. Among the distinct 

developed immunotherapeutic strategies, immune 

checkpoint inhibitors (ICIs) targeting programmed 

death 1 (PD-1), programmed death ligand 1 (PD-L1) 

and cytotoxic T lymphocyte-associated antigen-4 

(CTLA–4) have shown promising and durable clinical 

responses in several solid tumors [8]. PD-1 is a common 

immunosuppressive member on the membrane of 

immune cell, especially the activated T cell. PD-L1 is 

the main ligand of PD-1, which physiologically inhibit 

excessive immune responses by activating PD-1 to 

prevent normal tissue from damage [9]. However, this 

protective mechanism is disrupted in cancer-immunity 

cycle, where the overexpressed PD-L1 binds to PD-1, 

inhibits the activation of T cell including through 

induction of T cell apoptosis, thereby inhibiting the 

anti-cancer immunity [10]. Immunotherapy blocking the 

PD-1/PD-L1 regulation axis can efficaciously inhibit its 

tumor-promoting activity, and the inhibitors of PD-

1/PD-L1 have shown clinical efficacy in many tumors 

over the past decade. For example, pembrolizumab,  

a humanized IgG4 kappa anti-PD-1 antibody, was 

approved by the Food and Drug Administration (FDA) 

for treating metastatic melanoma and advanced 

urothelial carcinoma [11]. Anti-PD-L1 antibodies, 

atezolizumab and durvalumab, have been approved for 

treating non-small-cell lung cancer as first-line/second-

line treatment strategies [12]. In terms of GC, recent 

advance in understanding the TME of cancer has 

significantly facilitated the development of immuno-

therapy for advanced GC. National Comprehensive 

Cancer Network (NCCN) guidelines recommend 

pembrolizumab plus trastuzumab for first-line treatment 

of HER-2 positive metastatic GC based on the results  

of KEYNOTE-811 phase III trial [13]. In addition, 

immunotherapy has been included in the first-line/ 

second-line treatment of GC in 2021 by the Chinese 

Society of Clinical Oncology (CSCO) [14]. On the 

contrary, a phase III trial (KEYNOTE 062) found that 

chemotherapy combined with ICIs cannot improve the 

overall survival (OS) of patients with advanced GC 

compared with chemotherapy alone [15]. Currently, 

biomarkers used to identify anti-PD-1/PD-L1 therapy 

responders mainly include microsatellite instability and 

PD-L1 expression, with only a subset of patients showing 

clinical responses. Moreover, many who initially respond 

develop resistance over time. Therefore, the development 

of novel molecular biomarkers to forecast clinical 

responses and identify suitable patients who benefit 

from anti-cancer immunotherapy is of great clinical 

significance. 

 

The classification of patients by applying bioinformatic 

analysis based on next-generation sequencing is a novel 

strategy that can identify the immune characteristics  

and predict the prognosis of tumors, and some studies 

have been launched to acquire a better understanding  

of the TME and immunotherapeutic responsiveness of 

GC. However, there has been no appropriate research 

that construct a prognostic model to predict the survival 

outcomes and immune characteristics of GC based on 

immunotherapy-related genes (IRGs). Besides, clinical 

application of previously identified signatures is limited 

due to lack of validation with external dataset. In this 

study, we first identified IRGs in GC through analyzing 

immunotherapy cohort. Subsequently, we used unsuper-

vised clustering method to identify immunotherapy-

related subtypes and compared the differences in TME 

and immunotherapy response between the two clusters. 

Finally, a three-gene signature for GC was developed to 

predict prognosis and immunotherapy responsiveness. 

Importantly, its predictive abilities for prognosis and 

treatment efficiency of immunotherapy were evaluated 

in distinct external validation cohorts.  

 

MATERIALS AND METHODS 
 

Data acquisition 

 

The immunotherapy cohort of gastric carcinoma 

(PRJEB25780) was obtained from the Tumor Immune 

Dysfunction and Exclusion (TIDE, http://tide.dfci. 

harvard.edu/) database to identify immunotherapy-

related genes [16, 17]. The RNA-sequencing profiles 

and corresponding clinicopathological information of 

GC were obtained from The Cancer Genome Atlas 

(TCGA, https://portal.gdc.cancer.gov/) [18]. Detailed 

information of somatic mutation and copy number 

variation (CNV) data files were retrieved for further 

analysis. The immunophenoscore (IPS) of GC samples 

was obtained from the Stomach Adenocarcinoma 

(STAD) project of The Cancer Immunome Atlas 

(TCIA, https://tcia.at/) [19]. Four cohorts (GSE15459 

[20], GSE84437 [21], GSE62254 [22], and GSE26253 

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://portal.gdc.cancer.gov/
https://tcia.at/
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[23]) were collected from Gene Expression Omnibus 

(GEO, https://www.ncbi.nlm.nih.gov/geo/) to validate 

the predictive efficiency of the risk score signature  

in prognosis prediction [24]. IMvigor210 cohort 

includes RNA-sequencing profiles and detailed clinical 

parameters of urothelial carcinoma patients who 

received anti-PD-L1 therapy [25]. GSE78220 is an 

immunotherapy cohort where patients with melanoma 

were treated with anti-PD-1 agents [26]. We collected 

IMvigor210 and GSE78220 cohorts for evaluating the 

predictive efficiency of the risk score signature in 

immunotherapy response. The raw count data obtained 

from GEO database were normalized by applying the 

“limma” package in R [27]. 

 

Identification of IRGs in GC 

 

The IRGs were defined as genes that were differentially 

expressed between immunotherapeutic responder and 

non-responder groups. In our study, patients with GC in 

PRJEB25780 cohort were divided into responder and 

non-responder groups according to their responsiveness to 

anti-PD-1 immunotherapy. Then, the “limma” package in 

R was applied to screen out IRGs, the cutoff conditions 

were set to adjusted P-value < 0.05 and absolute value  

of log2 fold change (log2 FC) ≥ 0.585. Besides, we 

performed Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway analysis to further clarify the potential 

functional annotation of the IRGs based on the Database 

for Annotation, Visualization and Integrated Discovery 

(DAVID, http://david.abcc.ncifcrf.gov/) database [28]. 

Somatic mutations and CNV are important events leading 

to genetic alterations. Thus, we first analyzed the overall 

genetic alteration atlas of the IRGs based on cBioPortal 

(https://www.cbioportal.org) platform [29]. Then, the 

detailed mutation and CNV information of the IRGs were 

analyzed. 

 
Consensus clustering analysis of IRGs 

 

The “ConsensusClusterPlus” package with 1000 

repetitions was used for performing unsupervised 

clustering analysis to identify distinct molecular subtypes 

in the TCGA cohort based on IRGs expression [30].  

Then, differences in prognosis and clinicopathological 

parameters between subgroups were analyzed. 

 
Correlations between the subtypes and TME 

infiltration 

 

The “CIBERSORT” algorithm was used to quantify  

the infiltrated abundances of 22 immunocytes for each 

GC patient with TCGA expression data [31]. The 
“ESTIMATE” algorithm was used to evaluate the purity 

of tumors from different clusters [32]. We compared the 

differences in immunocyte and immune score between 

different clusters to verify the immune characteristics of 

the IRG clusters. In addition, we applied a series of 

indexes which was usually used for predicting the 

response to immunotherapy, including tumor mutation 

burden (TMB), immune checkpoint biomarkers (ICBs), 

TIDE score, microsatellite instability and IPS, to assess 

the correlation between the subtypes and the effect of 

immunotherapy. 
 

Creating and confirming the predictive risk score 

signature 

 

Differentially expressed genes (DEGs) between the 

immunotherapy-related subgroups were identified 

using the “limma” package in R, the threshold was  

set as adjusted P-value < 0.05 and absolute value  

of log2 FC ≥ 0.585. Similarly, gene ontology (GO) 

enrichment analysis and KEGG pathway enrichment 

analysis were conducted to clarify the pathways that 

were considerably enriched. Subsequently, univariate 

Cox and LASSO regression analyses were carried out 

to screen out the optimal prognostic biomarkers among 

these DEGs and included them in the immunotherapy-

related risk score (IRRS) signature. The following 

formula can calculate the risk score of all cases: 

1

Exp( )* ( )
n

RiskScore i Coef i= , where Exp is the 

expression value of the gene, and Coef is the  

LASSO regression analysis coefficient of each gene  

in the signature. Kaplan-Meier survival analysis  

was utilized to explore the predictive ability of the 

IRRS in GC prognosis. Area under the receiver 

operating characteristic (ROC) curve was utilized to 

evaluate the diagnostic efficacies. Univariate and 

multivariate Cox proportional hazards regression 

analyses were used to assess whether the signature 

could be served as an independent prognostic factor. 

Besides, the correlations between the IRRS and the 

clinicopathological parameters, including age, gender, 

grade, stage, and microsatellite instability, were 

determined using chi-square tests. 
 

Importantly, the risk score was also calculated in four 

external cohorts (GSE15459, GSE84437, GSE62254, 

and GSE26253) to validate the predictive ability of the 

IRRS signature in distinct populations. 
 

Establishment of a nomogram 
 

To enhance the clinical utility of the risk signature, a 

nomogram containing the IRRS and other independent 

prognostic factors was constructed using the “rms” 

package in R, and then was applied to predict the 1-,  

3-, and 5-year survival rate of GC patients. ROC and 

calibration curves were used to evaluate the accuracy of 

the nomogram. 

https://www.ncbi.nlm.nih.gov/geo/
http://david.abcc.ncifcrf.gov/
https://www.cbioportal.org/
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The role of IRRS in the prediction of 

immunotherapeutic benefits 

 

We compared the differences in several immuno-

therapeutic response indexes (ICBs expression, TMB 

score, TIDE score, microsatellite instability and IPS) 

between the risk groups to assess the predictive ability 

of the risk signature in the prediction of 

immunotherapeutic benefits. Patients in IMvigor210 

and GSE78220 cohorts were classified into responder 

(including partial response (PR) and complete response 

(CR)) and non-responder (including progressive disease 

(PD) and stable disease (SD)) groups according to  

the patients’ response to immunotherapy. Then, we 

calculated the risk score of each patient in IMvigor210 

and GSE78220 cohorts based on the formula generated 

in TCGA cohort and analyzed its impact on the 

prognosis and the efficacy of immunotherapy. 

 

Statistical analysis 

 

All visualization and statistical analyses were performed 

by using R software (version 4.2.1, https://www.r-

project.org/) and the corresponding feature packages. 

Two-sided P-value < 0.05 was considered as significant 

thresholds for all statistical tests. 

 

Availability of data and materials 

 

The datasets generated and/or analyzed during the 

current study are available in the Gene Expression 

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/), 

The Cancer Genome Atlas (TCGA, https://portal. 

gdc.cancer.gov/), and Tumor Immune Dysfunction and 

Exclusion (TIDE, http://tide.dfci.harvard.edu/) projects. 

RESULTS 
 

Identification of IRGs in GC 
 

The RNA-sequencing profiles and corresponding 

clinical parameters of GC patients in PRJEB25780 

dataset were obtained from the TIDE database. Then, 

a total of 63 genes that differentially expressed 

between the responder and non-responder groups  

were identified as IRGs (Supplementary Table 1).  

The volcano plot of the IRGs was displayed in  

Figure 1A, 1B presented the expression heatmap  

of these IRGs. KEGG pathway annotation analysis 

revealed that the IRGs were primarily enriched  

in Pathways in cancer, Cytokine-cytokine receptor 

interaction, Rap1 signaling pathway, and PD-L1 

expression and PD-1 checkpoint pathway in cancer 

(Figure 1C). 

 

Genetic variation landscapes of IRGs in GC 
 

The somatic mutation and CNV frequencies of  

the 63 IRGs in GC patients were analyzed based  

on TCGA cohort. As presented in Figure 2A, 2B,  

genetic alterations of the IRGs occurred in 302 of  

434 (69.59%) GC patients. Among them, FAT4  

(19%), DCHS1 (7%), NID1 (5%), and JAKMIP1 (5%) 

possess the highest mutation frequency, and their main 

mutation types are missense mutation, frame shift del, 

and nonsense mutation. The changes in IRGs with 

CNV features on chromosomes was showed in Figure 

2C, 57 out of the 63 IRGs had frequent copy number 

alterations, and most of the IRGs were accumulated  

on copy number loss rather than copy number gain 

(Figure 2D). 

 

 
 

Figure 1. Identification of IRGs. (A) Volcano plot of IRGs. The red dots represent the upregulated genes, the green dots represent the 
downregulated genes, and the black dots represent genes with no significant difference in expression. (B) Expression heatmap of the IRGs. 
Red represents upregulated genes, and blue represents downregulated genes. (C) KEGG enrichment analysis of the IRGs. 

https://www.r-project.org/
https://www.r-project.org/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://tide.dfci.harvard.edu/
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Identification of IRG subtypes in GC 

 

An unsupervised clustering strategy was used to classify 

371 GC samples into cluster 1 (n=184) and cluster 2 

(n=187) subgroups based on the expression patterns  

of 63 IRGs (Figure 3A). The principal component 

analysis (PCA) revealed that the discrimination between 

cluster 1 and cluster 2 is great (Figure 3B). Kaplan-

Meier survival analysis revealed that patients in cluster 

1 possess better OS and progression free survival (PFS) 

rate than those in cluster 2 (Figure 3C, 3D). The 

correlations between the clinical features and expression 

patterns of the IRGs was presented in the heatmap 

(Figure 3E). Patients of cluster 1 had a higher 

proportion of microsatellite instability-high (MSI-H) 

and alive outcome than cluster 2. 

 

Analysis of TME infiltration in distinct subtypes 

 

We carried out the “CIBERSORT” and “ESTIMATE” 

methods to determine the difference in TME infiltration, 

including 22 subtypes of immune cells and TME scores, 

between the two clusters in order to learn more about 

how IRGs work in the TME. As presented in Figure 4A, 

the difference in TME infiltration between these two 

clusters is great. Samples in cluster 1 seemed to exhibit 

remarkably lower stromal scores, lower immune scores, 

and higher tumor purity scores, compared with those of 

cluster 2 (Figure 4B). Kaplan-Meier survival analysis 

revealed that high stromal scores and low tumor purity 

scores were remarkably associated with poor prognosis 

in GC patients (Figure 4C). With regard to immune cell 

infiltration, the cluster 1 subgroup was characterized  

by the high infiltration of follicular helper T cells, 

activated memory CD4+ T cells, CD8+ T cells and M1 

macrophages, whereas the cluster 2 was characterized 

by the high infiltration of resting memory CD4+ T cells, 

naive B cells, resting Dendritic cells, Monocytes, 

resting Mast cells, and Eosinophils (Figure 4D, 4E). 

Among them, elevated infiltration abundances of CD8+ 

T cells, follicular helper T cells and activated memory 

CD4+ T cells were significantly correlated with 

 

 
 

Figure 2. The alterations of IRGs in GC. (A) Gene alteration frequency of IRGs in GC based on TCGA project. (B) Landscape of genomic 

aberrations of the top 20 IRGs in GC. (C) The sites of CNV variation in IRGs on the 23 chromosomes. (D) Frequencies of CNV gain, loss, and 
non-CNV among IRGs. 
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Figure 3. Identification of IRG subtypes in GC. (A) Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (B) 

A considerable transcriptome divergence between the two subtypes is seen by PCA analysis. (C) The Kaplan–Meier curve of OS analysis 
between different cluster groups. (D) The Kaplan–Meier curve of PFS analysis between different cluster groups. (E) Differences in 
clinicopathologic features and expression levels of IRGs between the two subtypes. 
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favorable clinical outcome of GC, while elevated 

infiltration abundance of naive B cells was unfavorable 

(Figure 4F). 

 

Subsequently, we determined whether the IRG subtypes 

had a significant correlation with the immunotherapy 

effect. Patients in cluster 1 possess higher TMB score 

than those in cluster 2, whereas the cluster 2 possess 

higher TIDE score (Figure 5A, 5B). Besides, the cluster 

1 was characterized by the high proportion of MSI-H 

and low proportion of microsatellite stability (MSS), 

compared with cluster 2 (Figure 5C). In terms of  

ICBs, CD274 (also known as PD-L1) and LGALS9 

expression in cluster 1 were significantly elevated, 

while the expression of CD276, HAVCR2, TIGIT, and 

PDCD1LG2 in cluster1 were downregulated (Figure 

5D). Moreover, we calculated the IPS (CTLA4-/PD-1-, 

CTLA4+/PD-1-, CTLA4-/PD-1+ and CTLA4+/PD-1+) 

 

 
 

Figure 4. Immune landscape of IRG subtypes in the TCGA cohort. (A) Differences in TME scores and infiltration levels of immune cells 

between the two distinct subgroups. (B) The comparisons of stromal score, immune score, and tumor purity between different subgroups. 
(C) The Kaplan–Meier survival regarding the stromal score, immune score, and tumor purity in GC patients. (D) The boxplot of the differences 
of the immune cells infiltration between two distinct subgroups. (E) Relative proportion of immune infiltration in two distinct subgroups. (F) 
The Kaplan–Meier survival analysis of the correlation between the infiltration levels of the immune cells and OS in GC. *P < 0.05, **P < 0.01, 
***P < 0.001. 
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to reveal the immunogenicity of patients in each 

subgroup. As a result, the IPS were remarkably elevated 

in the cluster 1 subgroup, which appeared to have 

stronger immunogenicity. (Figure 5E). In sum, these 

findings implied that effective immune response was 

more activated in the cluster 1 group, which mean that 

the cluster 1 group exhibited a better response to 

immunotherapy. 

 

Construction of the IRRS signature 

 

As listed in Supplementary Table 2, 3065 DEGs (|log 

FC| ≥ 0.585, adjusted P < 0.05) between cluster 1 and 

cluster 2 subgroups were identified, and the expression 

heatmap of these DEGs was presented in Figure 6A. 

GO annotation analysis revealed that the DEGs are 

significantly annotated in immune-associated crosstalk, 

such as immune response, adaptive immune response,  

B cell receptor signaling pathway, and phagocytosis 

(Figure 6B and Supplementary Table 3). KEGG 

pathway annotation analysis found that the DEGs are 

primarily enriched in several areas of carcinogenesis-

associated pathways, including ECM-receptor inter-

action, Focal adhesion, PI3K-Akt signaling pathway, 

and Pathways in cancer (Figure 6B and Supplementary 

Table 4). Subsequently, 625 genes presented significant 

correlations with the OS of GC patients were filtered 

out for further research using univariate Cox analysis 

(Supplementary Table 5), and three of which were 

eventually screened out for constructing the IRRS 

signature via utilizing LASSO regression analysis with 

minimized lambda (Figure 6C, 6D). The forest plot 

illustrated the correlations between the expression  

levels of the three genes in the IRRS signature and  

the prognosis of GC patients (Figure 6E). As presented 

in Figure 6F, we applied the following equation to 

calculate the risk score of each patient: IRRS = 

(ExpNRP1 × 0.0354) + (ExpSERPINE1 × 0.0478) + 

(ExpCPNE8 × 0.0749). According to the median value of 

the risk score, 371 samples in the TCGA GC cohort 

were divided into the low- (n = 186) and high-risk  

(n = 185) groups, and the association of IRRS, IRG 

subtypes, and vital status of these patients was showed 

in the Sankey plot (Figure 6G). 

 

IRRS for the prognostic prediction of GC 

 

We determined the clinical significance of the IRRS in 

GC based on TCGA cohort. The Kaplan–Meier survival 

analysis revealed that patients in the high-risk subgroup 

 

 
 

Figure 5. The estimation of two IRGs subtypes in immunotherapy response. (A) The difference in TMB between two distinct 
subtypes. (B) The difference in TIDE score between two distinct subtypes. (C) Relative proportion of microsatellite instability in two distinct 
subtypes. (D) The expression of ICBs in two distinct subtypes. (E) The difference of IPS in two distinct subtypes. 
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possessed a significant poorer OS than patients in the 

low-risk subgroup (Figure 7A). The ROC curve for  

5-year OS of the IRRS signature exhibited an area 

under ROC (AUC) value of 0.721, implying that the  

signature had moderate sensitivity and specificity (Figure  

7B). Patients in the high-risk subgroup possessed a  

higher proportion of histologic G3, MSS, and deceased 

outcome than those in the low-risk subgroup, and the 

results of the chi-square test revealed that NRP1, CPNE8 

and SERPINE1 were all overexpressed in the high-risk 

subgroup (Figure 7C). Besides, we found that patients’ 

risk of death increased with increasing risk score 

(Figure 7D). Furthermore, we conducted a subgroup 

analysis on the basis of age, gender, histologic grade, 

and TNM stage. As expected, the OS of GC patients 

was better in the low-risk subgroup than in the high-risk 

subgroup in each subgroup (Figure 7E). 

 

Validation of the IRRS in external cohorts 

 

We performed validation analysis for evaluating 

whether the IRRS has clinical application value in 

 

 
 

Figure 6. Construction of the IRRS model in the TCGA cohort. (A) Expression heatmap of the DEGs between the two distinct subtypes. 
(B) GO and KEGG enrichment studies of DEGs between different cluster groups. (C) LASSO coefficient profiles of 3 selected genes in the 10-
fold cross-validation. (D) Partial likelihood deviance was revealed by the LASSO regression model in the 10-fold cross-validation. (E) Forest 
plot of hazard ratios for three selected prognostic variables. (F) The coefficients of the three prognostic variables in the LASSO regression 
model. (G) Sankey plot displayed the correlations among the cluster subgroups, IRRS and vital status. 
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distinct populations. First, the risk score for individual 

patients in GSE15459, GSE84437, and GSE62254 

cohorts was calculated according to the calculation 

formula derived from TCGA cohort. Similarly, GC 

patients from these validation cohorts were divided  

into low- and high-risk subgroups according to the 

median value of the risk score (Figure 8A–8C). As 

shown in Figure 8D–8F, obvious differences in the OS 

 

 
 

Figure 7. Clinical significance of the IRRS model in TCGA cohort. (A) The Kaplan–Meier survival analysis of the signature for predicting 
the OS of patients in TCGA cohort. (B) Time-dependent ROC analysis of the signature for predicting the OS of patients in TCGA cohort. (C) 
Differences in clinicopathologic features and expression levels of prognostic variables between the low- and high-risk groups. (D) The 
distribution of the IRRS and the vital status of patients in the TCGA cohort. (E) The subgroup survival analysis according to the age, gender, 
histologic grade, and tumor stage. 
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probability were observed between the low- and  

high-risk subgroups in each validation cohort, GC 

patients with higher risk score seemed to exhibit  

poorer prognosis. In addition, we further determined 

whether the IRRS has predictive ability in relapse-free 

survival (RFS) of GC patients from GSE26253 cohort. 

Consistent with the results in OS, patients with higher 

risk score possessed higher rates of tumor recurrence 

(Figure 9). To sum up, these findings indicated the 

reliable capability of the IRRS in distinguishing 

differences in clinical outcomes of GC. 

 

The IRRS can be served as an independent risk 

predictor in GC 

 

To investigate whether the IRRS can be served as a 

clinically independent risk predictor for GC patients, the 

IRRS, age, gender, histologic grade, and TNM stage 

were enrolled as covariates to perform the univariate 

and multivariate Cox analyses. The results indicated 

that age, TNM stage and IRRS are independent 

prognostic predictor that could be used for predicting 

the prognosis of GC patients (Figure 10A, 10B).  

Then, a nomogram was built to improve the clinical 

power of the IRRS by combining the prognostic factors 

above (Figure 10C). Multi-variables ROC analysis 

indicated that the nomogram had optimum predictive 

performance compared with other single factors (Figure 

10D). Time-dependent ROC of 1-, 3-, and 5-year OS 

also revealed that the nomogram had high predictive 

power (Figure 10E). Besides, calibration charts revealed 

that the predictive capability of the nomogram in 1-, 3-, 

and 5-year periods was highly accurate, confirming its 

utility in forecasting the clinical outcome of GC patients 

(Figure 10F). 

 

Risk score-based treatment strategy for GC 

 

The expression of four ICBs (PD-L1, HAVCR2, TIGIT, 

and CTLA4) were compared between the low- and 

 

 
 

Figure 8. External validation of the IRRS model in predicting OS of GC patients based on three independent cohorts. (A) The 

distribution of the risk score, the vital status of patients, and the expression heatmap of three prognostic variables in the GSE15459 cohort. 
(B) The distribution of the risk score, the vital status of patients, and the expression heatmap of three prognostic variables in the GSE84437 
cohort. (C) The distribution of the risk score, the vital status of patients, and the expression heatmap of three prognostic variables in the 
GSE62254 cohort. (D) The Kaplan–Meier survival analysis of the IRRS signature for predicting the OS of patients in the GSE15459 cohort. (E) 
The Kaplan–Meier survival analysis of the IRRS signature for predicting the OS of patients in the GSE84437 cohort. (F) The Kaplan–Meier 
survival analysis of the IRRS signature for predicting the OS of patients in the GSE62254 cohort. 
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high-risk subgroups. As shown in Figure 11A,  

the results found that the presented immunomodulators 

were significantly upregulated in the high-risk sub-

group. Subsequently, we determined the association 

between the IRRS and IPS (CTLA4-/PD-1-, CTLA4+/ 

PD-1-, CTLA4-/PD-1+ and CTLA4+/PD-1+), which 

are recognized indexes to predict patients’ responses to 

ICIs by evaluating the immunogenicity. The results 

demonstrated that the IPS were remarkably elevated  

in the low-risk subgroup, implying that GC patients  

in the low-risk subgroup might be more sensitive to 

anti-cancer immunotherapy (Figure 11B). We also 

compared the distribution of TMB and TIDE scores 

between the two IRRS subgroups and revealed that  

the TMB score was lower in the high-risk subgroup, 

and the TIDE score was contrary, indicating that 

patients in the high-risk subgroup might respond worse 

to anti-cancer immunotherapy (Figure 11C, 11D). 

Besides, we explored the correlation between IRRS 

and microsatellite instability, and revealed that 

patients in the low-risk subgroup possess a higher 

percentage of MSI-H, and MSS more happened in 

patients in the high-risk subgroup (Figure 11E). In 

sum, all these results implied that GC patients in  

low-risk subgroup exhibited a better response to anti-

cancer immunotherapy, IRRS might be a potential 

biomarker for immunotherapy of GC. 
 

Subsequently, IMvigor210 and GSE78220 cohorts  

were applied as external validation cohort for verifying 

the predictive ability of the IRRS in anti-tumor 

immunotherapy. In the IMvigor210 cohort, patients in 

the low-risk subgroup had remarkably better prognosis 

than those in the high-risk subgroup (Figure 11F). 

 

 
 

Figure 9. External validation of the IRRS model in predicting RFS of GC based on the GSE26253 cohort. (A) The Kaplan–Meier 
survival analysis of the IRRS signature for predicting the RFS of GC patients based on the GSE26253 cohort. (B) The distribution of the risk 
score of GC patients in the GSE26253 cohort. (C) The expression heatmap of three prognostic variables in the GSE26253 cohort. (D) The 
distribution of the recurrent status of GC patients in the GSE26253 cohort. 
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Besides, we analyzed the differences in immunotherapy 

response subtypes (CR, PR, SD, and PD) between 

different IRRS subgroups and found that patients with 

lower risk score possess a higher percentage of CR/PR, 

and SD/PD more happened in patients with higher  

risk score (Figure 11G, 11H). These findings further 

confirmed that the IRRS can be served as a great 

biomarker to forecast the sensitive to immunotherapy. 

DISCUSSION 
 

Despite great advancements in treatment of GC,  

the interpatient heterogeneity still poses a great 

challenge for forecasting the clinical outcome of the 

patients and adopting appropriate treatment strategies. 

Cancer immunotherapy is a rapidly developing research 

field which brings new hope to distinct tumor patients, 

 

 
 

Figure 10. Nomogram developed for predicting the probability of 1-, 3- and 5-year OS in TCGA cohort. (A) Univariate Cox 

analysis containing IRRS and clinicopathological parameters. (B) Multivariate Cox analysis containing IRRS and clinicopathological parameters. 
(C) The comprehensive nomogram for predicting probabilities of GC patients with 1-, 3- and 5-year OS in TCGA dataset. (D) A comparison of 
ROC curve showed the superiority of the nomogram. (E) ROC curves chart of the comprehensive nomogram predicting the 1-, 3- and 5-year 
survival rate. (F) Calibration plot of nomogram for predicting probabilities of 1-, 3-, and 5-year survival of GC patients. Nomogram-predicted 
probability of survival is plotted on the x-axis; actual survival is plotted on the y-axis. 
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including GC, and has gained great progress in  

both research field and clinical practice. With  

the development of cancer immunotherapy, several 

immunotherapy strategies are available for GC, and 

more strategies are under clinical research. However, 

the most recent immunotherapy strategies for the 

treatment of GC patients were not promising in most 

cases due to the limited therapeutic biomarkers and 

delayed diagnosis. 

 

In this study, our goal is distinguishing the immune 

subtypes of GC to develop an immune landscape  

for choosing appropriate patients for immunotherapy 

and construct a novel risk model for forecasting the 

 

 
 

Figure 11. The immunotherapeutic benefit of the IRRS model. (A) The expression of four ICBs (PD-L1, HAVCR2, TIGIT, and CTLA4) in 
low- and high-risk groups. (B) The difference in IPS scores between low- and high-risk groups. (C) Box plots and scatter diagram of the TMB 
score and IRRS. (D) Box plots and scatter diagram of the TIDE score and IRRS. (E) Boxplot and Bar diagram of the microsatellite instability and 
IRRS. (F) Kaplan–Meier curve of OS for patients with high and low IRRS subtypes in IMvigor210 cohort. (G) Boxplot and Bar diagram displayed 
the response to immunotherapy in low- and high-risk groups in IMvigor210 cohort. (H) Boxplot and Bar diagram displayed the response to 
immunotherapy in low- and high-risk groups in GSE78220 cohort.  
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prognosis of GC patients. We first identified IRGs in  

GC by exploring the RNA-sequencing profiles of 

immunotherapy cohort. Subsequently, the GC patients 

were divided into two subtypes by applying unsupervised 

clustering method based on the expression pattern of  

the IRGs. Our results revealed that patients in cluster 1 

had remarkably prolonged OS and PFS time than those  

in cluster 2. The TME is comprised of immune cells, 

stromal cells, fibroblasts, endothelial cells as well as 

tumor cells that closely interact with tumor prognosis  

and treatment options [33]. Thus, we further explored  

the correlation between two IRG subtypes and TME 

infiltration considering the significant role of TME. As a 

result, patients in cluster 1 seemed to exhibit remarkably 

lower stromal scores, lower immune scores, and higher 

tumor purity scores, compared to those of cluster 2. On 

the other hand, tumor immune infiltration analyses found 

that the infiltration abundances of activated memory 

CD4+ T cells, CD8+ T cells, follicular helper T cells and 

M1 macrophages are remarkably higher in cluster 1, 

consistent with the higher infiltration of CD8+ T cells, 

activated memory CD4+ T cells, and follicular helper T 

cells being correlated with improved prognosis in patients 

with GC, whereas a significantly higher infiltration 

abundances of naive B cells, resting memory CD4+ T 

cells, Monocytes, resting Dendritic cells, resting Mast 

cells, and Eosinophils in cluster 2 corresponds to the 

results that the elevated infiltration abundance of naive  

B cells was correlated with worse clinical outcome of  

GC patients. CD8+ T cells can specifically detect and 

eliminate cancer cells by secreting effector cytokines 

(tumor necrosis factor (TNF) and interferon-γ (IFNγ)) or 

cytotoxic molecules (such as perforin and granzymes) 

[34]. Follicular helper T cells are a subgroup of CD4+ T 

cells, which induced anti-tumor immunity by facilitating 

the differentiation and maturation of tumor-killing cells 

[35]. M1 macrophages are a subtype of tumor-associated 

macrophages, which have anti-tumor effects by macro-

phage-mediated cytotoxicity or antibody-dependent cell-

mediated cytotoxicity (ADCC) [36]. Activated naive B 

cells were reported to promote the progression of 

malignant pleural effusion via the PD-1/PD-L1 regulation 

axis [37]. Monocytes can promote the dissemination of 

tumor cells through inducing immune tolerance and 

angiogenesis [38]. Taken together, these results seemed 

to imply that cluster 1 was characterized by immune 

activation due to the high infiltration abundances of 

CD8+ T cells, follicular helper T cells, and M1 

macrophages, and leads to a better prognosis, whereas 

cluster 2, with high infiltration of naive B cells and 

Monocytes, was characterized by immunosuppression 

and therefore giving rise to a poor prognosis. 

 
Considering the impact of IRG cluster subgroups on  

the immune characteristics and clinical outcomes of  

GC patients, we further developed a three-gene (NRP1, 

CPNE8, and SERPINE1) signature based on DEGs 

between the two IRG cluster subgroups to predict the 

prognosis of GC. NRP1, one kind of transmembrane 

glycoprotein, has been well-described to participate in 

various biological processes, such as cell migration, 

cardiovascular development, angiogenesis, neuronal 

guidance, and immunology [39]. NRP1 expression 

levels were significantly upregulated in GC tissues and 

had positive correlation with the advanced tumor stage 

and worse clinical outcomes in GC patients [40]. NRP1 

knockdown was reported to suppress the migration  

and invasion abilities of GC cells in vivo. CPNE8,  

a member of the copine family that has been reported  

to be overexpressed in GC, was positively correlated 

with aggressive clinical features, poor prognosis, and 

poor efficacy of immunotherapy in GC [41]. SERPINE1 

is a member of the Serine protease inhibitor family  

and a main regulator of the plasminogen activator 

system [42]. SERPINE1 was overexpressed in GC  

and remarkably associated with advanced tumor stage 

and unfavorable prognosis, with the knockdown of 

SERPINE1 remarkably inhibiting the proliferation, 

invasion, and metastasis of GC cells in vivo and in  

vitro [43]. In our study, we combined the expression 

patterns of these three genes for developing a IRRS 

signature to predict the prognosis of GC patients. As a 

result, patients were classified into high- and low-risk 

subgroups according to the IRRS calculated using the 

risk genes. Survival analysis indicated that patients in 

the high-risk subgroup had worse clinical outcomes 

than those in the low-risk subgroup. Excitingly, external 

validation in four independent cohorts for verifying  

the universal applicability of the IRRS further affirmed 

that patients with low IRRS were accompanied by 

significantly prolonged OS or RFS time. In addition, 

univariate and multivariate Cox analyses found that the 

IRRS serves as an independent risk predictor in GC.  

In sum, these results implied that the IRRS can help 

clinicians develop personalized therapeutic strategies 

for GC in the future. For instance, patients with high 

IRRS required continual follow-up to monitor the 

relapse of GC. 

 

Nowadays, a series of biomarkers for predicting the 

responsiveness of immunotherapy for cancer have been 

identified, including ICB, TMB, TIDE score, micro-

satellite instability and IPS. The ICBs are a class of 

inhibitory or stimulatory molecules mainly expressed on 

immune cells, which are crucial for inducing the self-

tolerance and regulating the immune responsiveness of 

effectors in different tissues to avoid the tissue damage 

[44]. However, in the immunosuppressive TME, tumor 

cells can restrain the activity of immune cells and achieve 
immune escape by up-regulating the expression of ICBs 

on immune cells [45]. In the past two decades, emerging 

studies confirmed that the blockade of ICBs (PD-1, PD-
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L1, CTLA4, TIM-3, TIGIT etc.) has rapidly become  

the most promising anti-cancer strategies for multiple 

types of cancer, including GC [13, 14, 46]. The TMB is 

defined as the number of mutations seen in a section of 

DNA in a tumor cell and reported as mutations per 

megabase (mut/Mb) [47]. High TMB may contribute to 

the generation of new antigens that can be detected by 

immune cells, and thereby triggering anti-tumor immune 

response [48]. Thus, TMB has been recognized as a 

potential biomarker for cancer patients treated with ICIs, 

and the FDA has approved pembrolizumab in solid 

cancers with high TMB (defined as10 mut/Mb) [49]. The 

TIDE algorithm is developed for predicting the potential 

clinical responses to ICI treatment by integrating the  

gene expression signatures of T cell dysfunction and T 

cell exclusion [17, 50]. High TIDE scores indicate poor 

efficacy of ICI therapy, and TIDE has been demonstrated 

to be more accurate than the ICB expression levels  

and TMB at predicting clinical outcomes in cancer 

patients receiving immunotherapies [51]. In terms of 

microsatellite instability, it is known that MSI-H leads to 

accumulation of somatic mutations in tumor cells, thereby 

causing a battery of molecular and biological variations 

including high TMB, enhanced expression of new anti-

gens and abundant tumor-infiltrating lymphocytes (TIL) 

[52]. Thus, patients with cancer in the MSI-H group had 

significantly increased sensitivity to immunotherapy in 

contrast to the MSS/MSI-L group, and the FDA granted 

pembrolizumab for the treatment of all MSI-H solid 

tumors, including GC [53]. IPS is defined based on tumor 

immune infiltration characteristics and bridges immune 

cell infiltration with immunogen subtypes, which can 

forecast the response to immunotherapy strategies 

including CTLA4 and PD-1 inhibitors [19]. Higher IPS 

scores are positively associated with the increased 

immunogenicity [54]. In this study, we revealed that the 

IRRS was remarkably associated with ICBs expression, 

TMB, TIDE score, microsatellite instability and IPS, 

which indirectly implied that the IRRS may serves as a 

significant role in forecasting the responsiveness of anti-

cancer immunotherapy. Especially, we found that the 

IRRS can be used as an effective predictor for predicting 

the effects of immunotherapy in urothelial carcinoma 

cohort with anti-PD-L1 treatment (IMvigor210) and 

malignant melanoma cohort with anti-PD-1 treatment 

(GSE78220). This evidence further confirmed that the 

IRRS can be served as a great biomarker to predict the 

response to anti-cancer immunotherapy. 

 

This study inevitably existed several limitations. Firstly, 

although we have developed a novel prognostic model 

on the basis of IRG and verified its applicability in 

external cohorts, the correlation between its members 
and immunotherapy remains largely unclear, functional 

and mechanistic experiments are required to verify and 

explain the regulatory mechanisms of these genes on 

immunotherapy in GC. Secondly, since the data 

analyzed in our study were retrospectively collected 

from different databases, it is difficult to cover all 

variations among patients from different regions due to 

interpatient tumor heterogeneity. Thus, a well-designed, 

prospective, multicenter study is required to further 

validate the accuracy of the IRRS signature, which will 

be time-consuming. 

 

CONCLUSIONS 
 

In conclusion, this study identified immunotherapy-

related genes in GC based on immunotherapy cohort  

and analyzed the role of these genes in GC prognosis 

and correlation with TME and developed a prognosis 

prediction signature. The prognostic prediction signature 

exhibits compelling clinical values in forecasting the 

prognosis and immunotherapy responsiveness for GC, 

which can be used as a powerful index for prognosis 

prediction and treatment guidance. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2, 3, 5. 

 

Supplementary Table 1. Differentially expressed genes between the 
responder and non-responder groups. 

Gene symbol Full name 

PRKCG protein kinase C gamma 

RCL1 RNA terminal phosphate cyclase like 1 

MAGED1 MAGE family member D1 

HSBP1L1 heat shock factor binding protein 1 like 1 

FBLN1 fibulin 1 

GBP1P1 guanylate binding protein 1 pseudogene 1 

GBP4 guanylate binding protein 4 

GBP5 guanylate binding protein 5 

FASLG Fas ligand 

GRIN1 glutamate ionotropic receptor NMDA type subunit 1 

RAET1K retinoic acid early transcript 1K pseudogene 

RPL22L1 ribosomal protein L22 like 1 

WARS1 tryptophanyl-tRNA synthetase 1 

PDGFRA platelet derived growth factor receptor alpha 

TNFSF9 TNF superfamily member 9 

ZNF232 zinc finger protein 232 

TTC28 tetratricopeptide repeat domain 28 

OR2I1P olfactory receptor family 2 subfamily I member 1 pseudogene 

CENPU centromere protein U 

LRRC42 leucine rich repeat containing 42 

LAP3 leucine aminopeptidase 3 

JAKMIP1 janus kinase and microtubule interacting protein 1 

VSNL1 visinin like 1 

SKAP2 src kinase associated phosphoprotein 2 

CYSRT1 cysteine rich tail 1 

USP43 ubiquitin specific peptidase 43 

NID1 nidogen 1 

CXCL11 C-X-C motif chemokine ligand 11 

UBE2L6 ubiquitin conjugating enzyme E2 L6 

PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1 

ZNF605 zinc finger protein 605 

GNAI1 G protein subunit alpha i1 

CXCR2P1 C-X-C motif chemokine receptor 2 pseudogene 1 

EML1 EMAP like 1 

TEKT1 tektin 1 

IFNG interferon gamma 

GCHFR GTP cyclohydrolase I feedback regulator 

PID1 phosphotyrosine interaction domain containing 1 

SYCE2 synaptonemal complex central element protein 2 
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FAT4 FAT atypical cadherin 4 

CD274 CD274 molecule 

FZD3 frizzled class receptor 3 

NDRG1 N-myc downstream regulated 1 

BATF2 basic leucine zipper ATF-like transcription factor 2 

SLC31A2 solute carrier family 31 member 2 

CXCL9 C-X-C motif chemokine ligand 9 

DCHS1 dachsous cadherin-related 1 

LGALS17A galectin 14 pseudogene 

RTKN2 rhotekin 2 

CENPH centromere protein H 

CPQ carboxypeptidase Q 

FRMD5 FERM domain containing 5 

IDO1 indoleamine 2,3-dioxygenase 1 

KDSR 3-ketodihydrosphingosine reductase 

ELOVL3 ELOVL fatty acid elongase 3 

ARHGAP28 Rho GTPase activating protein 28 

SLCO2A1 solute carrier organic anion transporter family member 2A1 

MMP2 matrix metallopeptidase 2 

MPHOSPH6 M-phase phosphoprotein 6 

DNAAF3 dynein axonemal assembly factor 3 

PRXL2A peroxiredoxin like 2A 

CXCL10 C-X-C motif chemokine ligand 10 

CADM4 cell adhesion molecule 4 

 

Supplementary Table 2. DEGs between cluster 1 and cluster 2 subgroups. 

 

Supplementary Table 3. GO annotation analysis of DEGs between two clusters. 

 

Supplementary Table 4. KEGG pathway enrichment analysis of DEGs between 
two clusters. 

Term Count FDR 

hsa04512:ECM-receptor interaction 51 1.33E-20 

hsa04510:Focal adhesion 73 1.70E-15 

hsa04151:PI3K-Akt signaling pathway 95 4.90E-11 

hsa04514:Cell adhesion molecules 54 3.41E-10 

hsa05146:Amoebiasis 41 5.81E-10 

hsa04974:Protein digestion and absorption 41 6.96E-10 

hsa05144:Malaria 27 8.93E-10 

hsa04610:Complement and coagulation cascades 36 1.42E-09 

hsa05200:Pathways in cancer 120 3.12E-09 

hsa05414:Dilated cardiomyopathy 36 5.88E-08 

hsa04060:Cytokine-cytokine receptor interaction 74 1.79E-07 

hsa05410:Hypertrophic cardiomyopathy 33 4.69E-07 

hsa05412:Arrhythmogenic right ventricular cardiomyopathy 30 4.69E-07 

hsa04020:Calcium signaling pathway 60 5.21E-06 
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hsa04270:Vascular smooth muscle contraction 40 5.87E-06 

hsa04640:Hematopoietic cell lineage 32 1.58E-05 

hsa05205:Proteoglycans in cancer 52 1.91E-05 

hsa04022:cGMP-PKG signaling pathway 44 4.79E-05 

hsa04933:AGE-RAGE signaling pathway in diabetic complications 31 5.36E-05 

hsa04360:Axon guidance 46 8.23E-05 

hsa04611:Platelet activation 35 1.02E-04 

hsa05165:Human papillomavirus infection 71 1.02E-04 

hsa04080:Neuroactive ligand-receptor interaction 75 1.91E-04 

hsa04261:Adrenergic signaling in cardiomyocytes 39 2.00E-04 

hsa04061:Viral protein interaction with cytokine and cytokine receptor 29 3.55E-04 

hsa05418:Fluid shear stress and atherosclerosis 36 4.51E-04 

hsa04015:Rap1 signaling pathway 47 0.00126 

hsa04921:Oxytocin signaling pathway 37 0.0017 

hsa04924:Renin secretion 21 0.002423 

hsa04010:MAPK signaling pathway 59 0.003256 

hsa04810:Regulation of actin cytoskeleton 46 0.005231 

hsa05217:Basal cell carcinoma 19 0.005347 

hsa04062:Chemokine signaling pathway 41 0.008065 

hsa05202:Transcriptional misregulation in cancer 41 0.008697 

hsa04340:Hedgehog signaling pathway 17 0.009668 

hsa04926:Relaxin signaling pathway 30 0.010632 

hsa04916:Melanogenesis 25 0.011776 

hsa04371:Apelin signaling pathway 31 0.01651 

hsa04024:cAMP signaling pathway 44 0.018462 

hsa04540:Gap junction 22 0.019733 

hsa04350:TGF-beta signaling pathway 23 0.020045 

hsa05150:Staphylococcus aureus infection 23 0.025764 

hsa01521:EGFR tyrosine kinase inhibitor resistance 20 0.026021 

hsa04713:Circadian entrainment 23 0.028093 

hsa04145:Phagosome 32 0.029498 

hsa05222:Small cell lung cancer 22 0.029929 

hsa04925:Aldosterone synthesis and secretion 23 0.029929 

hsa03320:PPAR signaling pathway 19 0.029929 

 

Supplementary Table 5. Univariate Cox regression analysis of DEGs presented significant correlations with the 
OS of GC patients. 


