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INTRODUCTION 
 

Ovarian cancer has the worst prognosis and  

highest mortality rate among gynecological 

malignancies worldwide, and is usually diagnosed in 

advanced stages [1]. Historically, ovarian cancer was 

consistently treated without considering the distinct 

biological features among patients, and this trend 

continues to prevail. In recent years, with increasing 

recognition of tumor heterogeneity, accumulating 

studies have emphasized the importance of adopting a 

standardized and molecular marker-based approach for 

accurately categorizing ovarian cancers [2]. However, 

the lack of current powerfully efficient biomarkers and 

prognostic signatures for ovarian cancer is primarily 
responsible for the poor prognosis. In summary, the 

limited treatment efficacy and unfavorable outcomes 

of ovarian cancer patients make it particularly urgent 

to develop a novel prognostic signature and guide 

individual treatment plans for ovarian cancer. 

 
The tumor microenvironment (TME) acts as a 

complex ecosystem consisting of malignant cells, 

diverse infiltrating immune cells (lymphocytes and 

myeloid cells), and stromal cells intertwined with 

non-cellular components. Tumor-infiltrating T cells 

are critical players in the TME and influence essential 

clinical properties, such as cancer immunotherapy 

responses, with a particular significance for CD8+ T 

cells. The association between the infiltration of T cells 

in cancer lesions and improved patient prognosis has 

been widely recognized in various human malignancies 

for a significant period of time. For example, in human 
melanoma, the presence of abundant T cell infiltrates 

has been reported to be linked with improved overall 

survival (OS) for over two decades [3]. Subsequent 
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studies have revealed that the extent of intra-tumoral 

T cell infiltrates serves as an independent positive 

prognostic indicator in ovarian cancer, colorectal 

cancer and numerous other malignancies [4–6].  

These findings highlight the significance of T cell 

infiltration as a reliable marker for improved patient 

outcomes across multiple cancer types. As universally 

acknowledged, the simplest distinction among T cells 

is the CD4+ and CD8+ T cell compartments. The CD8+ 

T cell subset has been extensively studied and shown 

to have a crucial role in tumor control. Accumulating 

prognostic analyses consistently demonstrate a positive 

association between the number of pretreatment intra-

tumoral CD8+ T cells and the response to PD-1 

blockade [7]. Furthermore, clinical studies have  

also demonstrated the effectiveness of CD8+ T cell-

enriched cell products in melanoma treatment [8]. 

These findings emphasize the significant contribution 

of CD8+ T cells in tumor immunity and therapy. 

Nevertheless, a robust prognostic model based on  

the specific gene markers of CD8+ T cells is still 

absent in ovarian cancer. 

 

The technological advancements in scRNA-seq have 

brought about a revolution in our ability to profile 

transcriptomes in thousands of individual cells, which 

has allowed for the comprehensive and unbiased 

analysis of the intricate cellular components within 

tumors. Recent work based on scRNA-seq analyses  

of malignant and nonmalignant ovarian tissues was 

successfully applied to delineate a cellular landscape 

of ovarian cancer with a focus on the heterogeneity  

of TME [9]. Here, we selectively reanalyzed the 

transcriptome data of above seven malignant ovarian 

tissues and identified distinct subpopulations of 

lymphocytes. The specific gene markers of CD8+ T 

cells in ovarian cancer were interrogated by Wilcoxon 

rank-sum test algorithm at single-cell resolution. 

Subsequently, we established a prognostic signature  

by performing univariate Cox regression and LASSO 

regression analyses within The Cancer Genome  

Atlas (TCGA) ovarian cancer training cohort. The 

potential of prognostic model was further validated  

in additional ovarian cancer cohorts. Additionally, we 

investigated differential pathway activities, mutational 

and immune statuses between the high- and low-risk 

groups stratified by the median of the risk score. We 

also made predictions regarding the immunotherapy 

response and sensitivity to multiple potential anti-

cancer drugs based on our risk classification. Finally,  

a nomogram was developed to offer guidance for  

the diagnosis and treatment of ovarian cancer. In 

summary, our study introduces a novel and robust 
prognostic signature associated with CD8+ T cells in 

ovarian cancer, which can be instrumental in guiding 

the diagnosis and treatment of ovarian cancer. 

MATERIALS AND METHODS 
 

Single-cell transcriptome analysis 

 

We obtained scRNA-seq data from seven ovarian 

tumors from the Gene Expression Omnibus (GEO) 

database (GSE184880) for this investigation [9].  

The Seurat package [10] (v4.1.1) in R (v4.1.3) was 

used to perform unsupervised clustering of individual 

cells using the read count matrix as input. Rigorous 

quality control measures were applied, focusing on  

the number of detected genes and the percentage of 

mitochondrial gene counts per cell. Cells with fewer 

than 200 detected genes and those with more than  

20% mitochondrial gene counts were systematically 

excluded from the analysis. We also omitted genes 

detected in fewer than 3 cells to reduce potential 

extraneous signals. To address batch effects, we 

employed the Harmony algorithm to integrate multi-

sample data and correct any inconsistencies. Following 

the Seurat-guided tutorial, we performed dimension 

reduction clustering and differential expression analysis. 

Principal component analysis (PCA) and uniform 

manifold approximation and projection (UMAP) 

dimension reduction were conducted based on the  

top 20 principal components. Cell cluster annotations 

were determined using canonical gene markers. 

 

Collection of public datasets 
 

The RNA-sequencing expression matrix and clinical 

information of ovarian cancer samples and para-

cancerous tissues were downloaded from TCGA data-

base, available at UCSC Xena (https://xena.ucsc.edu/). 

Two additional independent datasets (GSE30161 and 

GSE63885) were obtained from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/) [11, 12]. The 

somatic mutation data were retrieved from the Genomic 

Data Commons (GDC, https://portal.gdc.cancer.gov/). 

The somatic mutation data were then analyzed and 

sorted in the form of Mutation Annotation Format 

(MAF), followed by using the R package maftools 

[13] to calculate tumor mutation burden (TMB). 

 

Construction and validation of a CD8+ T cell-related 

prognostic signature 
 

Firstly, we collected 1,020 genes associated with CD8+ 

T cells through single-cell transcriptome analysis.  

We then analyzed the RNA expression matrices of 

breast cancer samples in the TCGA, GSE30161, and 

GSE63885 datasets to identify co-expressed genes.  

To develop a prognostic signature using CD8+ T cell-
related genes, we performed univariate Cox regression 

and LASSO regression analyses. In the end, we 

identified 17 genes: SLFN5, CD40LG, EMB, ISG20, 

https://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
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CD226, CCR7, S1PR4, RNF167, MLLT3, PLEKHF1, 

RNPEPL1, STK39, FXYD5, BTN3A3, WNK1, and 

SUSD3. Based on these genes, we constructed a CD8+ 

T cell-related prognostic model. 

 

To classify ovarian cancer patients, we calculated the 

risk score for each patient in the training set using the 

following formula: 

 

Risk score ni (Coefi xi)= =    

 

Next, we divided the ovarian cancer patients into high-

risk and low-risk groups based on the median of the 

risk score. We used the R package survivalROC [14] 

to estimate the predictive sensitivity of the risk score. 

Finally, we evaluated the effectiveness of the model  

in the validation set using the same coefficients and 

cutoff values as the training set. 

 

Biological functional analysis between high/low-risk 

group patients 

 

The Deseq2 [15] R package was used to analyze 

differentially expressed genes (DEGs). DEGs were 

identified using a cutoff of an adjusted p-value of  

< 0.05 and a |Log2 fold change| > 1. Gene set 

enrichment analysis (GSEA) was conducted with the 

clusterProfiler R package [16]. Gene sets with false 

discovery rate (FDR)-corrected p-values < 0.05 were 

considered significant using Fisher’s exact test. Gene 

set variation analysis (GSVA) was performed using the 

R package GSVA [17]. Gene signatures representing 

recurrent cancer cell states were obtained from a 

previous study [18]. 

 
Tumor immune microenvironment in ovarian 

cancer patients 

 
We used the “estimate” algorithm to calculate immune 

scores for ovarian cancer samples [19]. To analyze  

the infiltration of immune cells, we used TIMER2.0, 

an algorithm that efficiently predicts immune cell 

infiltration based on bulk tumor gene expression  

data (http://timer.cistrome.org/). Using CIBERSORT, 

we quantified the relative abundance of 22 immune 

cells for each sample. Additionally, we gathered a 

collection of tumor immunomodulators from literature 

and calculated the correlation between the risk score 

and these modulators. 

 
Predicting drug responses and immunotherapy 

sensitivity  

 

The tumor immune exclusion score was  

obtained from TIDE (http://tide.dfci.harvard.edu/). The 

Immunophenoscore (IPS) was calculated using The 

Cancer Immunome Atlas (https://tcia.at/). To evaluate the 

predictive ability of the risk score for chemotherapeutic 

agents, we used the R package oncoPredict [20] to 

calculate patients’ half maximal inhibitory concentration 

(IC50) for various common chemotherapeutic agents. 

The Wilcoxon rank test was then employed to compare 

the difference in IC50 between the high-risk and low- 

risk groups. Additionally, we utilized the IMvigor210 

dataset (specifically for uroepithelial carcinoma) to further 

validate the predictive value of the aforementioned 

immunotherapy responses. 

 

Univariate and multivariable Cox regression 

 

We performed univariate Cox regression analysis to 

investigate the correlation between gene expression  

and OS in patients with ovarian cancer. In the same 

group, we utilized multivariate Cox regression to identify 

independent risk factors. Genes and factors that displayed 

a FDR < 0.05 were deemed statistically significant  

in terms of patient survival. The outcomes of both 

univariate and multivariate Cox regression analyses were 

obtained and visually represented using the R package 

forestplot. 
 

Establishment of the nomogram 

 

This study utilized the Cox regression model and the  

R package “rms” to develop a nomogram that predicts 

OS at 1-, 3-, and 5-year time frames. The accuracy of  

the nomogram was assessed using the C-index, while 

calibration plots were employed to visually compare the 

predicted and observed OS at 1-, 3-, and 5-year intervals. 

 

Statistical analysis 

 

All statistical analyses were performed using R version 

4.1.3 (https://www.r-project.org/) and its adequate 

packages. Statistical significance was set at p ≤ 0.05. 

 

Data availability  

 

The source of datasets supporting the conclusions are 

included in this article. 

 

RESULTS 
 

Interrogating the cellular constitution of ovarian 

cancer at single-cell resolution 

 

In order to minutely investigate the cellular constitution 

of ovarian cancer at single-cell resolution and identify 

markers of CD8+ T cells, we re-analyzed the scRNA-

seq data of tumors from seven treatment-naive ovarian 

cancer samples. Firstly, we integrated these data and 

http://timer.cistrome.org/
http://tide.dfci.harvard.edu/
https://tcia.at/
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corrected the potential batch effects using Harmony 

algorithm. After strict quality control and data filtering, 

data of 21785 genes within 27045 cells was obtained. 

We identified three major compartments within the 

TME of ovarian cancer, including the epithelial  

subset, immune subset and stromal subset (Figure 1A). 

UMAP visualization showed that seven scRNA-seq  

data were integrated and mixed uniformly (Figure 1B). 

By interrogating a list of classical lineage markers,  

we annotated the subpopulations among three main 

cellular subsets. For example, the stromal subset 

consisted of endothelial cells identified by expressions 

of VWF, PECAM1 and KDR, pericytes with high RGS5,  

ACTA2, and COL4A1 expressions, and cancer-associated 

fibroblasts (CAFs) identified by significant expressions 

of COL1A1, DCN and LUM (Figure 1C). Additionally, 

we identified several immune subpopulations including 

myeloid cells, NK cells, T cells, B cells, and plasma 

cells in the ovarian TME. Interestingly, a cycling T cell 

subpopulation which showed markers of both T cell 

lineage (CD2, CD3D and CD3G) and cell proliferation 

(HMGB2, MKI67 and TOP2A) was identified. All major 

cell types were represented across all seven tumors,  

but showed diverse composition patterns (Figure 1D). 

For example, the CD8+ T cells were enriched in OV-1, 

OV-3, OV-5 and OV-7 samples, while the CAFs were 

mainly enriched in the OV-6 sample. These observed 

variations in cellular composition might partly explain 

 

 

 

Figure 1. Interrogating the cellular constitution of ovarian cancer at single -cell resolution. (A, B) UMAP plot showing the 
major cell subpopulations in ovarian cancer. (C) Bubble heatmap showing expression levels of selected signature genes in ovarian 
cancer. Dot size indicates fraction of expressing cells, colored based on normalized expression levels. ( D) Relative proportions of 
diverse cell types across each sample. (E) Feature plots to further identify various immune cells, based on the expression levels of 
marker genes. 
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the inter-tumoral heterogeneity. Considering the 

boundary of NK cells and T cells on the UMAP plot 

was equivocal, we devoted to minutely discriminate 

distinct cellular subsets. The NK cell subpopulation was 

then identified based on the negative expression of 

canonical T cell lineage markers including CD2, CD3D, 

CD3G, CD4, CD8A and CD8B, along with specifically 

high expression of the chemokine XCL1, as well as 

GNLY and TRDC (Figure 1C, 1E). Furthermore, CD4+ 

T cells and CD8+ T cells were distinguished based  

on the expression of CD4, CD8A and CD8B (Figure 

1C–1E). Taken together, we minutely interrogated the 

cellular constitution of ovarian cancer at single-cell 

resolution and identified cellular markers of each 

subpopulation, such as the CD8+ T cell subpopulation. 

 

Construction and validation of a prognostic model 

based on specific CD8+ T cell markers in ovarian 

cancer 

 

Conducting differential analyses on the scRNA-seq 

data, we calculated a list of 1020 genes as the markers 

of the CD8+ T cell subpopulation (Supplementary Table 

1). As expected, the Gene Ontology (GO) enrichment 

analysis exhibited that these markers were enriched in 

multiple T cell-associated pathways, including T cell 

differentiation, T cell receptor signaling pathway and 

alpha-beta T cell activation (Supplementary Figure  

1A). Moreover, the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analysis showed a similar 

result, including enrichment of signaling pathways such 

as T cell receptor signaling pathway, Th1 and Th2 cell 

differentiation, Th17 cell differentiation as well as PD-

L1 expression and PD-1 checkpoint pathway in cancer 

(Supplementary Figure 1A).  

 

In order to investigate the prognostic role of CD8+ T 

cells in ovarian cancer, we firstly carried out a 

univariate Cox regression analysis to identify potential 

prognostic markers associated with CD8+ T cells for 

ovarian cancer in the TCGA cohort. A total of 64 genes 

was found to be correlated with the ovarian cancer 

prognosis (Supplementary Table 2). Subsequently, we 

performed the LASSO regression analysis to reduce 

the number of prognostic genes and finally identified 

17 prognostic signature genes, including SLFN5, 

CD40LG, EMB, ISG20, CD226, CCR7, S1PR4, 

RNF167, MLLT3, PLEKHF1, RNPEPL1, STK39, 

FXYD5, BTN3A3, WNK1 and SUSD3 (Figure 2A, 2B). 

Based on the coefficients and expression levels of 

these prognostic signature genes, we computed the risk 

score for each sample in the TCGA ovarian cancer 

cohort, which served as our training set. Subsequently, 
we categorized the ovarian cancer patients in the 

TCGA training cohort into high-risk and low-risk 

groups using the median risk score as the threshold. 

Our analysis revealed that patients in the high-risk 

group exhibited markedly inferior outcomes (Figure 

2C–2E). To assess the effectiveness of our CD8+ T 

cell-associated risk model, we presented receiver 

operator characteristic (ROC) curves and determined 

the area under the ROC curve (AUC) values at 1, 2, 3, 

and 5 years, which were 0.63, 0.67, 0.68, and 0.77, 

respectively (Figure 2F). 

 

To validate the reliability of the CD8+ T cell- 

related prognostic signature, we conducted additional 

validation tests in several independent datasets. 

Similarly, in the GSE30161 cohort, we stratified 

ovarian cancer patients based on the same risk score, 

consistent with the approach used in the TCGA 

training set and observed that patients in the high-risk 

group had poorer prognoses (Figure 2G–2I). The AUC 

values for the risk score in the GSE30161 dataset were 

0.81 for 1 year, 0.73 for 2 years, 0.76 for 3 years, and 

0.66 for 5 years (Figure 2J). Additionally, ovarian 

cancer patients with higher risk score in the GSE63885 

dataset also exhibited significantly inferior prognoses 

(Supplementary Figure 2A–2C). The AUC values for 

the CD8+ T cell-related risk score in the GSE63885 

dataset were 0.81 for 1 year, 0.73 for 2 years, 0.76 for 

3 years, and 0.66 for 5 years (Supplementary Figure 

2D). In summary, we have developed and validated a 

novel CD8+ T cell-related prognostic signature for 

predicting ovarian cancer outcomes. 

 

Functional and genomic features of high/low-risk 

groups 

 

In our quest to elucidate the underlying mechanisms 

explaining the prognostic significance of the CD8+ T 

cell-related risk score, we initially set out to explore  

its functional and genomic attributes. GO enrichment 

analysis revealed that the high-risk group patients 

showed significant enrichment in multiple immune-

related pathways, such as the B cell receptor signaling 

pathway, T cell receptor complex and antigen binding 

pathways (Figure 3A). In contrast, the intermediate 

filament cytoskeleton organization, catenin complex and 

G protein-coupled peptide receptor activity pathways 

were found to be enriched in the low-risk group  

patients (Figure 3B). In addition, the results of GSEA 

indicated that patients in the high-risk group had  

higher enrichment scores in pathways associated with  

epithelial-mesenchymal transition (EMT), Hedgehog 

signaling, and estrogen response (Figure 3C and 

Supplementary Figure 3A–3C), while those in the low-

risk group showed elevated enrichment scores in path-

ways related to interferon-gamma response, DNA repair,  
and MYC targets V1 (Figure 3C and Supplementary 

Figure 3D–3F). In order to obtain further insights  

into the transcriptional heterogeneity among ovarian 
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Figure 2. Construction and validation of a prognostic model based on specific CD8+ T cell markers in ovarian cancer.  
(A) Coefficient profiles in the LASSO regression model. (B) Cross-validation for tuning parameter selection in the LASSO regression. (C) 
Kaplan-Meier survival analysis was performed on the relationship between the risk score and OS using the TCGA training cohort. (D) The 
rank of risk score in the TCGA training cohort. (E) Survival status in the TCGA training cohort. (F) Time-dependent ROC curve analysis of the 
prognostic model (1, 2, 3, and 5 years) in the TCGA training cohort. (G) Kaplan-Meier survival analysis was performed on the relationship 
between the risk score and OS using the GSE30161 validation cohort. (H) The rank of risk score in the GSE30161 validation cohort. (I) 
Survival status in the GSE30161 validation cohort. (J) Time-dependent ROC curve analysis of the prognostic model (1, 2, 3, and 5 years) in 
the GSE30161 validation cohort. 
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cancers, we conducted the GSVA algorithm to calculate 

16 recurrent cancer cell states, which interacting with 

the TME to take shape organized systems qualified to 

promote immune escape, metastasis and drug resistance 

[18, 21]. We found the high-risk group patients harbored 

higher signature scores of astrocyte (AC)-like, alveolar 

and partial epithelial-mesenchymal transition (pEMT) 

modules (Figure 3D). Nevertheless, the cell cycle, 

interferon and oxidative phosphorylation modules were 

enriched among low-risk group ovarian cancer patients 

(Figure 3D). 

 

Moreover, we illustrated and compared the mutation 

profiles of ovarian cancer patients in the high-risk  

and low-risk groups (Supplementary Figure 4A). 

Surprisingly, we found that TMB scores, which have 

vital potential to predict immunotherapy responses, 

were markedly elevated in the low-risk group patients, 

and negatively correlated with the CD8+ T cell-

associated risk score (Supplementary Figure 4B–4C). 

 

Dissection of tumor immune microenvironment 

features based on CD8+ T cell-related prognostic 

signature 

 

To unveil the disparities in the immune milieu between 

the high-risk and low-risk group ovarian cancer 

patients, we first calculated the immune score using the 

ESTIMATE method. The results indicated that the 

immune score was dramatically higher in the low-risk 

group patients compared to high-risk patients, and it 

was negatively associated with this risk score (Figure 

4A, 4B). Moreover, we interrogated a series of immune 

signature score in two risk group patients, and found that 

the low-risk group showed higher scores in signatures 

related to antigen processing and presentation, B  

cell receptor (BCR) signaling pathway, T cell receptor 

(TCR) signaling pathway, and interferons (Figure  

4C). Subsequently, the CIBERSORT algorithm was 

performed to speculate the infiltration levels of diverse 

immune cell types in the ovarian cancer immune 

microenvironment. It was obviously indicated that  

high-risk patients had lower fractions of the M1-like 

macrophages, CD8+ T cells, regulatory T cells and 

follicular helper T cells (Figure 4D). In addition, the 

risk score showed a significantly correlation with  

the infiltration levels of the M1-like macrophages, 

CD8+ T cells (Figure 4E, 4F). Finally, we explored the 

potential association between our CD8+ T cell-related 

risk score and different immunomodulators. As shown 

in the bar plot, the risk score exhibited markedly 

positive correlation with C10orf54 and ICOSLG,  

but significantly negative correlation with CXCL10, 
CD40LG and IFNG (Figure 4G). Taken together, these 

results indicated us the high/low-risk patients had 

distinct immune cell infiltration and immune features, 

which might potentially contribute to different 

outcomes of ovarian cancers. 

 

High/low-risk group patients differ in response to 

immunotherapy 

 

Considering the evident correlation between the  

CD8+ T cell-associated risk score and diverse immune 

checkpoints, we subsequently devoted to figuring out 

whether the risk score correlated with the tumor 

immune exclusion score, which was recognized as one 

of immunotherapy predictors [22]. As expected, we 

found that ovarian cancer patients in the high-risk group 

harbored a higher tumor immune exclusion score, which 

positively associated with the risk score (Figure 5A, 

5B). To evaluate the response of ovarian cancers in 

different risk groups to immune checkpoint inhibitors 

(ICIs), we calculated the IPS score (including CTLA4 

blocker and PD-1/PD-L1/PD-L2 blocker) was much 

significantly higher in the low-risk group patients 

(Figure 5C–5E). This suggested that ICIs targeting 

CTLA4 or PD-1/PD-L1/PD-L2 are more suitable for 

low-risk patients rather than the high-risk group 

patients. Finally, to further validate the value of our 

CD8+ T cell-related prognostic model in predicting  

the immunotherapy response, we analyzed RNA-seq 

data of pretreatment samples of 298 bladder cancer 

patients from the IMvigor210 cohort before anti-PD-L1 

treatment. We found high-risk patients were mainly in 

the non-response group, and patients with higher risk 

score also exhibited inferior outcomes as showed in the 

Kaplan-Meier analysis (Figure 5F, 5G). Collectively, 

the above findings indicate that patients in the low risk-

group are more likely to benefit from immunotherapy, 

and the CD8+ T cell-related risk score could act as  

a potential biomarker to distinguish ovarian cancer 

patients who may benefit from immunotherapy. 

 

Distinct drug sensitivities were observed among 

high/low-risk group patients 

 

The substantial implication of tumor heterogeneity lies 

in the fact that distinct groups of patients exhibit 

varying responses to anti-cancer drug treatments, 

thereby exacerbating the risk of treatment failure and 

recurrence. Therefore, we determined to explore the 

potential relationship between our prognostic model 

and diverse anti-cancer drug sensitivity. The IC50 

values of multiple drugs in ovarian cancer patients 

were calculated and compared between the two risk 

groups as shown in the bubble plot (Figure 6A). 

Interestingly, the results suggested that the IC50 

values of cisplatin, cyclophosphamide and docetaxel 
were significantly higher in the high-risk patients, and 

positively associated with the CD8+ T cell-related risk 

score (Figure 6B–6D). It indicated that ovarian cancer 
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patients in the high-risk group might be more resistant 

to standard chemotherapy regimens. Additionally,  

we also assessed the correlation between the model 

genes and these anti-cancer drugs. Specifically, the 

expression levels of WNK1 and RNPEPL1 were both 

conspicuously positively related to the IC50 of 

GSK591. On the other hand, the IC50 values of 

cyclophosphamide negatively correlated with the 

expression levels of BTN3A3, S1PR4, CCR7, CD226 

and CD40LG (Figure 6A). Summarily, our findings 

suggest that this novel CD8+ T cell-related prognostic 

model can be a reliable predictor for screening 

efficient drugs in ovarian cancers. 

 

Construction of a nomogram to forecast survival for 

ovarian cancer 

 

Subsequently, we conducted univariate and multi-

variate Cox analyses to determine whether the CD8+ T 

cell-associated risk score was a robust independent 

prognostic factor. The univariate Cox regression 

analysis revealed that the risk score was identified 

 

 
 

Figure 3. Functional and genomic features of high/low-risk group patients. (A, B) GO enrichment of DEGs in high/low-risk groups. 

(C) Bar plot showing different pathways enriched in high/low-risk groups of ovarian cancer calculated by GSEA. (D) Boxplots showing the 
signature score of 16 cancer cell states in high/low-risk groups of ovarian cancer scored by GSVA. Paired two-sided Wilcoxon test. The 
asterisks represent the statistical P-value (*p<0.05; **p<0.01; ***p < .001; ****p < 0.0001; ns p>0.05). 
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Figure 4. Dissection of tumor immune microenvironment features based on CD8+ T cell-related prognostic signature.  
(A) Immune score in high/low-risk groups. (B) Spearman correlation between Immune score and risk score. (C) Boxplots showing the 
signature score of 17 immune pathways in high/low-risk groups of ovarian cancer scored by GSVA. Paired two-sided Wilcoxon test.  
(D) Boxplots showing the proportion of 22 immune cells in high/low-risk groups of ovarian cancer estimated by CIBERSORT. Paired two-sided 
Wilcoxon test. (E, F) Scatter plots showing the correlation between the risk score and the proportion of M1-like macrophages and CD8+ T cells 
(G) Bar plot of the correlation between immunomodulators and the risk score. The asterisks represent the statistical P-value (*p<0.05; 
**p<0.01; ***p < .001; ****p < 0.0001; ns p>0.05). 
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as a risk factor for ovarian cancer patients (Figure 7A). 

When adjusting for other confounding factors, the 

multivariate analysis also revealed that the risk score 

was still a prognostic factor independent of age, tumor 

stage and tumor grade (Figure 7B). Moreover, a 

predictive nomogram was established to improve the 

prognosis efficacy of our prognostic model and 

provide a quantitative and visual tool for estimating 

outcomes of ovarian cancer patients in the TCGA 

cohort (Figure 7C). As demonstrated by the calibration 

plots, the nomogram exhibited robust stability in 

quantifying the survival probabilities of ovarian cancer 

patients at 1, 2, 3, and 5 years (Figure 7D). These 

above results indicated that this constructed nomogram 

exhibited excellent prediction efficacy for ovarian 

cancer patients. 

 

 
 

Figure 5. High/low-risk group patients differ in response to immunotherapy. (A) Tumor Immune Exclusion score in high/low-risk 
groups. (B) Spearman correlation between Tumor Immune Exclusion score and risk score. (C–E) Immunophenoscore (IPS) in high/low-risk 
groups. (F) Proportion of immunotherapy responses between high/low-risk groups. (G) Kaplan-Meier survival analysis was performed on the 
relationship between the risk score and OS in the IMvigor210 immunotherapy cohort. 
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Figure 6. High/low-risk group patients differ in drug sensitivity and response to immunotherapy. (A) Bubble plot showing the 
relationship between drugs, risk score, and model genes. (B) Violin plot showing the comparison of IC50 of cisplatin between high/low-risk 
groups, and scatter plot showing the correlation between the IC50 of drugs and the risk score. (C) Violin plot showing the comparison of IC50 
of cyclophosphamide between high/low-risk groups, and scatter plot showing the correlation between the IC50 of drugs and the risk score. 
(D) Violin plot showing the comparison of IC50 of docetaxel between high/low-risk groups, and scatter plot showing the correlation between 
the IC50 of drugs and the risk score. 
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DISCUSSION 
 

Despite recent therapeutic advances, outcomes for 

patients with ovarian cancer still remain poor.  

Ovarian carcinoma is marked by a notable level  

of heterogeneity among patients, within individual 

patients, and within the tumor itself [23]. This 

complexity presents therapeutic challenges since  

the disease cannot be viewed as a singular entity. 

Therefore, the identification and development of novel 

biomarkers to contribute to patient-specific therapies 

and prolong survival are thirstily important and  

urgent. The TME of ovarian carcinoma is intricate and 

distinctive, and therapeutic strategies have aimed to 

address this heterogeneity by identifying the cellular 

components and comprehending their functions in 

tumor growth and metastasis. Aside from carcinoma 

cells, the TME in both fluid (ascites) and solid 

(omentum) niches includes immune cells, adipocytes 

and mesenchymal cells, while in the omentum, it also 

involves endothelial cells and pericytes [24]. In the 

immune cell compartment, CD8+ T cells serve essential 

functions in combatting intracellular pathogens and 

eradicating malignant cells in cancer. Nevertheless, the 

potential prognostic role of CD8+ T cell markers in 

ovarian cancer remains insufficient explored. 

 

 
 

Figure 7. Construction of a nomogram to forecast survival for ovarian cancer. (A) Univariate analysis for the clinicopathologic 
characteristics and the risk score in TCGA cohort. (B) Multivariate analysis for the clinicopathologic characteristics and the risk score in TCGA 
cohort. (C) A nomogram was established to predict the prognostic of ovarian cancer patients. (D) Calibration analysis of the nomogram.  
(E) ROC curve analysis of the nomogram. The asterisks represent the statistical P-value (*p<0.05; **p<0.01; ***p < .001; ****p < 0.0001; ns 
p>0.05). 
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In contrast to bulk RNA-seq, which primarily assesses 

the average gene expression across all cells, scRNA-seq 

technologies have revolutionized molecular biology  

by providing the capability to measure transcriptome 

profiles at an unprecedented scale and resolution  

[25]. The integration of scRNA-seq and bulk RNA- 

seq analysis could provide substantial assistance in 

uncovering additional latent biological insights and 

represent the prevailing trend in current omics analysis 

and a future development direction. Here, we first 

minutely explored the CD8+ T cell markers of ovarian 

cancer by comprehensively analyzing a publicly obtained 

scRNA-seq dataset from ovarian cancer patients [9]. 

Based on canonical markers, we annotated plenty of cell 

subpopulations in the ovarian cancer TME. Primarily, 

epithelial cells were identified considering the expression 

level of KRT18, SLPI and WFDC2. Next, the stromal 

subset was further categorized into endothelial cells, 

pericytes and CAFs. For the immune compartment, 

myeloid cells, B and plasmas cells, NK cells and diverse 

T cell subpopulations were identified by classical 

markers. Subsequently, a novel CD8+ T cell-associated 

prognostic model was developed by univariate Cox 

regression and LASSO regression analyses for ovarian 

cancer patients in TCGA cohort, and further validated 

in other independent cohorts from the GEO dataset. We 

found high-risk group ovarian cancer patients were 

linked with significantly inferior outcomes. Importantly, 

patients with lower risk score exhibited dramatically 

elevated infiltration of immune cells, including M1- 

like macrophages and CD8+ T cells. In addition, we 

observed that patients in low-risk group exhibited a 

remarkably higher response rate to immunotherapy 

compared to those with high-risk score, suggesting that 

immune checkpoint blockade therapy is better suited for 

low-risk ovarian cancer patients. Besides, we screened  

a variety of drugs for high/low-risk ovarian cancer 

patients, and identified cisplatin, cyclophosphamide  

and docetaxel were more appropriate for patients in 

low-risk group. Of particular significance, we have 

developed an effective prognostic signature based on 

CD8+ T cell-associated genes and offered a novel and 

precise classification system as well as a therapeutic 

strategy for ovarian cancer patients. 

 

Eventually, 17 CD8+ T cell-related genes, including 

SLFN5, CD40LG, EMB, ISG20, CD226, CCR7, S1PR4, 

RNF167, MLLT3, PLEKHF1, RNPEPL1, STK39, 

FXYD5, BTN3A3, WNK1 and SUSD3, were herein 

screened to establish the novel prognostic model. Above 

genes have been partly found to be linked with CD8+ T 

cells in ovarian cancer and other cancers. For example,  

it has been reported that CD40L (encoded by CD40LG) 
has a significant impact on augmenting the population  

of CD8+ T cells by acting through CD40 receptors 

expressed on activated CD8+ T cells, and further exerts 

an influence on the generation of memory CD8+ T cells 

[26]. Moreover, CD226high CD8+ T cell subpopulation in 

liver metastases was found to potentially determine the 

outcome of colorectal cancers undergoing chemotherapy 

and radical surgery [27]. A recent study reported that 

ablation of the immune cell-specific G protein-coupled 

receptor S1PR4 induced CD8+ T cell expansion to inhibit 

tumor growth and enhance chemotherapy efficacy [28].  

 

Considering the high heterogeneity of ovarian  

tumors, we first attempted to divided patients into 

high/low-risk based on the median value of risk  

score. By conducting enrichment analyses, we found 

that low-risk group patients showed higher enrichment 

scores in the B cell receptor signaling pathway, classical 

complement activation and phagocytosis pathways. 

Consistent with this, ovarian cancer patients with a 

lower risk score had a significant elevated immune 

score calculated by ESTIMATE algorithm. Moreover, 

we found the infiltration of M2-like macrophages 

showed a comparable level among high/low-risk group 

patients. However, a lower infiltration level of M1-like 

macrophages was found in patients with a higher risk 

score. The destiny of macrophages depends on the 

surrounding conditions, which determine whether they 

adopt an inflammatory M1 response or an immune 

boosting M2 response. M1-polarized macrophages are 

stimulated by substances or inflammatory molecules 

while M2-polarized macrophages are triggered by 

interleukins, such as IL-4 and IL-13. The M1-like 

macrophages play a role in fighting, against bacteria 

and tumors whereas the M2-like macrophages primarily 

contribute to blood vessel formation, wound healing and 

immune regulation [29, 30]. Therefore, the M1-like 

macrophages might play a vital role in the improved 

prognosis among low-risk group patients. Additionally, 

the high-risk group patients also revealed a decreased 

infiltration level of CD8+ T cells, hinting weaker 

antitumor capacity, which could partly explain the 

inferior outcome of patients with higher risk score. 

Apart from revealing the heterogeneity of ovarian 

carcinoma in diverse aspects, we next devoted to 

developing a treatment landscape for ovarian cancer 

patients. Immunotherapy with ICIs has emerged as one 

of the pillars of cancer treatment, together with surgery, 

chemotherapy, and radiotherapy. Nevertheless, most 

patients fail to response to immunotherapies due to 

primary or acquired resistance. Inspired by this, we 

evaluated the response rate of immunotherapies 

between high/low-risk group patients and found that 

immune checkpoint blockades were more effective  

for patients with lower risk scores. Additionally, the 

sensitivity of a variety of drugs was interrogated among 
ovarian cancer patients. In order to enhance the clinical 

applicability of our model, we have comprehensively 

considered various clinical factors currently under 
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consideration in the treatment of ovarian cancer. By 

integrating tumor staging, grading, and other pertinent 

factors, we have developed a forest plot capable of 

predicting multi-year survival rates for ovarian cancer 

patients. Through the analysis of chemotherapy regimens, 

PD-L1 immunotherapy, and the forest plot, clinicians 

can derive specific guidance for personalized treatment 

strategies tailored to ovarian cancer patients. In short, 

our research partly characterized the heterogeneity of 

ovarian cancers, and developed a treatment landscape 

including multiple effective therapeutic strategies for 

different ovarian carcinoma subpopulations. 

 
In fact, while our prognostic model based on CD8+ T 

cells in ovarian cancer demonstrated outstanding 

performance in both the training and validation cohorts, 

there are still some limitations to consider. At first, the 

expression and prognostic role of the candidate CD8+ T 

cell marker genes at protein-level require further 

validation. Next, although we screened these prognostic 

genes based on CD8+ T cell markers, they were not 

solely expressed in CD8+ T cells. Finally, it is also 

worth noting that there might be some inherent biases to 

a certain extent due to the retrospective recruitment of 

ovarian cancer patients. 

 

CONCLUSIONS 
 
In conclusion, we constructed and validated a novel 

prognostic signature based on CD8+ T cell markers 

identified by scRNA-seq analyses in ovarian cancer. 

The developed CD8+ T cell-related prognostic model in 

this research acts as an excellent predictor for clinical 

outcomes and therapeutic strategy choices for ovarian 

cancer patients. Besides, our study provides us a novel 

research direction of tumor-infiltrating immune cells in 

ovarian carcinoma. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. GO/KEGG enrichment for CD8+ signature genes. (A) GO enrichment for CD8+ signature genes. (B) KEGG 

enrichment for CD8+ signature genes. 
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Supplementary Figure 2. Construction and validation of a prognostic model based on CD8+ T cell markers in ovarian cancer. 
(A) Kaplan-Meier survival analysis was performed on the relationship between the risk score and OS using the GSE63885 validation cohort. 
(B) The rank of risk scores in the GSE63885 validation cohort. (C) Survival status in the GSE63885 validation cohort. (D) Time-dependent ROC 
curve analysis of the prognostic model (1, 2, 3, and 5 years) in the GSE63885 validation cohort. 
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Supplementary Figure 3. Correlation between the risk score and pathway activities. (A–C) GSEA analysis showing the up-regulated 

pathways in the high-risk group. (D–F) GSEA analysis showing the up-regulated pathways in the low-risk group. 
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Supplementary Figure 4. Mutation analysis of high/low-risk groups (A). Comparison of the mutation landscape between groups with 
high/low risk. (B) TMB score in high/low-risk groups. (C) Spearman correlation between TMB score and risk score. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. A list of marker genes for each cell subpopulation in ovarian cancer. 

 

Supplementary Table 2. A list of significantly prognostic genes identified by univariate Cox regression analysis. 


