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INTRODUCTION 
 

Parkinson’s disease (PD) is a common neurodegenerative 

disease in older adults and characterized by a range of 

clinical manifestations. These include motor symptoms 

like resting tremor, bradykinesia, myotonia, and postural 

balance disorder, besides non-motor symptoms such as 

sleep disturbances, olfactory dysfunction, gastrointestinal 

issues, mood disorders, and cognitive impairment [1, 2]. 

Despite these well-recognized symptoms, PD is con-

sidered as a multifactorial disease, because of its 

complexity etiology [3, 4]. 

The diagnosis of Parkinson’s disease (PD) pre-

dominantly relies on clinical features, posing significant 

challenges for achieving precision in diagnosis. Despite 

extensive research directed towards the exploration of 

potential biomarkers such as neuroimaging, cerebro-

spinal fluid (CSF) analysis, serum, and saliva 

biomarkers, the quest for reliable biomarkers for PD 

diagnosis remains lacking [5–7]. Hence, the study of 

potential biomarkers and the elucidation of their 
molecular mechanisms stand as necessary things in 

advancing the diagnosis and treatment of Parkinson’s 

disease (PD). 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

Aging-related biomarkers for the diagnosis of Parkinson’s disease 
based on bioinformatics analysis and machine learning 
 

Weiwei Yang1, Shengli Xu1, Ming Zhou1, Piu Chan1,2,3 
 
1Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, National 
Clinical Research Center for Geriatric Disorders, Beijing, China 
2Clinical Center for Parkinson’s Disease, Capital Medical University, Beijing, China 
3Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for 
Parkinson’s Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China 
 
Correspondence to: Piu Chan; email: chenbiao@xwhosp.org 
Keywords: Parkinson’s disease, aging, nomogram, machine learning algorithms, diagnostic biomarker 
Received: October 23, 2023        Accepted: April 22, 2024 Published: September 10, 2024 

 
Copyright: © 2024 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author 
and source are credited. 

 

ABSTRACT 
 

Parkinson’s disease (PD) is a multifactorial disease that lacks reliable biomarkers for its diagnosis. It is now clear 
that aging is the greatest risk factor for developing PD. Therefore, it is necessary to identify novel biomarkers 
associated with aging in PD. In this study, we downloaded aging-related genes from the Human Ageing Gene 
Database. To screen and verify biomarkers for PD, we used whole-blood RNA-Seq data from 11 PD patients and 
13 healthy control (HC) subjects as a training dataset and three datasets retrieved from the Gene Expression 
Omnibus (GEO) database as validation datasets. Using the limma package in R, 1435 differentially expressed 
genes (DEGs) were found in the training dataset. Of these genes, 29 genes were found to occur in both DEGs and 
307 aging-related genes. By using machine learning algorithms (LASSO, RF, SVM, and RR), Venn diagrams, and 
LASSO regression, four of these genes were determined to be potential PD biomarkers; these were further 
validated in external validation datasets and by qRT-PCR in the peripheral blood mononuclear cells (PBMCs) of 
10 PD patients and 10 HC subjects. Based on the biomarkers, a diagnostic model was developed that had reliable 
predictive ability for PD. Two of the identified biomarkers demonstrated a meaningful correlation with immune 
cell infiltration status in the PD patients and HC subjects. In conclusion, four aging-related genes were identified 
as robust diagnostic biomarkers and may serve as potential targets for PD therapeutics. 
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Most studies on this topic have been on utilizing 

cerebrospinal fluid (CSF) samples from patients to assess 

biomarkers associated with Parkinson’s disease (PD) 

progression and severity [8]. However, the using of CSF-

based biomarkers remains constrained due to the 

invasive nature of sample collection, necessitating 

skilled health worker, and posing risks. Consequently, 

exploring blood-based biomarkers presents a 

compelling alternative, offering advantages in terms of 

simplicity, reduced discomfort, and decreased risk. PD 

exhibits considerable heterogeneity, with only a 

minority of cases attributed to causal monogenetic 

mutations, while a majority are associated with multiple 

low-risk genetic loci, collectively contributing to 

sporadic PD [9]. Despite the modest effect size of 

individual loci, their cumulative impact substantially 

elevates PD risk [10]. Notably, these genetic variations 

primarily modulate gene expression rather than altering 

protein characteristics [11]. Both monogenetic and 

sporadic forms of PD manifest in the hallmark neuronal 

loss in the substantia nigra (SN) and the aggregation of 

misfolded α-synuclein in Lewy bodies. The age-related 

rise in PD incidence underscores the accrual of genetic 

alterations through dysregulated gene expression over 

time [12]. Traditionally conceptualized as a disorder 

affecting specific neuronal populations, PD poses 

challenges in procuring brain tissue for transcriptomic 

analyses. However, intriguingly, emerging evidence 

suggests that the gene expression profile in peripheral 

blood exhibits remarkable similarity to that of the brain 

[13, 14]. 

 

Therefore, differential expression analysis of genes 

(DEGs) in the peripheral blood of PD patients holds 

promise as ideal biomarkers—measuring them would be 

safe, less invasive, cost-effective, and expeditious, 

ensuring minimal discomfort for patients. Identifying 

DEGs in blood could serve as a valuable tool for 

elucidating the multifaceted molecular alterations 

characteristic of PD, potentially offering diagnostic and 

prognostic insights, as well as guiding therapeutic 

interventions. Thus, we sought to measure the whole-

blood RNA levels of idiopathic PD patients and control 

subjects using high-throughput sequencing. 

 

In recent years, the advent of high-throughput se-

quencing technologies has facilitated the identification of 

gene expression signatures, underlying biological 

processes, and potential therapeutic targets in 

Parkinson’s disease (PD). Notably, whole-genome 

sequencing was first employed in 2014 to compre-

hensively catalog all long noncoding RNAs (lncRNAs) 

present in PD patients, revealing aberrant expression 

patterns in at least 6000 distinct lncRNAs [15]. 

Bioinformatics methods can be used to efficiently 

analyze biological data, identifying candidate genes or 

gene sets relevant to the onset and progression of 

diseases, followed by experimental verification. 

 

Aging stands as the primary risk factor for Parkinson’s 

disease (PD), implying that mechanisms driving the 

aging process likely contribute to PD neurodegeneration 

[16]. Multiple lines of evidence imply the association 

between aging and PD. Firstly, characteristic features of 

brain aging, including mitochondrial dysfunction, 

oxidative stress [17, 18], disruptions in protein 

homeostasis [19], and neuroinflammation [20], are 

intricately linked to the pathogenesis of PD. Secondly, 

mutations responsible for monogenic forms of PD may 

be present from conception but typically manifest 

clinically only after a period of aging [16, 21]. Lastly, 

interventions aimed at extending lifespan through 

genetic, dietary, or pharmacological means often 

demonstrate a protective effect against PD-related 

neurodegeneration [22]. These observations highlight the 

central role of aging in the development of PD and 

suggest that advancements in our understanding of the 

biology of aging could offer novel insights into the 

underlying mechanisms of PD pathophysiology. 

 

In recent years, significant research progress has  

been made in identifying biomarkers associated with 

aging-related neurodegenerative disorders through 

comprehensive bioinformatics analyses [23–25]. 

However, the availability of diagnostic biomarkers for 

Parkinson’s disease (PD) based on aging-related genes 

remains limited. Concurrently, the rapid advancement of 

artificial intelligence has facilitated the utilization of 

machine learning algorithms, including Support Vector 

Machine (SVM), Least Absolute Shrinkage and 

Selection Operator (LASSO), Random Forest (RF), and 

Ridge Regression (RR), for the identification of key 

diagnostic biomarkers in neurodegenerative diseases. 

 

Therefore, we use bioinformatic analyses and machine 

learning algorithms to identify potential diagnostic 

biomarkers for PD. Through this methodology, we 

pinpointed four aging-related genes with promising 

diagnostic utility in PD. Furthermore, we constructed 

molecular regulatory networks associated with these 

diagnostic biomarkers, thereby laying a foundation for 

elucidating the molecular mechanisms for PD 

pathophysiology. 

 

RESULTS 
 

DEGs involved in PD 

 

Using a cutoff threshold of |logFC| >1 and p-value < 0.05 

for self-test RNA-Seq data from 11 PD patients and 13 

HC subjects, a total of 1435 DEGs were identified in the 

training dataset. Among the DEGs, 842 genes were found 
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to be upregulated and 593 genes downregulated in PD 

patients (Figure 1A). The expression levels of these 

DGEs were visualized using a heatmap (Figure 1B). To 

elucidate the biological function of these DEGs, Gene 

Ontology (GO) term enrichment analysis was conducted, 

including analysis for enriched BP, MF, and CC. 

Furthermore, KEGG pathway enrichment analysis was 

performed to delineate the potential involvement of these 

DEGs in specific biological pathways (Figure 1C). The 

KEGG results illustrated that the upregulated genes were 

mainly enriched in the thermogenesis, Huntington’s 

disease, oxidative phosphorylation, Parkinson’s disease, 

and ribosome pathways. However, the downregulated 

genes were enriched in the measles, Staphylococcus 
aureus infection, phagosome, leishmaniasis, and 

osteoclast differentiation pathways. Using the Human 

Ageing Gene Database, 307 aging-related genes were 

obtained. The overlap between DEGs from the RNA-Seq 

data and the aging-related genes were visualized in a 

Venn diagram (Figure 1D). Finally, 29 genes that were 

found in both sets were identified as potential diagnostic 

biomarkers. Using the STRING database, we studied the 

PPI network of above genes, and Cytoscape V3.9.1 was 

applied to visualize the network (Figure 1E). The MXD1 

gene had no significant network connections and was 

thus excluded from subsequent studies. 

 

Identification and validation of optimal biomarkers 

in PD 

 

In the study, 12 genes were identified as potential 

diagnostic biomarkers from the modules using the RR 

algorithm (Figure 2A). Additionally, using the LASSO  

regression algorithm, eight genes were identified from 

the selected modules as potential diagnostic biomarkers 

(Figure 2B). The RF algorithm identified 15 potential 

diagnostic biomarkers (Mean Decrease Gini >0.2; Figure 

2C). Through the application of the SVM-RFE 

algorithm, 17 genes were identified as potential 

diagnostic biomarkers from the modules (Figure 2D). 

Subsequently, through a Venn diagram analysis, six 

genes (EGF, BRCA1, CLU, LEPR, CHEK2, and APP) 

were found to be overlapping and thus identified as 

robust diagnostic biomarkers (Figure 2E). Following 

this, dimensionality reduction via LASSO regression led 

to the identification of four genes for the construction of 

a diagnostic model for PD (EGF, BRCA1, LEPR, and 

APP; p-value < 0.1; Figure 3A, 3B). 

 

The diagnostic performance of four potential diagnostic 

biomarkers was assessed through ROC curve analysis. 

The areas under the ROC curves for each gene were as 

follows: EGF (AUC = 0.86), APP (AUC = 0.71), LEPR 

(AUC = 0.8), and BRCA1 (AUC = 0.75). Upon 

combining all four potential diagnostic biomarker genes 

into a single diagnostic model, the AUC reached 0.98 in 

the training dataset. Subsequently, external validation of 

the diagnostic efficacy of these four genes was conducted 

using GSE20163, GSE49036, and GSE20141 datasets. 

The results revealed a notable difference in BRCA1 

expression in the GSE20163, GSE49036 datasets (Figure 

3C, 3D) and good diagnostic accuracy for the detection 

of PD: in GSE20163, AUC = 0.833 and in GSE49036, 

AUC = 0.792. In data from GSE20141, only EGF 

showed high expression in the PD group and good 

prediction efficacy (AUC = 0.725; Figure 3E). 

 

 

 
 

 

Figure 1. Identification of aging-related differentially expressed genes (DEGs) in the training dataset. (A) Volcano plot of the 

DEGs. (B) Heatmap of the DEGs. (C) Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of 
overexpressed and underexpressed DEGs. (D) Intersection of aging-related genes and DEGs. (E) Protein-protein interaction (PPI) network 
analysis reveals that 28 genes interact with each other. 
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Figure 2. Identification of the potential diagnostic biomarkers from the selected modules. (A) Ridge Regression analysis (RR). (B) 

Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. (C) Random Forest (RF) analysis. (D) Support Vector Machine 
(SVM) analysis. (E) Venn plot exhibiting the biomarkers that were identified by all four algorithms. 

 

 
 

Figure 3. Verification of the identified potential diagnostic biomarkers. (A) Least Absolute Shrinkage and Selection Operator (LASSO) 

regression analysis identified four potential diagnostic biomarkers (p-value < 0.1). (B) Receiver operating characteristic (ROC) curves for 
evaluating the diagnostic ability of the four genes separately or combined in a training cohort. (C, D) Box plots for the differential expression 
analyses of BRCA1 in the validation datasets GSE20163 and GSE49036. ROC curves for evaluating the diagnostic ability of BRCA1 in the 
validation datasets. (E) Box plots for the differential expression analysis of EGF in the validation dataset GSE20141. ROC curves for evaluating 
the diagnostic ability of EGF in GSE20141. 
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PPI network of four potential diagnostic biomarkers 

in PD and enrichment analysis 

 

Next, to investigate the potential mechanisms underlying 

the contribution of the four potential diagnostic 

biomarker genes to the occurrence of PD, we utilized the 

GeneMANIA online tool to construct a PPI network for 

these genes. The result is shown in Figure 4. As vividly 

shown in the figure, BRCA1 had a strong physical 

interaction with EGFR, which is crucial for susceptibility 

to PD in the Han Chinese population [26]. Furthermore, 

BRCA1 was predicted to have a significant association 

with PARD1 and TP53BP1. Pearson analysis was used 

to carry out the GSEA enrichment difference analysis in 

the human KEGG biological pathway set. The analysis 

revealed positive associations between the four potential 

diagnostic biomarker genes and the extracellular matrix 

(ECM)-receptor interaction and focal adhesion KEGG 

pathways. However, the analysis demonstrated negative 

associations between the four genes and the tricarboxylic 

acid cycle and ribosome KEGG pathways, as illustrated 

in Figure 5. Furthermore, we utilized SigCom LINCS  

to predict drugs targeting these biomarkers. The top 20 

molecules related to expression regulation enriched for 

the four potential diagnostic biomarker genes (z-score 

>3, p-value < 0.05) in seven cell lines are shown in 

Figure 6. 

 

Construction and evaluation of a nomogram model 

for PD diagnosis 

 

The Rms R package was utilized to develop a nomogram 

model for PD diagnosis, basing upon four genes (EGF, 

APP, BRCA1, and LEPR) in three validation datasets, as 

illustrated in Figure 7. Subsequently, a calibration curve 

was employed to assess the predictive performance of the 

nomogram model. The calibration curve revealed 

minimal discrepancy between the actual PD risk and the 

predicted risk, indicating high accuracy in PD prediction 

by the nomogram model, with a C-index of 0.887, 0.858, 

and 0.861 in GSE20141, GSE49036, and GSE20163, 

respectively (Figure 7). The Decision curve analysis 

(DCA) depicted that the nomogram curve surpassed the 

gray line as well as the individual curves for EGF, 

BRCA1, LEPR, and APP. This indicates that patients 

could derive greater benefit from the nomogram model 

 

 

 
Figure 4. Protein-protein interaction network for the four potential diagnostic biomarkers constructed in GeneMANIA. 
Different colors of the network edge indicate the bioinformatics method applied: physical interaction, coexpression, predicted, colocalization, 
pathway, genetic interaction, and shared protein domains. 
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across a high-risk threshold ranging from 0 to 1, exhibiting 

its superior clinical utility compared to individual gene-

based models in all three validation datasets (Figure 7). 

Furthermore, to provide a more visual evaluation of the 

clinical impact, a clinical impact curve was plotted based 

on the DCA curve. The “Number high risk” curve closely 

aligned with the “Number high risk with event” curve 

across a high-risk threshold from 0.3 to 1, signifying the 

nomogram model’s exceptional predictive power (Figure 

7). These findings suggest that the four potential 

diagnostic biomarker genes may indeed play a crucial role 

in the pathogenesis of PD. To further investigate their 

potential reliability as diagnostic biomarkers, expression 

levels of four genes were assessed via qRT-PCR in an 

independent cohort consisting of 10 PD patients and 10 

HC subjects. The main clinical characteristics of both 

groups are summarized in Table 1. The results revealed 

that compared to the HC group,  PD patients  exhibited 

 

 
 

Figure 5. Enrichment analysis of the four potential biomarker genes according to gene set enrichment analysis (GSEA) in the 
training dataset. (A) Pathways enriched in EGF-mediated signaling, (B) BRCA1-mediated signaling, and (C) signaling by APP in Parkinson’s 

disease (PD). (D) Signaling by LEPR in PD. 

 

 
 

Figure 6. Prediction of drugs targeting the potential diagnostic biomarkers using SigCom LINCS. Top 20 small molecules related 
to expression regulation that are enriched for the four potential biomarker genes (z-score >3, p-value < 0.05) in seven cell lines. 
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Table 1. Demographic and cognitive assessment scores of participants. 

Characteristic HC, n = 10 PD, n = 10 P 

Age, yr 61.2 ± 12.6 56.7 ± 11.4 0.185 

Gender, M/F 43/49 54/38  

Education, yr 13.51 ± 6.72 11.93 ± 5.84 0.089 

MoCA, mean ± SD (range) 26.1 ± 1.3 (25–30) 25.2 ± 1.7 (24–30) 0.081 

BDI 4 ± 3 6 ± 3 0.332 

LEDD, mg — 484.87 ± 310.93  

PD duration, yr — 4.40 ± 3.59  

H&Y scores — 2.1 ± 0.7  

UPDRS III — 25 ± 8  

Abbreviations: BDI: Beck Depression Inventory; F: female; LEDD: mean L-dopa equivalent daily dose; M: male; MoCA: Montreal 
Cognitive Assessment; PD: Parkinson disease patients; UPDRS III: Unified Parkinson Disease Rating Scale, part III (motor). 
 

significantly higher expression levels of EGF, LEPR, and 

APP in their PBMCs (Figure 8A, 8B, 8D). However, 

BRCA1 was markedly decreased in PD patients (Figure 

8C). ROC curve analysis showed that the AUC for EGF, 

LEPR, APP, and BRCA1 was 0.810, 0.780, 0.790, and 

0.740, respectively, when distinguishing PD patients from 

HC subjects (Figure 8E). 

Correlation between the two biomarkers and immune 

cell infiltration 

 

There is substantial evidence suggesting that dys-

function of the immune system contributes to 

Parkinson’s disease (PD). This evidence comprises 

various investigation, including clinical and genetic 

 

 
 

Figure 7. Establishment of the diagnostic model in three validation datasets. Nomograms for the diagnostic model of Parkinson’s 

disease (PD), calibration curves, and decision curve analyses (DCAs) for the diagnostic model were constructed in (A) GSE20141, (B) GSE49036, 
and (C) GSE20163. 
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links between autoimmune disease and PD, impaired 

immune responses at the cellular and humoral levels in 

PD patients, imaging data revealing activation of 

inflammatory cells in affected brain regions, and 

observations of immune dysregulation in PD animal 

models [27, 28]. Therefore, we compared immune 

infiltration in PD patients and HC subjects. The ssGSEA 

algorithm was employed to assess the infiltration of 22 

immune cell types in each sample, with the results 

visualized in a heatmap (Figure 9A). Subsequently, the 

Wilcoxon test was applied to compare the expression 

levels of immune cells between PD patients and HC 

subjects. Notably, in Figure 9B, it is evident that resting 

mast cells and activated natural killer (NK) cells exhibited 

reduced expression in PD patients compared to HC 

subjects (p < 0.05). Furthermore, a correlation analysis 

revealed associations between the expression levels of 

two biomarker genes (BRCA1 and APP) and the presence 

of the two immune cell types (p < 0.1, |Coef| > 0.2). 

Specifically, APP showed a negative correlation with 

active NK cells (r = −0.38, p = 0.095), whereas BRCA1 

demonstrated a positive correlation with resting mast cells 

(r = 0.43, p = 0.056; Figure 9C, 9D). These findings 

suggest a potential regulatory role of these biomarkers in 

PD through interactions with the immune micro-

environment. 

 

DISCUSSION 
 

In this study, RNA-Seq data from 11 PD patients and 13 

HC subjects were analyzed using multiple bioinformatic 

approaches. A total of 593 downregulated genes and 842 

upregulated genes with differential expression between 

PD and HC were subjected to GO and KEGG analyses to 

elucidate their functional implications. GO analysis 

found that downregulated DEGs are enriched in the 

neutrophil activation and neutrophil-mediated immunity 

terms, indicating a potential involvement of 

inflammation in PD pathology. The inflammatory 

mechanisms implicated may include: (1) Abnormal 

aggregation of α-synuclein, leading to conformational 

changes that activate toll-like receptor 4 and 

subsequently trigger the release of numerous pro-

inflammatory cytokines. This cascade of events 

contributes to the pathogenesis of PD, (2) chronic 

peripheral inflammation and immune activation result in 

elevated levels of proinflammatory cytokines in PD 

patients. These cytokines may enter the brain through the 

traditional endocrine route or via direct transmission 

through the vagus nerve. Elevated cytokine levels can 

lead to disruption of the blood-brain barrier (BBB) by 

interacting with endothelial cells, facilitating the passage 

of proinflammatory cytokines across the BBB and into 

the brain. This process further promotes the development 

of PD [27]. Although KEGG pathway analysis indicates 

that DEGs are implicated in the developmental pathway 

of measles, substantial evidence suggests that many 

childhoods viral infections are correlated with a 

decreased risk of PD [29]. However, our KEGG analysis 

results revealed that the upregulated DEGs were notably 

enriched in pathways such as ribosome assembly, PD, 

and oxidative phosphorylation.

 

 
 

Figure 8. Validation of the four potential biomarkers in an independent cohort. Expression of (A) LEPR, (B) EGF, (C) BRCA1, and (D) 

APP in Parkinson’s disease (PD) patients and healthy control (HC) subjects. (E) Receiver operating characteristic (ROC) curves of the four genes 
for diagnosis. *p < 0.05. 

12198



www.aging-us.com 9 AGING 

In the pathological progress of PD, the abnormal 

expression of signaling pathways, metabolic re-

programming, and noncoding RNA can promote the 

transcriptional activity of RNA polymerase I, resulting in 

the over-activation of ribosomes [30]. Moreover, reactive 

oxygen species (ROS) play a pivotal role in PD 

development, leading to significant damage and death of 

dopamine cells. ROS are generated through various 

intracellular mechanisms, such as NADPH oxidase 

activation, mitochondrial dysfunction, and hydrogen 

peroxide (H2O2) breakdown [31]. 

 

Through four machine learning algorithms, we found 

aging-related DEGs, including BRCA1, CHEK2, CLU, 

APP, LEPR, and EGF, that served as robust diagnostic 

biomarkers. Then, using LASSO regression, we reduced 

dimensions and pinpointed four genes (EGF, BRCA1, 

LEPR, and APP) to create a diagnostic model for PD. 

Across various datasets, all four genes exhibited robust 

diagnostic efficacy, suggesting their potential as 

biomarkers for diagnosing PD. Notably, EGF’s 

expression serves as a neurotrophic factor in nigro-

striatal dopaminergic neurons [32, 33]. It enhances 

tyrosine hydroxylase expression, boosts dopaminergic 

turnover in the striatum, and prevents dopaminergic 

neuron degeneration [34]. Interestingly, the combination 

of IGF-1 and EGF in serum is found to be more useful 

for PD diagnosis than EGF alone. It is reported that EGF 

promote the survival and regeneration of dopaminergic 

neurons in the substantia nigra [34], the primary type  

of neuron lost in PD. The neuroprotective effects of  

EGF could be through activation of intracellular signaling

 

 
 

Figure 9. The relationship between diagnostic biomarkers and immune cell infiltration. (A) Heatmap of the infiltration proportions 

of 22 types of immune cells in Parkinson’s disease (PD) patients and healthy control (HC) subjects. (B) Box plots for the differential proportion 
analysis of two immune cell types in PD and HC samples. (C) Heatmap of the correlation between diagnostic biomarkers and immune cells. 
(D) Correlation between APP expression and activated natural killer (NK) cells and correlation between BRCA1 expression and resting mast 
cells. 
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pathways that inhibit apoptosis (programmed cell death) 

and promote cell survival, which might be potential 

mechanism of EGF in prodromal stage of PD. Mounting 

evidence indicates that BRCA1 plays a pivotal role in 

DNA damage and apoptosis induced by oxidative stress 

[35]. In mice with BRCA1 loss-of-function mutations, 

there is a notable increase in ROS levels [36, 37]. 

BRCA1’s main function is in DNA repair, specifically in 

the repair of double strand breaks through homologous 

recombination [35]. In neurodegenerative diseases like 

PD, DNA damage in neurons can accumulate over time, 

contributing to cell death and disease progression. 

BRCA1 might influence PD pathogenesis through its 

role in maintaining genomic integrity in neurons, 

potentially affecting the cells’ vulnerability to de-

generation. 

 

The protein leptin, encoded by the LEPR gene, acts as a 

key regulator of energy balance and feeding behavior, 

while also demonstrating neurotrophic effects during 

both perinatal central nervous system development and 

into adulthood [38]. Research by Ho et al. has revealed 

that leptin plays a protective role in neuronal SH-SY5Y 

cells against MPP+ toxicity, by sustaining ATP levels 

and mitochondrial membrane potential [39]. The 

observed upregulation of the LEPR gene suggests a 

potential activated feedback mechanism by neurons  

for protection, a hypothesis that warrants further 

investigation, particularly in larger PD cohorts [38]. 

LEPR mediates the actions of leptin, a hormone involved 

in regulating energy balance [39], but also implicated in 

inflammation and immunity [40]. In PD, inflammation is 

a key component of the disease’s progression, with 

activated microglia and astrocytes contributing to 

neuronal damage. Leptin, through LEPR, could modulate 

neuroinflammation, potentially exerting neuroprotective 

effects by reducing inflammatory responses in the brain 

or influencing energy metabolism in neurons, thereby 

affecting their survival, which might be potential 

mechanism of LEPR in pathology of PD. Existing data 

suggest that abnormalities in the metabolism of APP can 

contribute to mitochondrial dysfunction, leading to cell 

death [41]. Overexpression of APP can result in elevated 

levels of its metabolite, Aβ peptide, which can reach 

toxic levels. The toxicity of Aβ leads to the generation of 

ROS, induction of apoptosis, and impaired memory [42]. 

APP has been a focal point of research due to its potential 

role in causing mitochondrial dysfunction [43]. 

Additionally, APP is linked to dysfunctions in autophagy 

and apoptosis in neurodegenerative disorders [43]. In 

PD, while the primary focus has been on -synuclein, 

there’s evidence that A accumulation might also play a 

role in the PD pathophysiology [44], potentially through 
similar mechanisms of neurotoxicity, such as oxidative 

stress, mitochondrial dysfunction, and synaptic loss [43]. 

APP’s processing and the subsequent accumulation of 

A could therefore be a shared pathological feature in PD 

and Alzheimer’s disease. 

 

Our study measured RNA expression levels in whole 

blood, so the study better reflects the usefulness of the 

four potential biomarker genes in PD diagnosis. The 

results of qRT-PCR in our study revealed that APP, EGF, 

and LEPR were significantly upregulated and that 

BRCA1 was significantly downregulated in PD patients 

relative to HC subjects, indicating that the four aging-

related genes might be reliable diagnostic biomarkers. 

 

When comparing potential molecular biomarkers for 

Parkinson’s Disease (PD) like EGF, BRCA1, LEPR, and 

APP with recognized biomarkers, it’s essential to 

understand the context of their roles and advantages in 

PD. The recognized biomarkers for PD primarily involve 

-synuclein, LRRK2 gene mutations, and others that 

directly relate to the pathogenesis of PD. The new above 

potential candidates are implicated in a diverse range of 

biological processes and could offer new insights or 

advantages in understanding, diagnosing, or treating PD. 

EGF has been implicated in neurogenesis and neural 

repair. It can play a role in protecting dopaminergic 

neurons from degeneration [34], which is a hallmark of 

PD. If proven to be a reliable biomarker, EGF could serve 

as a tool for assessing the efficacy of therapies designed 

to enhance neuronal repair and survival. Additionally, it 

may offer insights into disease progression related to 

neuronal loss. While BRCA1 is well-known for its role in 

hereditary breast and ovarian cancer, there’s emerging 

evidence that it may also play a role in neuronal health, 

particularly in DNA repair mechanisms [35]. BRCA1 as 

a biomarker could indicate the integrity of DNA repair 

mechanisms in neurons, offering a novel therapeutic 

target or diagnostic criterion focusing on genomic 

stability in PD. Leptin is involved in energy homeostasis 

and has been shown to have neuroprotective effects. The 

leptin receptor’s role in PD could relate to metabolic 

changes or inflammation associated with the disease [40]. 

LEPR could offer insights into the metabolic and 

inflammatory aspects of PD, potentially leading to 

biomarkers that predict disease progression or response to 

therapies addressing these aspects. APP is famously 

associated with Alzheimer’s disease, but its role in PD 

might relate to A accumulation and its effects on 

neuronal health [44]. Understanding APP’s role in PD 

could lead to biomarkers for neurodegenerative processes 

that overlap with other conditions like Alzheimer’s, 

offering a broader approach to diagnosing and treating 

neurodegeneration. Compared to recognized PD 

biomarkers focused on the disease’s core patho-

physiological features (e.g., -synuclein aggregation), 

these candidates could provide a broader understanding 

of PD’s impact on neuronal health [45], metabolism [46], 

DNA repair [47], and amyloid processing [48]. They 
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might offer new avenues for therapeutic intervention, 

early detection, and monitoring of disease progression by 

targeting different aspects of the disease’s pathology. 

However, the utility of these potential biomarkers in PD 

still requires substantial research and validation to 

determine their effectiveness and advantages over 

existing markers. 

 

Through GSEA analysis, we discovered that the four 

potential diagnostic biomarker genes exhibit positive 

correlations with the ECM-receptor interaction pathway 

and the PI3K-AKT signaling pathway, while showing 

negative correlations with the Th1 and Th2 cell 

differentiation pathways [49]. ECM molecules, along 

with their cell surface receptors and adhesion molecules, 

are associated with a range of central nervous system 

disorders, such as Alzheimer’s disease, schizophrenia, 

epilepsy, multiple sclerosis, addiction, and PD [49]. The 

ECM-receptor interaction and PI3K-AKT signaling 

pathways [49], known regulators of autophagy, may play 

a pathogenic role in PD [50]. JKAP inactivation of T-cell 

signaling and interaction with Th1 and Th17 cells result 

in a dysregulated immune environment and inflam-

mation, impacting PD progression [51]. Consequently, it 

correlates with certain portions of MMSE and UPDRS 

scores [51]. Several studies have implicated Th1 and Th2 

cells in PD [52–54]. 

 

The immune-inflammatory response and regulation of 

immune cells are implicated in PD pathogenesis. In a 

training dataset comprising 24 samples, we observed 

significant differences in activated NK cells and resting 

mast cells between PD patients and HC subjects. NK 

cells have been found to infiltrate the SN of PD mice, 

where they colocalize with α-synuclein and 

dopaminergic neurons. Moreover, the ratio of NK cells 

to other immune cells is increased in the CSF of PD 

patients [55]. Neurovascular PD patients exhibit 

alterations that not only trigger innate immune responses 

but also attract and activate adaptive responses [56, 57]. 

Increased levels of cytokines such as IL-1β, IL-2, IL-6, 

IFN-γ, and TNF-α, along with elevated CD4+ 

lymphocyte counts, have been observed in both the 

serum and CSF of individuals with PD. Additionally, 

research on immune infiltration has identified 

associations between regulatory T-cells, monocytes, and 

resting mast cells with PD pathogenesis [58]. 

 

Our research offers several advantages. Firstly, we 

pioneered the development of an aging-related diagnostic 

signature for PD and confirmed its strong association 

with PD patients in our RNA-Seq dataset. Secondly, the 

diagnostic biomarkers we identified exhibited high 
efficiency across various datasets. However, our study is 

subject to certain limitations. The training dataset had a 

limited sample size, comprising only 24 samples. 

Additionally, further experiments are necessary to 

validate our findings, including validation in larger 

sample size and more rigorous designed trials, as well 

as assessing the expression of the four potential 

biomarker genes in other neurodegenerative diseases. 

 

MATERIALS AND METHODS 
 

Collection of clinical characteristics 

 

The study sample consisted of two groups: PD patients 

(n = 11, seven men, four women; mean age 62.33 ± 10.49 

years) and healthy control (HC) subjects (n = 13, eight 

men, five women; mean age 63.56 ± 9.26 years). All 

participants were sourced from the outpatient clinic for 

movement disorders at Xuanwu Hospital, Capital 

Medical University. Clinical assessments, including PD 

diagnosis and staging, were conducted by experienced 

neurologists. PD patients were receiving pharmaceutical 

treatment. HC subjects were selected from the Bank of 

Aged Healthy Population in Xicheng District, Beijing. 

The study received approval from the ethics committee 

of Xuanwu Hospital, Capital Medical University, and all 

participants provided their consent in writing after being 

informed about the study. 

 

Data sources 

 

Aging-related genes, totaling 307, were extracted from 

the Human Ageing Gene Database available at 

http://genomics.senescence.info/genes/ for inclusion in 

this study. A volume of 400 L of peripheral blood was 

collected from 11 PD patients and 13 HC subjects in 

PAXgene Blood RNA tubes (PreAnalytiX) and frozen at 

−80°C for long-term storage as described by Wylezinski 

et al. [59]. RNA was extracted from the peripheral blood 

and preserved in PAXgene Blood RNA tubes in 

accordance with the manufacturer’s instructions, 

utilizing an automated QIAcube system (Qiagen). 

Following this, RNA samples underwent purification, 

concentration, and elution in RNase-free water, utilizing 

the RNEasy MinElute Cleanup Kit (Cat. No. 74204, 

Qiagen). 

 

The Illumina NovaSeq 6000 RNA sequencing platform 

was used in the PE150 sequencing mode. We employed 

Rsem software (Version 1.2.6), which utilizes the FPKM 

(Fragments Per Kilobase per Million mapped reads) 

method, to calculate gene expression levels for mRNA 

[60]. 

 

The RNA-Seq data, including 11 PD samples and 13 HC 

samples, were used as a training dataset for analysis for 
follow-up research. The expression profiles of 10 PD and 

8 HC individuals from GSE20141, 8 PD and 9 HC 

individuals from GSE20163, and 15 PD and 8 HC 
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individuals from GSE49036 were obtained from the  

Gene Expression Omnibus (GEO) database at 

http://www.ncbi.nlm.nih.gov/geo/. Self-test RNA-Seq 

was employed to pinpoint potential PD diagnostic 

biomarkers, while the three expression profiles from 

GEO, containing 33 PD and 25 HC samples, were 

combined to assess the accuracy of these biomarkers. 

RNA-Seq data underwent processing, including 

normalization of count reads from preprocessed data 

(involving transcript abundance estimation and sequence 

alignment). Subsequently, a log2 transformation was 

conducted, with the addition of a 0.5 pseudocount. 

 

DEGs identification and functional analysis 

 

Differentially expressed genes (DEGs) between PD and 

HC in the self-test RNA-Seq data were identified using 

the limma R package, with criteria of |LogFC| >1 and 

p-value < 0.05 [61]. Using the ggplot2 R package, 

volcano plots depicted the DEGs, while the heatmap 

illustrated the expression levels of these genes. The 

RobustRankAggreg R package facilitated the accurate 

identification of DEGs between PD and HC. Functional 

analysis of the DEGs was conducted using the 

clusterProfiler R package. Significance was determined 

at a p-value < 0.05. 

 

Machine learning 

 

Genes present in both the DEGs and the 307 aging-related 

genes were identified and represented in a Venn diagram. 

Following the identification of shared genes, STRING 

[62] was utilized to acquire protein-protein interactions 

(PPIs) with a minimum required interaction score of 0.4 

(medium confidence). Subsequently, the network was 

visualized using Cytoscape V3.9.1 software [63]. 

 

Machine learning techniques, such as LASSO, SVM,  

RF, RR, were implemented utilizing the glmnet, 

randomForest, e1071, and glmnet R packages, 

respectively, to construct classifiers of diagnosis. Six 

potential diagnostic biomarkers were identified using the 

four machine learning methods and visualized in a Venn 

diagram. 

 

LASSO regression was employed to identify the optimal 

combination of genes for constructing a diagnostic 

signature. Subsequently, a multivariate Cox regression 

model was utilized to further refine the identified genes, 

employing the R “step” function. 

 

Diagnostic biomarkers identification and drugs 

prediction 

 

ROC curve analysis assessed the efficacy of aging-

related DEGs in distinguishing PD from HC, 

identifying DEGs with an AUC exceeding 0.7 as 

potential PD diagnostic biomarkers. Validation in 

datasets GSE20163, GSE49036, and GSE20141 

confirmed their reliability. SigCom LINCS [64] 

(https://maayanlab.cloud/sigcom-lincs/) was employed 

to identify drugs (small molecules) targeting above 

genes. LINCS L1000 Chemical Perturbations (2021) was 

screened as the prediction result of small molecules, and 

the small molecules with a p-value < 0.05 and z-score >3 

were screened for, constructed, and visualized [65]. 

 

Analysis of diagnostic genes by PPI and GSEA 

 

After identifying the potential diagnostic biomarker 

genes by using the four machine learning algorithms, the 

GeneMANIA database (https://genemania.org) was used 

to analyze them and their 20 interacting genes based on 

PPIs. Subsequently, the gene-gene network was 

generated and visually represented.  

 

Pearson analysis was employed to measure the gene set 

enrichment analysis (GSEA) difference of PD diagnostic 

genes in the human KEGG biological pathway set. 

GSEA was conducted utilizing GSEA software (v 4.0, 

https://www.gsea-msigdb.org/gsea/index.jsp) on the 

training dataset (24 samples). 

 

Development and validation of a nomogram model 

for diagnosing PD 

 

The rms R package was utilized to construct a nomogram 

model predicting PD occurrence across three validation 

datasets (GSE20141, GSE49036, and GSE20163). Each 

factor’s score is represented by “Points”, and the 

cumulative score of all factors is denoted by “Total 

Points.” The predictive performance of the nomogram 

model was evaluated using the C-Index. 

 

Immuno-relevance analysis of potential diagnostic 

biomarker genes 

 

The proportions and distributions of immune cells were 

quantified using the CIBERSORT [66] algorithm, based 

on RNA-Seq data from the training dataset. The 

abundances of 22 types of immune cells were calculated 

using the LM22 signature algorithm. After calculating 

the proportion of immune infiltrative cells, the Mann-

Whitney U-test was employed to assess and analyze the 

differences between the immune infiltration status of PD 

patients and HC subjects (p-value < 0.05) to screen for 

PD-related immune infiltration states. After determining 

the immune state that was significantly associated with 

PD, we investigated the correlation between potential 
biomarker genes and immune infiltration cells (p < 0.05, 

|Coeff| > 0.2) in accordance with Spearman correlation 

analysis. 
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Extraction of RNA followed by qRT-PCR 

 

Blood samples were collected in PAXgene Blood RNA 

tubes, followed by isolation of peripheral blood 

mononuclear cells (PBMCs) using density gradient 

centrifugation (Solarbio Life Science, Beijing, China). 

Total cellular RNA extraction from the PBMCs was 

carried out using the RNA Extraction Kit (Omega, 

Guangzhou, China). Subsequently, 200 ng of RNA per 

sample underwent reverse transcription using the Evo M-

MLV RT Kit (Accurate Biotechnology, Changsha, 

China) following the manufacturer’s instructions. qRT-

PCR was conducted using the SYBR Green Premix Pro 

Taq HS qPCR Kit (Accurate Biotechnology, Changsha, 

China) on the Light Cycler 40 real-time PCR instrument 

(Roche, Basel, Switzerland). The relative expression of 

mRNA was calculated using the 2−ΔΔCt method with 

GAPDH as the internal control for normalization. The 

following primers were employed: LEPR-forward 5′-

GGGAAGATGTTCCGAACCCCA-3′, EGF-forward 5′-

TTCACTGTCTTGACTCTACTCCACC-3′, BRCA1 

-forward 5′-TGAGAAGCGTGCAGCTGAGA-3′, APP-

forward 5′-TGGTTCGAGTTCCTACAACAGCA-3′, 

and LEPR-reverse 5′-AGGACCACATGTCA 

CTGATGCT-3′, EGF-reverse 5′-CATCGCTCCCC 

GATGTAGCC-3′, BRCA1-reverse 5′-TGTCACTCT 

GAGAGGATAGCCC-3′, APP-reverse 5′-TGACGTT 

CTGCCTCTTCCCA-3′. Four mRNA primers were 

designed using tailing methods. All experiments were 

conducted in triplicate. 

 

Statistical analysis 

 

All data analyses were carried out using R 4.0.3 software, 

SPSS 26.0, and GraphPad Prism 8. Pearson’s correlation 

test was utilized for correlation analysis. The Wilcoxon 

test and the Mann-Whitney U-test were employed for 

comparing two groups, while the Kruskal-Wallis test was 

used for comparing more than two groups. A significance 

level of p < 0.05 (two-tailed) was applied for determining 

statistical significance. 
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