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INTRODUCTION 
 

Osteosarcoma (OS), a common primary malignant 

tumor, accounts for 20% of all primary malignant bone 

tumors. Children, adolescents, and young adults aged 

10–25 years are commonly affected by OS [1], which is 

characterized by a high degree of malignancy, increased 

recurrence, and early lung metastasis [2]. Recent 

advances in therapeutic methods for OS, including 

neoadjuvant chemotherapy, surgical resection of the 

primary tumor, and adjuvant chemotherapy [3], have 

not improved the 5-year survival rates for localized 

disease (50%–70%) and metastatic and recurrent OS 

(less than 20%) [4].  

 
The human microbiome comprises various micro-

organisms (such as bacteria, fungi, archaea, protozoa, 

and viruses) and inhabits the surface of the human 
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ABSTRACT 
 

Previous studies have reported the correlation between gut microbiota (GM), GM-derived metabolites, and 
various intestinal and extra-intestinal cancers. However, limited studies have investigated the correlation 
between GM, GM-derived metabolites, and osteosarcoma (OS). This study successfully established a female 
BALB/c nude mouse model of OS. Mice (n = 14) were divided into the following two groups (n = 7/group): OS 
group named OG, injected with Saos-2 OS cells; normal control group named NCG, injected with Matrigel. The 
GM composition and metabolites were characterized using 16S rDNA sequencing and untargeted 
metabolomics, respectively. Bioinformatics analysis revealed that amino acid metabolism was dysregulated in 
OS. The abundances of bone metabolism-related genera Alloprevotella, Rikenellaceae_RC9_gut_group, and 
Muribaculum were correlated with amino acid metabolism, especially histidine metabolism. These findings 
suggest the correlation between GM, GM-derived metabolites, and OS pathogenesis. Clinical significance: The 
currently used standard therapeutic strategies for OS, including surgery, chemotherapy, and radiation, are not 
efficacious. The findings of this study provided novel insights for developing therapeutic, diagnostic, and 
prognostic strategies for OS. 
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epithelial barrier. The intestinal microbiome is strongly 

associated with host health and disease status [5–7]. Gut 

microbiota regulates host metabolism, immunity, and 

nervous system. Additionally, gut microbiota is 

associated with cancer development [8–11]. Recent 

studies have demonstrated that Helicobacter pylori is a 

risk factor for gastric cancer [12]. The abundance of 

Faecalibacterium prausnitzii and Blautia sp. is 

correlated with the malignancy of breast cancer [13]. 

Studies on the tumor-related pathway have revealed 

that gut microbiota can activate the calcineurin-NFAT 

pathway, promoting intestinal tumor development and 

supporting cancer stem cell survival in the mouse 

model [14]. Butyrate, which is produced by butyrate-

producing intestinal bacteria, activates Gpr109a and 

suppresses colonic inflammation and carcinogenesis 

[15]. However, the correlation of gut microbiota and gut 

microbiota-related metabolites with OS has not been 

previously reported. 

 

The gut microbiota composition is dynamic and is 

mainly influenced by various factors, including  

age, eating habits, and health and disease status,  

which modulate the diversity and metabolites of 

microorganisms. Additionally, variations in the gut 

microbiota metabolic spectrum promote physiological 

changes in both host and pathogenic microorganisms 

and consequently modulate disease progression [16]. 

Some metabolism and metabolic profiling studies have 

reported that metabolites are potential diagnostic 

markers for diseases [17]. Previous studies using the 

16S rRNA gene sequencing approach have revealed  

that microbiome diversity and metabolites are  

correlated with disease pathogenesis. For example, 

enterogenous Candida albicans damages the intestinal 

mucosal barrier by modulating the gut microbiome [18]. 

Meanwhile, 3-carboxy-4-methyl-5-propyl-2-furanpro-

pionic acid was identified in the plasma of patients with 

gestational diabetes, impaired glucose tolerance, and 

type 2 diabetes [19]. However, the OS-related 

microbiome composition and metabolites have not been 

previously reported.  

 

This study aimed to evaluate the effects of OS on 

intestinal microbes and their metabolites. The fecal 

samples of the OS mouse model were examined to 

evaluate the changes in gut microbiota and  

gut microbiota-derived metabolites using 16S rRNA 

high-throughput sequencing and liquid chromatogram-

mass spectrometry (LC-MS)-based non-targeted 

metabolomics, respectively. Additionally, the 

distribution of intestinal microbes and their metabolites, 

as well as the correlation between OS and intestinal 
microbes, were examined. The findings of this study 

can enable the development of probiotics and the 

identification of beneficial metabolites for OS.  

MATERIALS AND METHODS 
 

Cell culture 

 

The human OS cell line (Saos-2) was obtained from the 

American Type Culture Collection (Manassas, VA, 

USA) and cultured in Dulbecco’s modified Eagle’s 

medium-F12 with low glucose (Gibco, USA) 

supplemented with 10% fetal bovine serum, 100 U/mL 

penicillin and 100 lg/mL streptomycin in a humidified 

atmosphere at 5% CO2 and 37°C.  

 

Animal experiments 

 

Female BALB/c nude mice aged 4 weeks were 

purchased from a specific pathogen-free (SPF) animal 

center (Charles River Laboratory, Beijing, China). Mice 

were maintained at the SPF animals center under the 

following standard laboratory conditions: temperature, 

25°C ± 3°C; humidity, 53% ± 3%, circadian cycle, 12-h 

light/dark cycle; access to food and water, ad libitum. 

After adaptive feeding for 1 week, 14 mice were 

randomly divided into the following two groups (7 

mice/group): NCG and OG. Nude mice aged 5 weeks in 

the OG were subcutaneously implanted with 1 × 106 

Saos-2 cells mixed with 200 μL Matrigel (Corning, NY, 

USA) into the back flank of each mouse. Meanwhile, 

mice in the NCG were administered with 200 μL 

Matrigel (Corning, NY, USA) at the same site. The 

tumor exhibited good growth in the OG at week 2 post-

administration. The OS animal model was successfully 

established at week 3 post-administration (Figure 1).  

 

Fecal sample collection 

 

The fresh fecal samples of the NCG and OG were 

collected and rapidly stored at −80°C in sterile freezing 

tubes. Next, the fecal samples were subjected to 16S 

rRNA gene sequencing and untargeted metabolomics 

analysis. All mice were anesthetized via CO2 inhalation 

and humanely euthanized.  

 

DNA extraction and 16S rRNA gene sequencing 

 

The fecal samples from the NCG and OG were subjected 

to 16S rRNA sequencing and metabolomics analyses. The 

genomic DNA was extracted from the fecal samples using 

the MagPure soil DNA LQ kit (Magen, Guangdong, 

China), following the manufacturer’s instructions. DNA 

concentrations and integrities were determined using a 

NanoDrop 2000C spectrophotometer (Thermo Fisher 

Scientific, Waltham, MA, USA) and gel electrophoresis. 

To analyze fecal bacterial diversity, V3–V4 hypervariable 

regions of the bacterial 16S rRNA genes were amplified 

with the universal primers 343 F (5′-TACGGRAGGCA 

GCAG-3′) and 798 R (5′-AGGGTATCTAATCCT-3′). 
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The reverse primer comprised a sample barcode, while 

both forward and reverse primers were ligated with an 

Illumina sequencing adapter. Sequencing was performed 

using an Illumina NovaSeq6000 platform with two 

paired-end read cycles of 250 bases each (Illumina Inc., 

San Diego, CA, USA; OE BioTech Company; Shanghai, 

China). The quality of amplicons was tested, and the raw 

data were obtained in the FASTQ format. The assembly 

parameters were as follows: minimum overlap, 10 bp; 

maximum overlap, 200 bp; maximum error ratio, 20%. 

Homologous sequences with a size of < 200 bp were 

removed, whereas sequences with 75% of the base 

readings above Q20 were retained. Clean tags were 

removed using UCHIME [20] to obtain valid tags for 

preparing operational taxonomic units (OTUs). After 

removing the primer sequences and clustering with a 

cutoff value of 97% similarity, the OTUs were classified 

using Vsearch software (version 2.4.2) [21]. The QIIME 

package was used to select the representative reading of 

each OTU. The species of all representative reads above 

the confidence threshold of 70% were annotated using the 

RDP classifier with the Silva database (version 123) [22].  

 

Metabolomic data processing and analysis 

 

The fecal samples from the NCG and OG were 

subjected to metabolomics analysis, which was 

performed by OE BioTech (Shanghai China). Each 

fecal sample (50 mg) was mixed with 500 μL of 

extraction solvent (methanol/water 4:1 ratio, v/v) and 40 

μL of internal standard solution (2-chloro-L-phenyl-

alanine in methanol, 3 g/L) in a 2-mL microcentrifuge 

tube, and the mixture was sonicated at 60 Hz for 3 min. 

Next, the samples were incubated with 120 μL of 

chloroform, vigorously vortexed, and subjected to 

ultrasonic extraction at 25°C for 20 min. The samples 

were then centrifuged at 13,680 g and 4°C for 20 min. 

The supernatant was dried under vacuum for 30 min at 

25°C and dissolved in 80 μL methoxyamine hydro-

chloride in pyridine (15 mg/μL). After vigorously 

vortexing for 10 min, the products were incubated at 

room temperature for 80 min, followed by incubation 

with 20 μL of n-hexane and 60 μL of N, O-

bis(trimethylsilyl)trifluoroacetamide (containing 2% 

trimethylchlorosilane), vigorous vortexing for 3 min, 

and derivatization at 65°C for 70 min. The results were 

analyzed using a gas chromatography system (Agilent 

7890 B System) coupled to the Agilent 5977 A MSD 

System (Agilent Technology, Santa Clara, CA, USA). 

Based on the standard protocol, the derivatives were 

separated using a DB-5MS fused silica capillary column 

(30 mm × 0.25 mm × 0.25 µm) (Agilent Technology, 

USA). Mass spectrometry data (m/z 50–500) were 

obtained under the full-scan mode. To check the data 

reproducibility, quality control samples were injected 

regularly throughout the analysis process [23, 24]. 

 

Untargeted metabolomics data analysis 

 

The metabolome raw data were collected using Unifi 

1.8.1 and processed using the Progenesis Qi V2.3 

software (Nonlinear Dynamics, Newcastle, UK). The 

compounds were identified using The Human 

Metabolome Database, Lipidmaps (V2.3), METLIN 

 

 
 

Figure 1. Construction of the osteosarcoma mouse model with Saos-2 OS cells. NCG represents the control group, OG represents 

the osteosarcoma group. n = 7. 
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databases, and self-built databases based on the accurate 

mass number, secondary fragments, and isotope 

distribution. The compounds were qualitatively 

screened according to the screening standard of 36 

points. Compounds with < 36 points were considered to 

be inaccurate and deleted (full score = 60 points). 

Principal component analysis (PCA) and orthogonal 

partial least squares discriminant analysis (OPLS-DA) 

were performed to examine the differential metabolic 

profiles between the two groups. The Hotelling’s T2 

region demonstrated an ellipse shape in the model 

score, which was defined at a 95% confidence interval 

for model variation. In OPLS-DA, variable importance 

in projection (VIP) was employed to measure the 

influence and explanatory ability of the samples in each 

group. A VIP score of > 1 was considered the cutoff 

value. Differential metabolites were selected according 

to the threshold of significant variables obtained from 

the OPLS-DA model based on VIP values and p-values 

obtained from two-tailed Student’s t-test of normalized 

peak areas. Metabolites with VIP values > 1.0 and p < 

0.05 were considered to be differential metabolites. 

 

Statistical analysis 

 

Means were compared using Student’s t-test with SPSS 

22.0 software. The levels of the gut microbiota and 

metabolites were analyzed using the Wilcoxon test, 

Bray-Curtis distance, Euclidean distance, and Unifrac 

and presented as mean ± standard error of mean. 

Differences were considered significant at P < 0.05. The 

correlation between the gut microbiome and metabolites 

was analyzed based on Pearson’s correlation 

coefficients.  

 

RESULTS 
 

Alterations of the diversity and abundance of gut 

microbiota species in the OS mouse model 

 

This study performed 16S rRNA high-throughput gene 

sequencing to examine the effect of OS on the gut 

microbiota. Venn diagram of the OTU distribution 

revealed changes in the microbiota composition in the 

OG. In total, 6,444 OTUs were identified in the NCG 

and OG. Of these, the NCG and OG had 1,421 and 

1,243 unique OTUs, respectively. Additionally, 3,780 

and 1291 were shared and differential OTUs, 

respectively, between the groups (Figure 2A and 

Supplementary Table 1). Alpha diversity analysis was 

performed to evaluate community diversity and 

abundance in gut microbiota. Rarefaction curve, Chao1 

index, and Good’s coverage index revealed that the 

sequencing depth was sufficient and could provide 

coverage of the majority of microbiota diversity in each 

sample (Figure 2B, 2C). Compared with those in the 

NCG, the Shannon and Simpson diversity indices were 

lower in the OS. This indicated that OS decreased the 

bacterial community diversity and richness (P < 0.05) 

(Figure 2D, 2E). Next, beta diversity, which reflects 

differential species abundance between the two groups, 

was examined. Two-dimensional (2D) and three-

dimensional (3D) PCA revealed that the gut microbiota 

of the NCG and OG separated into two distinct clusters, 

indicating the differential gut microbiota composition 

between the NCG and OG (P < 0.05) (Figure 3A, 3B). 

 

Stacked bar charts and heatmaps of the top 15 phylum, 

classes, orders, families, genus, and species were 

generated to perform a species analysis. The genus-level 

analysis result is shown in Figure 3C, 3D, while the 

results of analysis at other levels are shown in 

Supplementary Figure 1. Further, a linear discriminant 

analysis effect size analysis was performed to assess the 

significant differences in the abundance of the species 

between the two groups. The correlation between 

different taxa from the phylum to the species levels is 

shown in the cladogram in Figure 4A, 4B. The 

histograms and heatmaps of abundances at the genus 

level are shown in Figure 4C, 4D. Among the top 10 

differential genera between the NCG and OG, 

Alloprevotella and Rikenellaceae_RC9_gut_group were 

upregulated, whereas Muribaculaceae, Klebsiella, 

Colidextribacter, Lachnospiraceae_FCS020_group, 

Muribaculum, A2, Oscillibacter, and Roseburia were 

downregulated.  

 

OS altered the composition of gut microbiota-

derived metabolites 

 

This study aimed to examine the effects of OS on 

intestinal microbes and their metabolites. Changes in 

the metabolic spectrum may indicate changes in the 

dynamics of the intestinal microbiome. Metabolic 

changes are correlated with the host‘s health status and 

are considered a crucial hallmark of disease [25]. To 

evaluate the effect of OS on the metabolic profiles of 

gut microbiota in the mouse model, untargeted 

metabolomics analysis (LC-MS and GC-MS) was 

performed by OE BioTech (Shanghai, China) to detect 

differentially expressed metabolites and potential key 

metabolic pathways in the NCG and OG.  

 

Multivariate analysis utilizes unsupervised PCA to 

examine the overall distribution between samples and 

the stability of the whole analysis process. Next, 

supervised PLS-DA and OPLS-DA were performed to 

distinguish the overall differences in metabolic profiles 

among the groups and identify the differential 
metabolites between the groups. Two-dimensional and 

three-dimensional PCA, PLS-DA, and OPLS-DA were 

performed to identify the differential metabolic profiles 
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Figure 2. (A) Venn diagram showing the numbers of operational taxonomic units (OTUs) between NCG and OG. (B–E) Alpha diversity of 

samples from the NCG and OG groups. (B) Rarefaction curves with Chao1 index. (C) Rarefaction curves with Good’s coverage index. (D) Violin 
plot of Shannon index. (E) Violin plot of Simpson index. Data are represented as mean ± standard error of mean. n = 7; *P < 0.05, **P < 0.01, 
***P < 0.001, and ****P < 0.0001; ns, non-significant.  
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between the two groups (Figure 5A). Univariate 

analysis focuses on the description of univariate and 

statistical inference, which are used to select differential 

metabolites, and reflects the basic information 

contained in a large number of sample data in the 

simplest summary form. Additionally, the centralized or 

discrete trend in the sample data is described. The 

univariate statistical inference provides the overall 

information of the sample data, mainly including 

interval estimation and statistical hypothesis testing. 

Volcano maps and heatmaps were used to visualize the 

differential metabolites (Figure 5C–5F). The volcano 

diagram revealed different levels of metabolites in the 

two groups. LC-MS revealed 1094 differential 

 

 
 

Figure 3. (A) Two-dimensional principal coordinate analysis (PCA) model of gut microbiota. NCG: green, OG: orange. (B) Two-dimensional 

PCA of gut microbiota. NCG: purple, OS: blue. (C) Stacked bar chart of the abundance of microbes at the genus level. (D) Heatmap of the 
abundance of microbes at the genus level. n = 7. 
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metabolites (424 upregulated and 670 downregulated 

metabolites) between the two groups, while GC-MS 

revealed 115 differential metabolites (92 upregulated 

and 23 downregulated metabolites). The differential 

fecal metabolites between the two groups were 

subjected to Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analysis. The top 20 

differential metabolites are listed in Figure 5B. This 

 

 
 

Figure 4. (A) Linear discriminant analysis effect size of gut microbiota in the NCG and OG. Red represents increased microbial abundance in 

the NCG; green represents increased microbial abundance in the OG. (B) The correlations among different taxa from the phylum to species 
levels are shown in the cladogram. (C) Heatmap showing differential bacterial genera. (D) Histogram of the top 10 differential bacteria at the 
genus level. Wilcoxon test (P < 0.05; n = 7). 
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study focused on the following three metabolic 

pathways associated with bone metabolism: 

aminoacyl-tRNA biosynthesis; mTOR signaling 

pathway; arginine and proline metabolism. The 

metabolites of these three pathways are shown in 

Supplementary Table 2.  

 

Correlation between differential gut microbial 

genera and fecal metabolome 

 

The correlation heatmap and network of fecal 

differential metabolites in the three bone metabolism-

related metabolic pathways and the top 10 differential 

genera are shown in Figure 6A, 6B (|r| > 0.5, P < 0.05). 

The analysis revealed multiple correlations between 

these fecal differential metabolites and the  

top 10 differential bacterial genera. For example, 

Alloprevotella was positively related with creatine (r = 

0.778, P = 0.001), putrescine (r = 0.691, P = 0.006), L-

proline (r = 0.649, P = 0.012), 4-hydroxyproline (r = 

0.642, P = 0.013), L-tryptophan (r = 0.624, P = 0.017), 

L-histidine (r = 0.613, P = 0.019), ornithine (r = 0.599, 

P = 0.024), L-lysine (r = 0.576, P = 0.031), creatinine (r 

= 0.565, P = 0.035), adenosine-5′-monophosphate (r = 

0.561, P = 0.037), and 5-aminovaleric acid (r = 0.561, P 

= 0.037). Rikenellaceae_RC9_gut_group was positively 

correlated with ornithine (r = 0.759, P = 0.002),

putrescine (r = 0.698, P = 0.006), L-tryptophan (r = 

0.690, P = 0.006), 5-aminovaleric acid (r = 0.608, P = 

0.021), L-histidine (r = 0.605, P = 0.022), L-serine (r = 

0.576, P = 0.032), adenosine-5’-monophosphate (r = 

0.560, P = 0.037), L-phenylalanine (r = 0.552, P = 

0.041), L-threonine (r = 0.549, P = 0.041), L-isoleucine 

(r = 0.537, P = 0.048), and creatine (r = 0.533, P = 

0.049). Muribaculum was negatively correlated with 

ornithine (r = −0.723, P = 0.003), 4-hydroxyproline (r = 

−0.621, P = 0.018), L-phenylalanine (r = −0.594, P = 

0.025), putrescine (r = −0.593, P = 0.025), creatine (r = 

−0.592, P = 0.026), L-tryptophan (r = −0.581, P = 

0.029), creatinine (r = −0.579, P = 0.030), L-histidine (r 

= −0.551, P = 0.041), L-proline (r = −0.545, P = 0.044), 

spermidine (r = −0.539, P = 0.047), and 5-aminovaleric 

acid (r = −0.535, P = 0.048). These results suggest that 

the occurrence and development of OS are closely 

related to amino acid metabolism.  

 

DISCUSSION 
 

The number of genes encoded by the gut microbiota, 

which comprises the intestinal commensal, symbiotic, 

and pathogenic microorganisms, is more than 3 million, 

which is approximately 150 times higher than that 

encoded by the host genome. The gut microbiota 

regulates various functions of the host and 

 

 
 

Figure 5. (A) Orthogonal partial least squares discriminant analysis (OPLS-DA) of fecal metabolites between the NCG and OG. (B) Bubble 

diagram of the top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. (C) Heatmap of fecal metabolites identified 
using gas chromatography-mass spectrometry (GC-MS). (D) Heatmap of fecal metabolites identified using liquid chromatography-mass 
spectrometry (LC-MS). (E) Volcano map displaying differential fecal metabolites identified using GC-MS. (F) Volcano map displaying 
differential fecal metabolites identified using LC-MS. n = 7. 
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Figure 6. (A) Correlation heatmap between the top 10 differential bacterial genera and fecal metabolites associated with three metabolic 
pathways related to bone metabolism in the top 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. |r| > 0.5, P < 0.05.  
(B) Correlation network map of the top 10 differential bacterial genera and fecal metabolites associated with three metabolic pathways 
related to bone metabolism in the top 10 KEGG pathways. |r| > 0.5, P < 0.05. n = 7.  
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consequently influences host health, phenotype, and 

diseases [26, 27]. Recently, examining the role of GM 

in various diseases has become a research hotspot. 

Dysbiosis is associated with several complex human 

intestinal and extra-intestinal diseases, obesity, 

diabetes, non-alcoholic liver disease, cardiovascular 

disease, malnutrition, gastrointestinal diseases, 

depression, Parkinson’s disease, and cancers [25, 28, 

29]. Gut microbiota is involved in the development and 

progression of cancers [30]. Extra-intestinal tumor-

associated microbiota has been identified in multiple 

human cancers, including breast, lung, and pancreatic 

cancers, melanoma tumors, and soft tissue sarcoma [31, 

32]. Alice Tzeng et al. characterized the microbiome of 

human breast tissue. The breast tumor tissue exhibited 

distinct microbiome profiles, including increased 

proportions of Pseudomonas, Proteus, Porphyromonas, 

and Azomonas and decreased proportions of 

Propionibacterium and Staphylococcus at the genus 

level [33]. Erick Riquelme et al. examined the gut 

microbiota of short-term and long-term survivors 

among patients with pancreatic cancer who underwent 

tumor resection. The alpha diversity was upregulated in 

the long-term survivors. Additionally, an intra-tumoral 

microbiome signature that can predict long-term 

survival was identified. Deborah Nejman et al. revealed 

that the abundance of Proteobacteria phylum was 

upregulated in the lung tumors of smokers. 

Additionally, the authors reported that different tumor 

types exhibit distinct microbial composition [34]. 

Recently, Lauren M Perry et al. used metagenomic 

classification to investigate the gut microbiome in 

patients with soft tissue sarcoma [35]. However, the gut 

microbiota and gut microbiota-derived metabolites 

have not been elucidated for OS, which is the most 

common bone sarcoma.  

 

Animal models, which cannot be replaced by in vitro 

models, are an important component of translational 

research [36]. Athymic nude mice, which are widely 

used as models in cancer research, bear spontaneous 

FOXN1 deletion and have dysfunctional or absent 

thymus, resulting in an impaired immune system with 

downregulation of T cells [37]. In this model, natural 

immunosuppression enables the development of the 

target tumor after the inoculation of cancer cells. 

Additionally, the tumor can be easily observed in 

athymic nude mice after subcutaneous injection due to 

the natural lack of hair [37]. In addition to  

analyzing tumor behavior, athymic mice have been  

used to examine the gut microbiome and its relation to 

cancer [32]. Therefore, this study established an 

athymic nude mouse model of OS to examine the 
abundance of gut microbiota and gut microbiota-derived 

metabolites and develop novel therapeutic strategies  

for OS. 

Microbial diversity was evaluated using 16S rDNA 

sequencing, which enables high-throughput sequencing of 

all bacteria in a particular environmental sample to 

explore the correlation between the microbe and the host. 

Traditional microbial research relies on laboratory culture. 

The recent development of 16S amplicon sequencing and 

other high-throughput sequencing methods has filled the 

gap in microbial research, especially for microorganisms 

that cannot be cultured in traditional laboratories, and 

expanded the utilization space of microbial resources. 

These sequencing methods are effective for studying 

microbial interaction. Alpha and beta diversity analyses 

are the two main components of 16S rDNA sequencing. 

Alpha diversity indicates the diversity within a particular 

environment or ecosystem and is primarily used to reflect 

species richness and evenness, as well as sequencing 

depth [38]. Beta diversity indicates the similarity or 

dissimilarity among different environmental communities 

[39]. In this study, 16S rDNA sequencing analysis 

revealed that the beta diversity of gut microbiota varied 

between the NCG and OG. Additionally, alpha diversity 

analysis revealed that the richness and diversity of  

gut microbiota were downregulated in the OG. The 

relative abundance of the genera Alloprevotella and 

Rikenellaceae_RC9_gut_group was upregulated, whereas 

that of Muribaculum was downregulated in the OG. The 

abundance of Alloprevotella is reported to be upregulated 

in multiple cancers. Wu et al. reported that Alloprevotella 

was associated with an increased risk of cardia cancer 

[40]. Wei et al. investigated the correlation between 

bacterial profiles and the symptoms of pancreatic 

adenocarcinoma (PDCA). The abundance of 

Alloprevotella was upregulated in patients with PDCA 

exhibiting bloating [41]. Wang et al. developed an 

ulcerative colitis (UC) carcinogenesis mouse model. The 

abundance of Alloprevotella was upregulated in the 

intestinal mucosa of the UC mouse model [42]. Moreover, 

the relative abundance of the genera Alloprevotella  

was upregulated in various cancers, including breast, 

thyroid, colorectal, and oral cancers [43–46]. 

Rikenellaceae_RC9_gut_group is also reported to be 

associated with the pathogenesis of some cancers.  

The relative abundance of Rikenellaceae was 

significantly upregulated in patients with  

prostate cancer belonging to the high-risk group [47]. 

Yang et al. reported that the abundance of 

Rikenellaceae_RC9_gut_group was significantly 

upregulated in proximal gastric cancer tissues and 

positively correlated with cancer-promoting metabolites 

[48]. Previous studies have reported that 

Rikenellaceae_RC9_gut_group is associated with 

inflammation [49]. Cancer development and therapy 

response are regulated by inflammation, which may 
facilitate tumor progression and treatment resistance [50]. 

Muribaculum, which is associated with improved 

response to immunotherapy, is a cancer-related bacterium 
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[51]. Zhao et al. used a combination of probiotics and 

PD-1 inhibitors to treat melanoma. The authors 

reported that the beneficial bacteria Akkermansia, 

Prevotellaceae_NK3B31_group, and Muribaculum 

were enriched in the combination treatment group 

[52]. However, in this study, the relative abundance of 

Muribaculum in the OG was significantly lower  

than that in the NCG. These findings suggest that  

the increased abundance of Alloprevotella and 

Rikenellaceae_RC9_gut_group and the decreased 

abundance of Muribaculum are associated with OS 

pathogenesis. 

 

Dysregulated metabolism is a hallmark of cancer [53]. To 

elucidate the regulatory effects of gut microbiota on OS 

pathogenesis, the metabolome was examined to 

determine the pathogenic mechanism of OS. 

Metabolomics is an emerging omics discipline that can 

identify and quantify most small molecules in living 

organisms [54]. As metabolites exhibit a wide range of 

functions in the cells and organisms and reflect the 

overall effect of the genome, proteome, and external 

stimuli, the metabolome can indicate the phenotype [55]. 

Metabolomics is now widely used in many fields, such as 

environmental science and food safety [56]. Based on 

research applications, metabolomics can be divided into 

non-targeted metabolomics and targeted metabolomics. 

Several analytical techniques are now used in non-

targeted metabolomics, including nuclear magnetic 

resonance spectroscopy, GC-MS, and LC-MS [57–59]. 

In this study, GC-MS and LC-MS (dual mode) were used 

to comprehensively screen the differential metabolites. 

Fecal metabolomics revealed the differential metabolites 

between the NCG and OG. Next, KEGG enrichment 

analysis of the differential fecal metabolites between the 

two groups was performed. The metabolites of three bone 

metabolism-related metabolic pathways were annotated. 

Amino acid metabolism had an important role in OS 

pathogenesis, which is consistent with the findings of a 

previous study [60].  

 

In addition to their role in protein synthesis, amino acids 

play an important role in energy production, nucleotide 

synthesis, and the maintenance of redox homeostasis [61, 

62]. Early studies on cancer metabolism focused on 

glucose metabolism. Recent studies have demonstrated 

the importance of amino acids in cancer progression [63]. 

Amino acid-derived metabolites support cancer growth 

and metastasis. The catabolism of amino acids results in 

the production of metabolic intermediates that regulate 

tumor cell growth and survival [64]. Additionally, amino 

acids modulate reactive oxygen species homeostasis and 

are involved in epigenetic regulation through methylation 
and acetylation, which can enhance tumor aggressiveness 

[64]. Amino acids are reported to be involved in cancer 

metabolism. However, limited studies have examined the 

metabolomic changes in OS. Recently, the elucidation of 

the role of amino acids in primary bone sarcomas has 

become the focus of research. Phosphoglycerate 

dehydrogenase inhibition can lead to the upregulation of 

SLC7A5 (LAT1) and SLC3A2 (CD98) transporters that 

drive the transport of leucine into the lysosome, resulting 

in mTORC1 activation [65]. Previous studies have 

demonstrated that mTORC1 regulates OS cell 

proliferation partly by modulating serine/glycine 

metabolism [66]. In this study, the mTOR signaling 

pathway and amino acid metabolism were dysregulated in 

the OG. Therefore, these results suggest that amino acid 

metabolism may play a vital role in the carcinogenesis of 

OS. To further examine the crosstalk between gut 

microbiota and metabolites, correlation analysis was 

performed. For example, L-histidine was associated with 

Alloprevotella, Rikenellaceae_RC9_gut_group, and 

Muribaculum to varying degrees. A previous study 

reported that the serum contents of metabolites, especially 

histidine, markedly varied between the OS and healthy 

control groups [67]. Previously, we reported that histidine 

metabolism was upregulated in OS 3D cells and 3D cell-

printed tissues [60]. Hence, histidine metabolism is a key 

pathway involved in OS progression.  

 

This study has some limitations. The sample size in 

this study is relatively small. Studies must be 

performed with a large sample size to identify an ideal 

biomarker for OS. Additionally, this study examined 

the correlation between the gut microbiota of the OG 

and metabolites but did not establish a causal 

relationship.  

 

CONCLUSIONS 
 

This study demonstrated that gut microbiota and gut 

microbiota-related metabolites are correlated with OS. 

Thus, gut microbiota plays an important role in the 

pathogenesis of OS. These findings provided novel 

insights into the pathogenesis of OS and can enable the 

development of novel therapeutic strategies for OS. 
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Supplementary Figure 1. The stacked bar charts and heat maps of other levels between the two groups. (A, B) phylum-level. (C, 
D) class-level. (E, F) family-level. (G, H) order-level. n = 7. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Differential OTUs calculated by Wilcoxon. 

 

Supplementary Table 2. Metabolic pathways associated with bone metabolism in Top10 of KEGG. 

ID  Annotation p-value -lg(p-value) Matching 

mmu00970 Aminoacyl-tRNA 

biosynthesis 

1.09019681319946E-07 6.96249509181108 L-Lysine, L-Arginine, L-Glutamine, L-Serine, 

L-tryptophan, L-Phenylalanine, 

Benzenepropanoic acid, Leucine, L-Histidine, 

L-Proline, L-Valine, L-threonine, L-isoleucine 

mmu04150 mTOR signaling 

pathway 

0.000279653418412148 3.55337986759817 Adenosine-5’-monophosphate, L-Arginine, 

Leucine 

mmu00330 Arginine and 

proline 

metabolism 

0.00032755871560812 3.48471084046909 L-Arginine, Ornithine, Putrescine, L-proline, 

Creatine, Spermidine, 5-aminovaleric acid, 

Creatinine, 4-hydroxyproline, N2-Succinyl-L-

ornithine, (2E)-N-(4-aminobutyl)-3-(4-hydroxy-

3-methoxyphenyl)prop-2-enimidic acid 

 


