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INTRODUCTION 
 

Melanoma is a highly invasive skin tumor, known for 

its rapid growth and strong metastatic characteristics. 
Melanoma mainly occurs in young and middle-aged 
people. In recent years, its incidence has unfortunately 

been steadily rising, and its rate of increase is faster 
than any other solid tumor. According to the World 
Health Organization, about 287,000 people worldwide 

are diagnosed with melanoma every year, and nearly 
60,000 die from it [1, 2]. Melanoma has become a 

serious public health problem, imposing great economic 

burden on society. Due to the lack of effective early 
diagnosis and screening methods, many patients are 
diagnosed and treated at a late stage, resulting in  

poor prognosis. Statistically, the 5-year survival rate  
for metastatic melanoma patients is only 4.6% [3]. In 
terms of treatment, early-stage melanoma is primarily 

managed by surgical resection, however, it is prone to 
recurrence; while late-stage melanoma is mainly treated 
with chemotherapy. In recent years, some progress has 

been made in immunotherapy using immune checkpoint 
inhibitors and cytotoxic T lymphocytes, though the 

overall therapeutic outcome remains suboptimal [4]. 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

Identifying novel circadian rhythm biomarkers for diagnosis and 
prognosis of melanoma by an integrated bioinformatics and 
machine learning approach 
 

Yi Xu1, Churuo Zeng1, Jie Bin1, Hua Tang1, Wei Li1 
 
1Department of Plastic Surgery, Second People’s Hospital of Hunan Province, Changsha, Hunan, China 
 
Correspondence to: Yi Xu; email: haoboyxuyi@sina.com, https://orcid.org/0009-0007-7947-9489  
Keywords: melanoma, circadian rhythm, biomarker, prognostic model, bioinformatics, machine learning 
Received: September 7, 2023 Accepted: December 26, 2023  Published: June 20, 2024 
 
Copyright: © 2024 Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Melanoma is a highly malignant skin tumor with poor prognosis. Circadian rhythm is closely related to 
melanoma pathogenesis. This study aimed to identify key circadian rhythm genes (CRGs) in melanoma and 
explore their potential as diagnostic and prognostic biomarkers. Microarray data of melanoma tissues and 
normal skins were obtained. Differentially expressed genes were identified and weighted gene co-expression 
network analysis (WGCNA) was performed to screen hub genes associated with melanoma. By overlapping hub 
genes with known CRGs, 125 melanoma-related CRGs were identified. Functional enrichment analysis revealed 
these CRGs were mainly involved in circadian rhythm and other cancer-related pathways. Three machine 
learning algorithms including LASSO regression, support vector machine-recursive feature elimination (SVM-
RFE), and random forest were utilized to select key CRGs. Six CRGs (ABCC2, CA14, EGR3, FBXW7, LDHB, and 
PSEN2) were identified as key CRGs for melanoma diagnosis and prognosis. Diagnostic values of key CRGs were 
evaluated by ROC analysis in training and validation sets. Prognostic values of key CRGs were assessed by 
survival analysis and a multivariate Cox regression prognostic model was constructed. The prognostic model 
could effectively stratify melanoma patients into high- and low-risk groups with significantly different survival. 
A nomogram integrating clinical variables and risk score was built to predict 3-, 5- and 10-year overall survival 
of melanoma patients. In summary, six CRGs were identified as key genes associated with melanoma 
pathogenesis and may serve as promising diagnostic and prognostic biomarkers. The prognostic model and 
nomogram could facilitate personalized prognosis evaluation of melanoma patients. 
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The pathogenesis of melanoma is complex,  
involving multiple genetic and environmental factors. 

Strong and intermittent sun exposure, ultraviolet 
radiation, the number of nevi in the host, genetic 
susceptibility, etc. are risk factors for melanoma [5]. 

Abnormal expression of many tumor suppressor genes 
or oncogenes is an essential cause of melanoma.  

For instance, the tumor suppressor gene BRAF is 
closely associated with the onset, progression, and 
prognosis of melanoma [5]. Therefore, exploring the 

molecular characteristics of melanoma and identifying 
new diagnostic and prognostic biomarkers are crucial 
for understanding the pathological mechanisms of 

melanoma, developing new effective diagnostic and 
treatment methods, and improving the clinical outcomes 

of patients.  
 
Circadian rhythm is an endogenous, approximately  

24-hour periodic biological clock in organisms  
that regulates many physiological and behavioral  
activities [6]. In recent years, research has found that  

circadian rhythm is closely related to the pathogenesis, 
development, prognosis and therapeutic response of 

melanoma. Circadian rhythm disturbance is a risk  
factor for melanoma [7–10]. During the pathogenesis  
of melanoma, abnormal expression or genetic variation 

of circadian rhythm genes (CRGs) occurs, and these 
abnormalities are important causes leading to melanoma 
pathogenesis and poor prognosis [10]. Although some 

CRGs have been found to be closely related to melanoma 
pathogenesis and prognosis, researchers’ attention on 
the circadian rhythm mechanism of melanoma is still 

insufficient. Therefore, comprehensive mining of the 
relationship between melanoma and circadian rhythm 

genes is of great significance. 
 
In recent years, bioinformatics and machine learning 

technologies have been widely applied to the analysis of 
gene and protein expression profiles, which helps rapidly 
and accurately screen disease biomarkers, construct 

disease prognostic models and explore pathological 
mechanisms. Therefore, this study utilized bioinformatics 

and machine learning technologies to mine CRGs and 
molecular mechanisms closely related to melanoma, so 
as to provide a reference for the diagnosis, prognostic 

evaluation and potential therapeutic target discovery of 
melanoma. 
 

MATERIALS AND METHODS 
 
Data download and preprocessing 

 
Firstly, 4 melanoma-related transcriptomic  
datasets (GSE15605, GSE114445, GSE46517 and  

GSE65904 datasets) were downloaded from GEO 
database (https://www.ncbi.nlm.nih.gov/geo/), and 1 

melanoma-related gene expression profile data  
was obtained from TCGA database (https://tcga-

data.nci.nih.gov/tcga/). A total of 1471 circadian rhythm 
related genes (CRGs) were obtained from MSigDB 
database (https://www.gsea-msigdb.org/gsea/msigdb/) 

and Genecards database (https://www.genecards.org/) 
(Supplementary Table 1). Then, preprocessing was 

performed on each expression profile data. The R 
software package “limma” was used for background 
correction, median normalization and gene symbol 

conversion of each dataset. 
 
GSE15605 and GSE114445 datasets were based on 

GPL570 platform (Affymetrix Human Genome U133 
Plus 2.0 Array). GSE15605 dataset contained 16 normal 

skin samples and 46 primary melanoma samples, and 
GSE114445 dataset contained 6 normal skin samples 
and 15 primary melanoma samples. GSE46517 dataset 

was based on GPL96 platform (Affymetrix Human 
Genome U133A Array), containing 8 normal skin 
samples and 31 primary melanoma samples. GSE65904 

data was based on GPL10558 platform (Illumina 
HumanHT-12 V4.0 expression beadchip), containing 

tumor tissue samples from 214 melanoma patients. 
TCGA-melanoma dataset included tumor tissue samples 
from 458 melanoma patients. 

 
In this study, GSE15605 and GSE114445 datasets were 
combined as a new expression profile as the training  

set, which was used for the selection of key CRGs  
in melanoma. Separate GSE15605, GSE114445 and 
GSE46517 datasets were used as validation sets to 

validate the expression of key CRGs and evaluate the 
diagnostic ability of key CRGs. The TCGA-melanoma 

cohort was used as the training set for prognostic 
evaluation and prognostic model construction of key 
CRGs. GSE65904 dataset was used as the validation set 

for verification of the prognostic model. 
 
Screening of melanoma-related circadian rhythm 

genes (CRGs) 

 
Dataset merging 

Firstly, GSE15605 and GSE114445 datasets were 
merged as the training set for screening melanoma-

related key CRGs. To eliminate batch effects between 
different datasets, batch correction was performed  
on the merged dataset using the “sva” package in R 

software. Then the box plots, density plots of gene 
expression and Uniform Manifold Approximation and 
Projection (UMAP) analysis were performed to validate 

the effect of batch correction.  

 
Differential expression analysis 

Differential expression analysis was performed using  
R software package “limma”. Differential expression 

https://www.ncbi.nlm.nih.gov/geo/
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.genecards.org/


www.aging-us.com 3 AGING 

genes (DEGs) between melanoma and normal skin 
samples in the training set were screened with the 

threshold of “|logFC|>1.2, P<0.05”. 
 
Weighted gene co-expression network analysis 

(WGCNA) 

The R package “WGCNA” was used to perform 

weighted gene co-expression network analysis 
(WGCNA) on the expression matrix of the above 
DEGs. Specifically, we first constructed an adjacency 

matrix to describe the association strength between 
nodes. Then, the optimal soft thresholding power  
β was chosen to transform the adjacency matrix  

into topological overlap matrix (TOM), making the 
constructed network follow scale-free topology and  

be closer to real biological networks. Next, module 
partitioning analysis was performed using hierarchical 
clustering and dynamic tree cut algorithm to determine 

gene co-expression modules. The module eigengenes 
(MEs) of each gene module were then calculated  
and the connectivity between different modules was 

analyzed. The correlation between each module and 
clinical trait (melanoma and normal skin) was then 

calculated. Finally, gene significance (GS) and module 
membership (MM) were calculated, and hub genes 
closely related to melanoma pathogenesis were 

screened in the modules with GS>0.6, MM>0.6 and 
P<0.05. 
 

Screening of melanoma-related CRGs 

The hub genes obtained from the WGCNA network 
were compared with the CRGs downloaded from the 

MSigDB database to identify the common genes, 
which were the melanoma-related CRGs that affect  

the occurrence and development of melanoma. 
 
Functional enrichment analysis and protein-protein 

interaction (PPI) analysis 

 
To explore the potential biological functions and 

signaling pathways of circadian rhythm genes (CRGs) 
in melanoma pathogenesis, we performed functional 

enrichment analysis on melanoma-related CRGs using 
DAVID database. Specifically, Gene Ontology (GO) 
functional annotation and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) functional enrichment 
analysis were performed on the above melanoma-
related CRGs. For GO functional annotation, we 

selected “Gene Ontology” as the analysis type in the 
DAVID database and chose “Biological Process”, 
“Molecular Function”, and “Cellular Component” as 

the annotation types. We selected the species as human 
and submitted the list of CRGs. For KEGG functional 

enrichment analysis, we used the DAVID database  
and selected “KEGG Pathway” as the analysis type. 
Finally, we visualized the analysis results. 

To further evaluate the role of circadian rhythm 
mechanisms in melanoma pathogenesis, we performed 

Gene Set Enrichment Analysis (GSEA), a gene set-
based enrichment analysis method that identifies 
significant differences in biological functions and 

signaling pathways between two biological conditions. 
Specifically, we obtained Gene Ontology (GO) biological 

processes gene sets, including ENTRAINMENT OF 
CIRCADIAN CLOCK, CIRCADIAN REGULATION 
OF GENE EXPRESSION, CIRCADIAN RHYTHM, 

and REGULATION OF CIRCADIAN RHYTHM, as 
well as the KEGG gene set CIRCADIAN RHYTHM,  
from the MSigDB database (https://www.gsea-

msigdb.org/gsea/msigdb) as reference gene sets. We 
then used GSEA software (version 4.0.1) to determine 

the expression differences of these circadian rhythm-
related biological functions and signaling pathways 
between melanoma and normal skin tissues. 

 
In addition, the protein-protein interaction (PPI) 
network between these melanoma-related CRGs was 

further constructed. First, these melanoma-related CRGs 
were uploaded to STRING database (https://string-

db.org/) for protein-protein interaction (PPI) analysis. 
Then Cytoscape software (version 3.7.2) was used to 
construct the PPI network and analyze the topological 

parameters of nodes in the network. 
 
Identification of key CRGs associated with 

melanoma 

 
We utilized 3 machine learning algorithms including 

support vector machine-recursive feature elimination 
(SVM-RFE) analysis, random forest analysis and 

LASSO regression analysis to screen key genes from 
the above melanoma-related CRGs.  
 

SVM-RFE is an embedded feature selection approach  
that ranks features based on their importance [11]. It 
repetitively trains SVM classifier models and removes  

the feature with smallest ranking criterion each time until 
all features are ranked. Here, we utilized SVM-RFE 

algorithm in R package “e1071” to rank the melanoma-
related CRGs by their importance. The CRGs were 
recursively eliminated until the optimal SVM model with 

high classification accuracy was obtained. The remaining 
CRGs were identified as key features. 
 

Random forest is an ensemble supervised learning 
technique constructed by multiple decision trees [12]. It 
can estimate the importance of features by permutation 

and assess prediction error using out-of-bag samples. 
Here, we used the random forest algorithm in R package 

“randomForest” to select and rank CRGs by their 
importance. The top 20 ranked CRGs by importance were 
selected as key genes under random forest analysis. 

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://string-db.org/
https://string-db.org/
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LASSO regression is a regularization technique that 
performs feature selection and regularization to enhance 

prediction accuracy and interpretability. It penalizes  
the absolute size of regression coefficients, effectively 
reducing model complexity and avoiding overfitting [13]. 

Here, we constructed a LASSO regression model based 
on melanoma tissue and normal skin tissue samples 

using R package “rms”. By tuning the regularization 
parameter λ, LASSO regression selects important 
features and shrinks the coefficients of unimportant 

features to zero. In this study, we identified the 
melanoma-related key CRGs by selecting the features 
with non-zero coefficients in the LASSO model when  

λ was set as 0.04. 
 

The commonly selected feature genes by the 3  
machine learning methods were identified as key CRGs 
associated with melanoma. 

 
Expression and ROC analysis of key CRGs 

 

Based on the training set (merged GSE15605 and 
GSE114445 datasets) and validation sets (GSE15605, 

GSE114445 and GSE46517 datasets), Wilcoxon rank-
sum test was performed to investigate the expression of 
key CRGs in melanoma tissues and normal skin tissues, 

respectively. 
 
Then, to further validate the accuracy of key CRGs 

selection and evaluate the diagnostic value of key  
CRGs as melanoma biomarkers, receiver operating 
characteristic (ROC) analysis was performed on the 

training and validation sets using the “pROC” package 
in R software. The diagnostic power was reflected by 

the area under ROC curve (AUC) value. AUC>0.7 
indicated that key CRGs had good ability to distinguish 
melanoma from normal skin tissues. 
 

Prognostic analysis of key CRGs 

 
Firstly, we performed Kaplan-Meier survival curve 
analysis for each key CRG using the ‘survival’ 

package in R software based on the TCGA database 
which integrated transcriptomic data and clinical 

information of melanoma patients, in order to assess 
their impacts on the prognosis of melanoma patients. 
Then, multivariate Cox regression analysis with 

stepwise variable selection was utilized to construct a 
prognostic model with key CRGs significantly 
associated with prognosis of melanoma patients, and 

determine the relative coefficient of each feature gene. 
At each step, the most significant CRG was added 
into the model. CRGs that became non-significant 

were removed from the final prognostic model. For 
each patient, the CRGs risk score was calculated as 

follows:  

( ) ( )
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Risk Score Expression
n

mRNAi mRNAi

i
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=

=   

 
According to the median value of risk scores, 

melanoma patients in the training set (TCGA cohort) 
and validation set (GSE65904 dataset) were classified 
into high- and low-risk groups. Kaplan-Meier survival 

analysis was performed to evaluate the survival 
difference between high- and low-risk groups. ROC 
analysis at 3, 5 and 10 years was performed using the 

R package “survivalROC” to evaluate the sensitivity 
and specificity of the prognostic model. 
 

Then, to further predict the prognosis of melanoma 
patients, we constructed a nomogram. The nomogram 

is a statistical prediction model that generates  
a visualization tool for estimating individualized 
probabilities of a clinical outcome, such as patient 

survival, based on a combination of important variables. 
Here, we analyzed the relationship between different 
clinical pathological parameters including stage, 

Tumor (T), Node (N), Metastasis (M) classification 
and risk score using Spearman’s rank correlation  

test. Benjamini-Hochberg procedure was applied for 
multiple testing correction. Subsequently, integrating 
clinical features (age, sex, stage, T/N/M classifications) 

and risk score, univariate and multivariate Cox 
regression analyses were performed. Using the rms 
package in R software, all independent prognostic 

parameters were utilized to construct a nomogram  
to predict 3-, 5- and 10-year overall survival of 

melanoma patients. The predictive ability of the 
nomogram was validated by calibration analysis and 
ROC analysis. 

 

RESULTS 
 
Screening of melanoma-related CRGs 

 
Dataset merging 

We first merged GSE15605 and GSE114445 datasets  
as the training set for screening melanoma-related  

key CRGs. After batch correction, we plotted the gene 
expression boxplots and density plots, and performed 

Uniform Manifold Approximation and Projection 
(UMAP) analysis to validate its effects. The gene 
expression boxplots and density plots showed that the 

data distributions across different datasets became 
consistent after removing batch effects (Figures 1A, 
2B). The UMAP analysis results showed that each 

sample in GSE15605 and GSE114445 datasets was 
randomly and discretely distributed (Figure 1C). The 

results indicated that batch correction could effectively 
eliminate batch effects between different datasets, 
making the merged dataset more consistent and reliable. 
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Screening of melanoma-related CRGs 

Through differential expression analysis, 8725 DEGs 

were identified between melanoma tissues and normal 
skin tissues (Figure 2A, 2B). These DEGs were further 
analyzed by WGCNA to screen genes associated with 

melanoma. In WGCNA, the optimal soft thresholding 
power β was chosen as 6 (Figure 2C, 2D). Then 

modules were cut using hierarchical clustering and 
DynamicTreeCut algorithm. With the maximum module 
distance set as 0.25, highly similar modules were 

merged, and eventually 15 independent gene modules 
were generated, namely greenyellow, saddlebrown, 
yellow, midnightblue, blue, darkorange, lightyellow, 

darkred, paleturquoise, darkgreen, cyan, green, salmon, 
white and grey (Figure 2E). We then analyzed the 

independence of these gene co-expression modules. As 
shown in Figure 2F, the distances between modules 

were all greater than 0.25, indicating these gene 
modules had good independence. Next, we calculated 

the correlation between all modules and clinical  
trait (melanoma and normal skin). The results showed 
that except grey module, all other modules were 

significantly correlated with melanoma (Figure 2G). 
Therefore, these melanoma-related modules were 

selected for further screening genes closely related  
to melanoma pathogenesis. With the threshold of 
GS>0.6, MM>0.6 and P<0.05, 1643 hub genes were 

identified from the co-expression network of these gene 
modules (Supplementary Table 2). These hub genes 
were considered to be closely related to melanoma 

pathogenesis. 
 

Finally, by comparing CRGs and these hub genes, 125 
common genes were identified and considered as CRGs 

 

 
 

Figure 1. Dataset merging. (A) Gene expression boxplots of the merged dataset after batch correction. (B) Gene expression density plots 
of the merged dataset after batch correction. (C) Uniform Manifold Approximation and Projection (UMAP) analysis of the merged dataset 
after batch correction. 
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Figure 2. Screening of melanoma-related CRGs. (A) Volcano plot of differential expression analysis. (B) Heatmap of differential 
expressed genes. (C) Relationship between scale-free topology and soft thresholding power. (D) Average connectivity’s dependence on soft 
threshold power levels. (E) Hierarchical clustering dendrogram displaying distinct co-expression modules as individual colors. The bicolored 
rows beneath the tree indicate the initial and combined modules. (F) Cluster dendrogram of module eigengenes (MEs) and adjacency 
heatmap of MEs. (G) Correlation heatmap illustrating the association between module eigengenes (MEs) and clinical characteristics. (H) 
Screening of melanoma-related CRGs. The overlapping genes between hub genes in WGCNA and CRGs obtained from MSigDB database were 
defined as melanoma-related CRGs. 
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that affect melanoma pathogenesis and development 
(Figure 2H). 

 
Functional enrichment analysis and protein-protein 

interaction (PPI) analysis 

 
Here, the biological functions and signaling pathways 

related to circadian rhythm mechanism in melanoma 
were identified. GO functional enrichment analysis of the 
125 melanoma-associated circadian rhythm genes (CRGs) 

revealed their involvement in molecular functions (MFs) 
including identical protein binding, steroid binding, 
transcription factor activity, sequence-specific DNA 

binding, and transcription corepressor binding (Figure 

3A). These CRGs were enriched in biological processes 
(BPs) such as rhythmic process, regulation of circadian 

rhythm, circadian regulation of gene expression, and 
response to xenobiotic stimulus (Figure 3B, 3E), and 
were associated with various cellular components (CCs) 

including chromatin, extracellular exosome, cytosol, 
cytoplasm, and nucleoplasm (Figure 3C). KEGG analysis 

showed that besides directly regulating the circadian 
rhythm pathway, these melanoma-related CRGs may also 
indirectly participate in the circadian mechanisms of 

melanoma by modulating other signaling pathways such 
as cellular senescence, bile secretion, apelin signaling 
pathway, insulin signaling pathway, and NF-kappa B 

signaling pathway (Figure 3D, 3F). 
 

 
 

Figure 3. Functional enrichment analysis and PPI analysis. (A) Molecular function (MF) analysis (top 20 terms ranked by statistical 
significance). (B) Biological processes (BP) analysis (top 20 terms ranked by statistical significance). (C) Cellular component (CC) analysis (top 
20 terms ranked by statistical significance). (D) KEGG pathway enrichment analysis (top 20 terms ranked by statistical significance). (E) The 
interaction of BPs and their associated CRGs. (F) The interaction of KEGG signaling pathways and their associated CRGs. (G) Gene set 
enrichment analysis (GSEA) on BPs associated with circadian rhythm. (H) Gene set enrichment analysis (GSEA) on a KEGG pathway associated 
with circadian rhythm. (I) The PPI network of 125 melanoma-related CRGs. Nodes are colored by degree, with redder colors indicating higher 
degree centrality within the network. 
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GESA analysis further highlighted the significant roles 
of circadian-associated biological processes and 

pathways in melanoma. As shown in Figure 4G, 4H, 
four circadian-related BPs (GOBP ENTRAINMENT 
OF CIRCADIAN CLOCK, GOBP REGULATION  

OF CIRCADIAN RHYTHM, GOBP CIRCADIAN 
RHYTHM, GOBP CIRCADIAN REGULATION OF 

GENE EXPRESSION) and one KEGG pathway 
(KEGG CIRCADIAN RHYTHM) were significantly 
upregulated in the tumor tissues. In addition, we 

evaluated the interactions between these melanoma-
related CRGs by establishing a PPI network. The results 
showed these melanoma-related CRGs were highly 

interconnected. Genes including CDK2, AR, CDK4, 
CEBPA, and CXCL8 occupied central positions in the 

network control, implying their potential regulatory 
interactions with numerous genes in the PPI network 
(Figure 3I). 

 
Identification of key CRGs associated with 

melanoma 

 
Three machine learning algorithms including LASSO 

regression, SVM-RFE, and random forest were utilized 
to select key CRGs from the 125 melanoma-related 
CRGs. Firstly, SVM-RFE analysis identified 20 feature 

CRGs whose classification model achieved 92.9% 
accuracy in evaluating melanoma samples (Figure 4A). 
Then, random forest algorithm was used to select  

and rank CRGs by importance. The top 20 CRGs by 
importance ranking were selected as key genes under 
random forest analysis (Figure 4B). Further, a LASSO 

regression model was constructed based on melanoma 
tissue and normal skin tissue samples. When λ was set 

as 0.04, 20 feature CRGs were selected and the LASSO 
model constructed using these CRGs could accurately 
distinguish melanoma from normal skin (Figure 4C). 

Finally, by comparing the feature genes identified by 
the three machine learning approaches, six common key 
CRGs were identified as melanoma-related key CRGs, 

including ABCC2, CA14, EGR3, FBXW7, LDHB, and 
PSEN2 (Figure 4D). 

 
Expression and ROC analysis of key CRGs 

 

The expression of key CRGs was examined in the 
training set (combined GSE15605 and GSE114445 
datasets) and validation sets (GSE15605, GSE114445 

and GSE46517 datasets) to investigate their expression 
in melanoma versus normal skin tissues, as well  
as evaluate their diagnostic value as melanoma 

biomarkers. As shown in Figure 5A–5D, compared  
to normal skin tissues, 4 key CRGs (ABCC2, CA14, 

LDHB, PSEN2) were significantly upregulated while  
2 key CRGs (EGR3, FBXW7) were significantly 
downregulated in melanoma tissues. ROC analysis 

demonstrated that in each dataset, all key CRGs had  
an AUC>0.7, indicating these key CRGs have good 

ability to distinguish melanoma from normal skin 
tissues (Figure 5E–5H). 
 

Prognostic analysis of key CRGs 

 

Further prognostic analysis of key CRGs was performed 
based on the TCGA dataset. Kaplan-Meier survival 
curve analysis showed all key CRGs were closely 

associated with prognosis in melanoma patients. 
Specifically, high expression of 4 key CRGs (ABCC2, 
CA14, LDHB, PSEN2) was significantly correlated 

with poor prognosis in melanoma patients (HR>1, 
P<0.05), while low expression of 2 key CRGs (EGR3, 

FBXW7) was significantly associated with poor 
prognosis (HR<1, P<0.05) (Figure 6A–6F). 
 

Subsequently, multivariate Cox regression analysis 
was conducted on the 6 prognosis-related key CRGs  
in the TCGA-melanoma cohort to construct a  

prognostic risk model based on their weighted 
regression coefficients. The risk score for each  

patient was calculated as follows: Risk Score = 
(0.0320×ABCC2) + (0.0005×CA14) + (-0.0146×EGR3) 
+ (-0.1551×FBXW7) + (0.0010×LDHB) + 

(0.0073×PSEN2). According to the median value of 
risk scores, the TCGA cohort was classified into  
high-risk and low-risk groups. As shown in Figure  

7A, the expression levels of the 6 key CRGs were 
displayed along with the risk score distribution and 
survival status of all patients. Kaplan-Meier analysis 

revealed that patients in the high-risk group had 
significantly poorer prognosis compared to the low-

risk group (Figure 7B). The ROC results showed that 
this prognostic model achieved AUC of 0.72, 0.76 and 
0.80 for predicting 3-, 5- and 10-year overall survival 

of patients, respectively (Figure 7C). Similarly, risk 
scores were calculated for patients in the validation 
cohort (GSE65904), and no significant difference in 

prognosis was found between the high- and low-risk 
groups (Figure 7D). The risk score model achieved 

AUC of 0.64, 0.71 and 0.71 for predicting 3-, 5- and 
10-year overall survival (Figure 7E). These results 
indicated this prognostic model had good predictive 

performance. 
 
We next investigated the correlation between the risk 

score and clinicopathological features of patients in  
the TCGA cohort, including age, gender, stage, T 
classification, N classification and M classification. The 

risk score exhibited significant positive correlations with 
advanced T classification (P=0.02) (Figure 8A–8D).  

 
Univariate and multivariate Cox regression analyses 
integrating clinical variables (age, sex, stage, T, N and 
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Figure 4. Identification of melanoma-related key CRGs by machine learning approaches. (A) Feature CRG selection using SVM-RFE 
algorithm. (B) Importance ranking of CRGs using a random forest algorithm. The top 20 CRGs ranked by importance were selected as feature 
genes. (C) Selection of melanoma-associated feature genes using LASSO regression model. (D) Identification of melanoma-related key CRGs. 
The overlapping feature genes (CRGs) from the three machine learning approaches were defined as melanoma-related key CRGs. 
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M classification) and risk score identified T 
classification, N classification and risk score as 

independent prognostic factors (Figure 8E, 8F). 
Therefore, a nomogram was constructed by integrating 
T classification, N classification and risk score to 

predict patients’ survival probability (Figure 8G). The 
calibration curve verified high prediction accuracy  

of the nomogram, which achieved AUC of 0.83, 0.84 
and 0.88 for predicting 3-, 5- and 10-year overall 
survival, respectively (Figure 8H). Compared with risk 

score alone, the nomogram had higher AUC values, 
indicating that the risk score had better predictive 
potential when combined with clinical factors. 

DISCUSSION 
 

The circadian system comprises a central clock in  
the suprachiasmatic nucleus of the brain and  
peripheral clocks in tissues throughout the body.  

The suprachiasmatic nucleus functions as the  
master regulator, synchronizing circadian rhythms in 

peripheral clocks. Light is the major cue that entrains 
the suprachiasmatic nucleus to the light-dark cycle via 
retinal signals. At a molecular level, circadian rhythms 

are controlled by transcriptional-translational feedback 
loops involving circadian rhythms genes (CRGs, also 
called clock genes) such as Period, Cryptochrome, 

 

 
 

Figure 5. Expression and ROC analysis of key CRGs. (A) Expression comparison of key CRGs between melanoma and normal tissues in 
the training set (combined GSE15605 and GSE114445 datasets). (B) Expression comparison of key CRGs between melanoma and normal 
tissues in GSE15605 dataset. (C) Expression comparison of key CRGs between melanoma and normal tissues in GSE114445 dataset. (D) 
Expression comparison of key CRGs between melanoma and normal tissues in GSE46517 dataset. (E) ROC curves of key CRGs in the training 
set. (F) ROC curves of key CRGs in GSE15605 dataset. (G) ROC curves of key CRGs in GSE114445 dataset. (H) ROC curves of key CRGs in 
GSE46517 dataset. 
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Figure 6. Kaplan-Meier survival curve analysis of 6 key CRGs. (A–F) Kaplan-Meier survival curves of (A) ABCC2, (B) CA14, (C) EGR3,  
(D) FBXW7, (E) LDHB, and (F) PSEN2, respectively. 

 

 
 

Figure 7. Construction and validation of the prognostic model. (A) Heatmap of key CRG expression and related risk score 

ranking and survival status distribution of patients. (B) Kaplan-Meier curves comparing high- and low-risk groups in the TCGA-melanoma 
cohort. (C) ROC curves of the prognostic model for predicting 3-, 5- and 10-year overall survival in TCGA-melanoma cohort. (D) Kaplan-
Meier survival curve analysis in GSE65904 dataset. (E) ROC curves of the prognostic model for predicting 3-, 5- and 10-year overall survival 
in GSE65904 dataset. 
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Bmal1 and Clock [6]. These CRGs regulate their  
own expression levels in cycles of approximately  

24 hours. They also control the expression of other 
genes involved in many biological processes, such as 
cell cycle transition, DNA damage response and cell 

death process [14]. Epidemiological and experimental 
evidence indicates that circadian disruption leads to 

various diseases including mental illness, metabolic 
syndrome, obesity and cancer, directly linked to 

abnormal expression of clock genes [15, 16]. As the 
primary barrier to the external environment, the skin  

is directly influenced by cues like light and plays  
an important role in regulating circadian rhythms.  
Studies have demonstrated sustained expression of 

circadian clock genes in the skin [10]. As a common 
skin malignancy, melanoma is closely associated with 

circadian mechanisms [7–9]. Circadian disruption 
impairs immune responses and DNA repair in 

 

 
 

Figure 8. Construction and evaluation of the nomogram. (A–D) Correlation between stage, Node (N), Metastasis (M) classification, 
Tumor (T) and risk score. (E) Univariate Cox regression analyses of clinical features and risk score. (F) Multivariate Cox regression analyses of 
clinical features and risk score. (G) Construction of the nomogram by integrating T classification, N classification and risk score to predicting  
3-, 5- and 10-year overall survival probabilities in melanoma patients. (H) Calibration curve of the nomogram depicting the agreement 
between nomogram-predicted and observed 3-, 5-, and 10-year overall survival. (I) ROC curves evaluating the sensitivity and specificity of the 
nomogram for predicting 3-, 5-, and 10-year overall survival of melanoma patients. 
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melanocytes, increasing melanoma risk [7]. In mela-
noma, disturbed circadian rhythms promote abnormal 

proliferation and metastasis, facilitating melanoma 
development [8]. In addition, circadian rhythm disorder 
can also induce remodeling of melanoma-related 

immune microenvironment to facilitate tumor growth 
[9]. Currently, abnormal circadian gene expression and 

mutations are thought to underlie the relationship 
between circadian mechanisms and melanoma [17].  
For example, Lengyel et al. found circadian genes per1, 

per2, clock, and cry1 significantly downregulated in 
melanoma tissue compared to normal skin [18]. The 
clock gene RORA is also significantly downregulated  

in melanoma and its low expression correlates with  
poor prognosis [19]. Compared to healthy individuals, 

melanoma patients show significant RORA gene 
mutations. Benna C et al. [17] identified two specific 
RORA single nucleotide polymorphisms (SNP) may 

influence melanoma susceptibility. Another study  
found two RORA SNPs (RORA rs782917 G > A, 
RORA rs17204952 C > T) associated with poor 

melanoma prognosis [20]. As a key circadian regulator 
in melanoma, downregulation of BMAL1 facilitates 

melanoma growth and metastasis, and compromises 
patient survival [21, 22]. These findings indicate 
circadian clock genes have excellent potential as 

diagnostic and prognostic biomarkers in melanoma and 
may serve as therapeutic targets. 
 

In our study, we systematically investigated circadian 
rhythm gene (CRG) expression, functions, and impacts 
on melanoma development and prognosis. We identified 

125 CRGs associated with melanoma. These genes were 
mainly enriched in circadian rhythm related pathways 

and biological processes, and involved in other signaling 
pathways including Cellular senescence, NF-kappa  
B signaling pathway, etc.  As discussed above, cellular 

senescence, NF-kappa B signaling pathway and other 
signaling pathways are also important mechanisms in 
melanoma. Like the CRGs discussed above, signaling 

pathways such as Cellular senescence and NF-kappa  
B signaling pathway are important mechanisms in 

melanoma. For example, studies have shown that the 
continuous accumulation of senescent melanocytes, 
fibroblasts, keratinocytes and immune cells in skin  

can promote melanoma pathogenesis and affect 
treatment, which is related to immune system aging [23]. 
Senescence inhibition therapy reduced tumor volumes 

and extended survival in a mouse melanoma model  
[23]. NF-kappa B signaling pathway plays an important 
role in melanoma, promotes melanoma cell proliferation, 

survival, invasion, and microenvironment formation  
[24]. Notably, circadian rhythm disruption can activate 

cellular senescence [25] and NF-kappa B signaling 
pathways [26], further indicating circadian mechanisms’ 
importance in melanoma. 

By machine learning algorithms, we identified  
6 key CRGs (ABCC2, CA14, EGR3, FBXW7, LDHB, 

and PSEN2) closely associated with melanoma.  
Among them, 4 key CRGs (ABCC2, CA14, LDHB, 
PSEN2) were significantly upregulated and 2 key CRGs 

(EGR3, FBXW7) were significantly downregulated  
in melanoma tissues. These key CRGs effectively 

differentiated melanoma from normal tissue and  
were significantly associated with patient prognosis, 
suggesting that they may serve as promising diagnostic 

and prognostic biomarkers. As important components  
of the circadian rhythm mechanism, these key CRGs  
are implicated in various biological processes related  

to tumorigenesis including cell proliferation, apoptosis, 
cell cycle control, metabolism and signal transduction. 

ABCC2 (ATP Binding Cassette Subfamily C Member 
2), also known as multidrug resistance-associated 
protein 2 (MRP2), is a protein encoded by the human 

ABCC2 gene that mainly participates in intracellular 
drug transport and metabolism. High levels of ABCC2 
expression in melanoma cells and other cancer cells  

can lead to increased resistance to chemotherapy drugs, 
thus reducing treatment efficacy and leading to poorer 

prognosis [27–29]. CA14 (Carbonic Anhydrase 14)  
is a carbonic anhydrase that is primarily involved in 
physiological processes including acid-base balance,  

ion transport, water metabolism and thyroid hormone 
synthesis. Studies have found that overexpression of 
CA14 is related to the development and progression  

of tumors such as breast cancer, prostate cancer, and 
non-small cell lung cancer [30, 31]. Lee S showed that 
CA14 can inhibit breast cancer growth and improve 

breast cancer patient survival by reducing tumor 
microenvironment acidity and promoting immune 

infiltration [30]. However, there have been no studies 
on the role of CA14 in melanoma. This study first 
discovered CA14 as a risk factor for melanoma 

development and prognosis. EGR3 (Early Growth 
Response Gene 3) is an important circadian rhythm 
gene mainly expressed in the skin and brain, plays a 

crucial role in regulating sleep-wake cycles [32–34]. 
Downregulation of EGR3 has been identified as a risk 

factor for various types of cancer, including gastric and 
prostate cancers [35–37]. This study first found EGR3 
is downregulated in melanoma, and its low expression 

significantly impairs survival prognosis in melanoma 
patients. FBXW7 (F-box and WD Repeat Domain 
Containing 7) is a gene encoding a protein that belongs 

to the F-box protein family, plays an important role in 
regulating circadian rhythm by enhancing the amplitude 
of clock gene transcription through regulating the 

degradation of REV-ERBα [38]. Low expression  
of FBXW7 is significantly associated with poor 

prognosis in melanoma patients [39]. Lee et al. [40] 
found FBXW7 interacts with STAT2 and induces 
STAT2 instability through the ubiquitination-mediated 
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proteasomal degradation pathway, thereby inhibiting 
melanoma growth. Aydin et al. [41] showed that FBXW7 

mutations and inactivation lead to sustained NOTCH1 
activation, promoting angiogenesis in melanoma. 
FBXW7 can exert anti-melanoma effects by regulating 

various oncogenes including c-Myc and p53 [42]. 
FBXW7 also inhibits the MITF/PGC-1α pathway, 

thereby suppressing melanoma cell proliferation relying 
on mitochondrial oxidative metabolism [43]. Down-
regulation of FBXW7 has been observed in breast, 

gastric and pancreatic cancers, where its low expression 
associates with unfavorable prognosis [44–46]. As in 
melanoma, FBXW7 exhibits anti-tumor activities in 

other cancers by regulating oncogenes such as c-Myc 
and p53 [47, 48]. Mori et al. [49]. showed that FBXW7 

inhibits malignant proliferation and migration of 
cholangiocarcinoma cells and enhances their sensitivity 
to cisplatin chemotherapy, by modulating NOTCH1 and 

MCL1 expression. As a key enzyme in lactate generation 
during glycolysis, LDHB (lactate dehydrogenase B 
subunit) encoded by the LDHB gene is regulated by  

the circadian Chrono-Bmal1 pathway, linking circadian 
disruption with aberrant glucose metabolism and  

lactate production [50]. LDHB can provide energy for 
melanoma cell growth through the glycolysis pathway 
[51], and its high expression could lead to poor 

prognosis of melanoma patients [52]. LDHB is silenced 
by promoter methylation in several cancer types, yet 
overexpressed in most other cancers [53]. LDHB 

overexpression has been identified as an unfavorable 
prognostic marker in lung, liver and breast cancers. 
Knocking down LDHB can inhibit cancer progression 

in these malignancies [54]. Aside from driving 
glycolysis, LDHB has also been found to induce 

pancreatic cancer cell immortalization by activating 
telomerase [55]. PSEN2 (Presenilin 2) is a gene 
encoding the transmembrane proteinase γ-secretase 

subunit, is involved in regulating the immune system’s 
function in the circadian rhythm mechanism by 
regulating the expression level of REV-ERBα [56]. 

Abnormal high expression of PSEN2 is considered a 
negative factor in the development and progression of 

certain cancers such as gastric cancer [57], glioblastoma 
[58], and ovarian cancer [59]. RNAi-mediated PSEN2 
inhibition was found to suppress glioma cell growth  

and invasion by regulating Nrg1/ErbB signaling [60]. 
Compared to wild-type mice and control lung cancer 
cells, PSEN2 knockout mice and PSEN2 knockout lung 

cancer cells displayed tumor suppressive effects. The 
mechanisms involve increased DNA binding activity  
of NF-κB, STAT3 and AP-1, as well as upregulated 

expression and activity of iPLA2 [61]. Our study is  
the first to elucidate the significance of PSEN2 in 

melanoma diagnosis, prognosis and treatment. Overall, 
these six key CRGs can serve as effective biomarkers 
for melanoma diagnosis and prognosis evaluation and 

may become new therapeutic targets for melanoma 
treatment. Furthermore, to better predict the survival 

prognosis of melanoma patients, a multivariate Cox 
prognostic model based on these 6 key CRGs was 
constructed. The risk score calculated by this model can 

accurately predict the survival time of melanoma 
patients. The construction of a nomogram will provide a 

better predictive tool for the diagnosis and prognosis 
evaluation of melanoma. 
 

CONCLUSIONS 
 

In this study, we comprehensively analyzed the roles  

of circadian rhythm genes in the pathogenesis and 
prognosis of melanoma using bioinformatics and 

machine learning methods. We identified 125 CRGs 
associated with melanoma development, which were 
mainly involved in biological function like circadian 

rhythm. Three machine learning algorithms were 
utilized to identify 6 key CRGs (ABCC2, CA14, EGR3, 
FBXW7, LDHB, and PSEN2) relevant to diagnosis  

and prognosis. These key genes were differentially 
expressed between melanoma and normal skin tissues, 

and may serve as potential diagnostic and prognostic 
biomarkers. The risk score model and nomogram 
constructed based on the key CRGs could effectively 

predict survival of melanoma patients, providing 
references for individualized treatment. Our research 
provides a deeper understanding of the role of circadian 

rhythm mechanisms in melanoma pathogenesis and  
the identification of potential therapeutic targets. 
However, further experimental validation is still needed 

to determine whether these key genes can become new 
diagnostic markers or therapeutic targets for melanoma. 

Overall, our study provides a basis for further clarifying 
the relationship between melanoma and circadian 
rhythm and developing novel targeted diagnosis and 

treatment. 
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Supplementary Table 1. List of 1,471 CRGs obtained from the MSigDB and Genecards databases. 

 

Supplemental Table 2. Hub genes-WGCNA. 


