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INTRODUCTION 
 

As the most lethal tumor in the central nervous system, 

the treatment of glioma still faces many obstacles,  

and all the previous treatments have failed to achieve 

satisfactory results [1]. Although immunotherapy  

as the new treatment method has achieved the  

obvious curative effect in various tumors [2, 3], the  

special immune microenvironment in glioma hindered 

the application of immunotherapy [4]. Therefore, 
strengthening the study of the glioma immune micro-

environment is the key prerequisite to improving the 

application of immunotherapy in glioma. In addition, 

clarifying the mechanism of various factors affecting 

the immune microenvironment of glioma can not only 

provide an important theoretical basis for improving 

glioma immunotherapy strategies but also provide a 

new theoretical basis for revealing the internal causes 

of glioma malignant progress. 

 
Numerous studies on the tumor microenvironment 

(TME) have confirmed the importance of non-tumor 

cells in maintaining tumor growth and response to 
Immune Checkpoint Inhibitors (ICIs) [5, 6]. As a 

component of TME, tumor-associated macrophages 

(TAMs) account for about 50% of the total non-cancer 
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ABSTRACT 
 

In the past decades, the therapeutic effect of glioblastoma (GBM) has not been significantly improved. Generous 
evidence indicates that S100A9 has a wide range of functions in tumors, but its exploration in GBM is less. The 
purpose of this study is to conduct a comprehensive bioinformatics analysis and cytological experiment on S100A9 
in GBM. The expression data and clinical data of GBM samples were downloaded from the public database, and 
comprehensive bioinformatics analysis was performed on S100A9 in GBM using R software. Wound healing assay 
and transwell assay were used to detect the migration activity of cells, and colony formation assay, EdU staining, 
and CCK-8 assay were used to detect the proliferation activity of cells. The effect of S100A9 on the migration 
activity of M2 macrophages was verified by the cell co-culture method. The protein expression was detected by 
western blotting and immunohistochemical staining. S100A9 is an independent prognostic factor in GBM patients 
and is related to poor prognosis. It can be used as an effective tool to predict the response of GBM patients to 
immune checkpoint inhibitors (ICIs). In addition, S100A9 can promote the malignant progression of GBM and the 
migration of M2 macrophages. On the whole, our study highlights the potential value of S100A9 in predicting 
prognosis and immunotherapeutic response in GBM patients. More importantly, S100A9 may promote the 
malignant progress of GBM by involving in some carcinogenic pathways and remodeling the tumor 
microenvironment (TME). 
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glioma cell population and actively participate in 

promoting tumor malignant progression [7]. In recent 

years, the blood-brain barrier (BBB) has been regarded 

as the main reason for the failure of immunotherapy 

and other treatment methods for glioma. It is worth 

emphasizing that there is evidence that macrophages 

have the natural ability to cross the BBB, and the 

malignant degree of glioma is related to the number  

of infiltrating myeloid cells, which are composed of 

microglia and macrophages [8, 9]. 

 

S100A9, as a member of the danger-related molecule 

family, is induced during infection, injury, or 

inflammation to initiate the initial rapid inflammatory 

response [10, 11]. It accounts for about 45% of the 

cytoplasmic protein in neutrophils and 5% in monocytes 

[12, 13]. S100A9 has a wide range of functions, which 

not only regulate the calcium homeostasis in myeloid 

cells but also can be secreted into the extracellular 

environment to affect like cytokines and deeply involved 

in the development of inflammation [12, 14–16].  

In GBM, the expression of S100A9 in myelogenous 

suppressor cells was significantly increased [17], and 

this change was observed in a variety of tumors, which 

was believed to induce changes in tumor immune 

microenvironment leading to immunosuppression [14, 

18]. Meanwhile, the expression of S100A9 was also 

found to increase in glioma stem cells and promoted 

their proliferation [19]. The amount of S100A9 in the 

blood of glioma patients was also increased, which can 

be regarded as a prognostic biomarker of glioma [20]. 

 
At present, the research of S100A9 in tumors  

mainly focuses on the impacts on immune cells and 

the microenvironment. S100A9 not only played an 

important role in myeloid cells but also worked as an 

exocrine protein in chemotaxis and aggregation of 

immune cells [10]. Meanwhile, we found that S100A9 

was also expressed in GBM cells. At present, there  

is no detailed analysis of the specific role of S100A9 

in GBM cells, which is the focus of our study. 

 
In this study, we found that S100A9 did have significant 

differences in transcriptional expression between GBM 

tissues and normal brain tissues by analyzing the public 

GBM RNA-seq database (TCGA, CGGA, etc.,) and  

this difference was also reflected in the protein level. 

Through bioinformatics analysis, we found that the 

expression of S100A9 in GBM tissues had prognostic 

significance for patients. Furthermore, we determined the 

possible role of S100A9 in GBM through enrichment 

analysis. Cytological experiments in vitro showed that 

increasing the expression of S100A9 in GBM cells can 

promote cell proliferation and migration. In addition,  

we found that S100A9 was associated with most 

immune pathways and immune markers, and it is also 

an effective predictor of immunotherapeutic response to 

GBM. It was also verified by cell co-culture experiment 

that S100A9 could promote the migration of M2 

macrophages, indicating that S100A9, as an exocrine 

protein of GBM cells, was helpful to the recruitment of 

M2 macrophages. 

 

RESULTS 
 

Differential analysis of S100A9 in pan-cancer 

 

According to the analysis results of the Sangerbox3.0 

platform, there is a significant difference in the 

expression level of S100A9 mRNA in pan-cancer, 

which is higher in GBM, UCEC, CESC, KIPAN, KIRC, 

SKCM, BLCA, OV, PAAD, and TCGT datasets, and 

lower in LGG, BRCA, LUAD, STES, PRAD, HNSC, 

LIHC, WT, THCA, ALL, LAML, ACC and KICH 

datasets (Figure 1A). Abbreviations of various cancers 

in pan-cancer are listed in Supplementary Table 1.  

In addition, whether S100A9 mRNA can be used as a 

risk factor to affect the survival of cancer patients in 

pan-cancer also varies, which can be used as a risk 

factor to affect the survival of cancer patients in LIHC, 

ALL, LGG, KIPAN, GBM, PAAD, LAML and BLCA 

datasets (Figure 2A). 

 

S100A9 is upregulated in GBM and indicates poor 

prognosis 

 

Based on the pan-cancer analysis, we further  

explored the differential expression and prognosis of 

S100A9 in GBM. The analysis on the GEPIA website 

revealed that compared with normal brain tissues 

(NBTs), the expression level of S100A9 mRNA in 

GBM tissues was remarkably up-regulated (Figure 1B). 

In four independent GBM cohorts (TCGA (HG-

UG133A), Rembrandt, GSE59612, and GSE16011),  

the upregulation of S100A9 mRNA was also verified, 

including 528, 219, 75, and 159 cases of human  

GBM tissues and 10, 28, 17, and 8 cases of NBTs, 

respectively (Figure 1C). Immunohistochemical staining 

analysis of 25 pairs of GBM tissues and their 

corresponding adjacent tissues illustrated that the 

S100A9 protein level in GBM tissues was significantly 

increased (Figure 1D, 1E). In addition, the upregulation 

of S100A9 protein in GBM tissues was also verified  

in six pairs of GBM tissues and their corresponding 

adjacent tissues (Figure 1F, 1G). Compared with 

patients with low S100A9 expression, patients with high 

S100A9 expression tended to have shorter survival 

(Figure 2B). Furthermore, through univariate and 

multivariate Cox regression analysis, we determined 

that S100A9 was an independent prognostic factor for 

GBM patients (Figure 2C). The clinicopathological 

characteristics of GBM patients in TCGA cohort and the 
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relationship between clinicopathological characteristics 

and S100A9 expression are listed in the Table 1. 

 

Somatic mutation landscape between high- and low-

expression groups of S100A9 

 

Next, we investigated the difference in somatic 

mutation landscape between S100A9 high- and low-

expression groups. By processing and analyzing the 

mutation annotation files in the TCGA-glioma cohort, 

the top 15 genes with the highest mutation frequency in 

the S100A9 high- and low-expression groups displayed 

in the waterfall plots showed that the mutation 

frequency and patterns of these genes were significantly 

different (Figure 3A). Tumor mutational burden (TMB) 

can reflect the degree of genomic variation of tumor 

cells, thus indirectly reflecting the ability and degree  

of the tumor to produce new antigens, and is related to 

the benefits of immunotherapy [21–23]. Our analysis 

results showed that compared with the high expression 

group of S100A9, the patients in the low expression 

group of S100A9 had higher TMB (Figure 3B) and the 

scores of mismatch repair relevant signatures (Figure 

3C), which to some extent supported the above analysis 

result that GBM patients in the low expression group of 

S100A9 had a better prognosis. 

 

In-depth bioinformatics analysis of S100A9 in GBM 

 

Based on the above studies, to further explore the 

clinical value of S100A9 in GBM, we made a series  

of bioinformatics analyses. First, the samples from 

TCGA (n = 160), CGGA1 (n = 237), and CGGA2  

(n = 137) cohorts were merged to obtain a GBM-meta 

cohort (n = 534) by removing the batch effect between 

different cohorts through the COMBAT algorithm 

 

 
 

Figure 1. Differential expression analysis of S100A9. (A) Differential expression of S100A9 between tumor tissues and normal tissues 
in pan-cancer. (B) Differential expression of S100A9 between GBM tissues and NBTs in the TCGA database. (C) Differential expression 
analysis of S100A9 in four independent GBM cohorts. (D, E) Immunohistochemical staining of 25 pairs of GBM tissues and corresponding 
adjacent tissues. (F, G) Western blotting detection of six pairs of GBM tissues and corresponding adjacent tissues. 
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(Figure 4A). Before merging, the samples were 

scattered, and after merging, the samples were 

clustered. The number of genes in TCGA, CGGA1, 

and CGGA2 cohorts before the merger was 55,241, 

24,300, and 23,961 respectively, and the number of 

genes in the GBM-meta cohort after the merger was 

173 (Figure 4B). Subsequently, we redivided all the 

samples into high- and low-expression groups according 

to the median expression value of S100A9. 5,484 DEGs 

were identified and displayed in the volcano plot with 

the screening criteria FDR <0.05 and | log2 (fold 

change) | >1.3, of which 4,674 were downregulated and 

810 were upregulated (Figure 4C). The top 20 genes 

with the most obvious differences were displayed in the 

heatmap (Figure 4D). Bubble plots paraded the classical 

KEGG pathways, enriched by the DEGs, involved  

in tumor malignant progress, tumor immunity, tumor 

inflammatory response and gene mutation, such as 

 

 
 

Figure 2. Prognostic analysis of S100A9. (A) Univariate Cox regression analysis was used to explore the prognostic value of S100A9 
from the perspective of pan-cancer. (B) K-M survival curves of S100A9 in six independent GBM cohorts indicated that GBM patients with 
low S100A9 expression tend to have better survival outcomes. (C) Univariate and multivariate Cox regression analysis of different 
clinicopathological characteristics and S100A9 in TCGA cohort. 
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Table 1. The clinicopathological characteristics of GBM patients in TCGA cohort and the relationship between 
clinicopathological characteristics and S100A9 expression. 

Variables Total (n = l60) 
S100A9 

X2 p-value 
Low High 

OS Status 

Alive 31 (19.4%) 12 (38.7%) 19 (61.3%) 
1.615 0.489 

Dead 129 (80.6%) 35 (27.1%) 94 (72.9%) 

Sex 

Female 56 (35.0%) 15 (26.8%) 41 (73.2%) 
0.278 0.598 

Male 104 (65.0%) 32 (30.8%) 72 (69.2%) 

Age 

>55 99 (61.9%) 26 (26.3%) 73 (73.9%) 

1.152 0.345 ≤55 52 (32.5%) 18 (34.6%) 34 (65.4%) 

NA 9 (5.6%) 3 (33.3%) 6 (66.7%) 

MGMT status 

Methylated 56 (35.0%) 20 (35.8%) 36 (64.2%) 

0.262 0.609 Unmethylated 67 (41.9%) 21 (31.3%) 46 (68.7%) 

NA 37 (23.1%) 6 (16.2%) 31 (83.8%) 

IDHI status 

Mutant 9 (5.6%) 7 (77.8%) 2 (22.2%) 

10.652 0.001 Wildtype 143 (89.4%) 38 (26.6%) 105 (73.4%) 

NA 8 (5.0%) 2 (25.0%) 6 (75.0%) 

G-CIMP status 

G-CIMP 12 (7.5%) 9 (75.0%) 3 (25.0%) 

12.871 <0.001 NonG-CIMP 147 (91.9%) 38 (25.9%) 109 (74.1%) 

NA 1 (0. 6%) 0 (0.0%) 1 (100%) 

Radiotherapy 

No 21 (13. 1%) 3 (14.3%) 18 (85.7%) 

2.744 0.098 Yes 131 (81.9%) 42 (32. 1%) 89 (67.9%) 

NA 8 (5.0%) 2 (25.0%) 6 (75.0%) 

Chemotherapy 

No 30 (18.8%) 7 (23.3%) 23 (76.7%) 

0.819 0.365 Yes 113 (70.6%) 36 (3 1.9%) 77 (68.1%) 

NA 17 (10.6%) 4 (23.5%) 13 (76.5%) 

Subtype 

Classical 39 (24.4%) 15 (38.5%) 24 (61.5%) 

0.013 0.005 

Mesenchymal 53 (33.1%) 4 (7.5%) 49 (92.5%) 

Neural 28 (17.5%) 6 (21.4%) 22 (78.6%) 

Proneural 38 (23.8%) 21 (55.3%) 17 (44.7%) 

NA 2 (1.3%) 1 (50.0%) 1 (50.0%) 

 

NF-kappaβ signaling pathway, PD-L1 expression, 

and PD-1 checkpoint pathway, IL-17 signaling 

pathway, DNA replication related-pathway, etc., 

(Figure 4E). Classical GO-BP terms were also 
paraded in the bubble plots, such as cell migration, 

apoptotic process, leukocyte-mediated immunity, 

inflammatory response, etc., (Figure 4F). The well-

known gene sets closely related to S100A9, which  

are involved in tumor malignant progression  

(Figure 4G) and immune inflammation (Figure 4H), 

have been screened and shown in the line graphs, 
such as HALLMARK_HYPOXIA, HALLMARK_ 

ANGIOGENES, HALLMARK_COMPLEMETN, 

HALLMARK_INFLAMMATORY RESPONSE, etc. 
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The above results indicated that S100A9 was 

involved in multiple biological processes during the 

occurrence and development of GBM. 

 

S100A9 promoted the migration and proliferation of 

GBM cells in vitro 

 

Based on bioinformatics analysis, we carried out some 

cytological experiments in vitro to further explore the 

function of S100A9 in GBM. We selected a human 

astrocyte cell line (NHA) and five GBM cell lines 

(U87, T98, U118, LN229, and U251), detected the 

S100A9 expression level by western blotting and 

confirmed that S100A9 has the highest expression 

level in U87 cell line and the lowest expression  

level in LN229 cell line (Figure 5A). The knockout 

and overexpression lentiviruses of S100A9 were 

transfected into U87 and LN229 cell lines respectively, 

and the transfection effect was detected by western 

blotting (Figure 5A). We evaluated the migration 

ability of U87 and LN229 cells post-transfected with 

lentivirus by transwell assay and wound healing assay 

and found that S100A9 can promote cell migration  

to some extent, but its promotion effect is limited 

(Figure 5B, 5C). The results of the colony formation 

assay, CCK-8 assay, and EdU staining indicated  

that the upregulation of S100A9 contributed to the 

proliferation of U87 and LN229 cells (Figure 5D–5F). 

Immune-related analysis of S100A9 in TCGA-GBM 

cohort 

 

The predictive value of immune score and matrix  

score for tumor microenvironment has been confirmed 

in multiple tumor types. In GBM, we found that in  

the high expression group of S100A9, the immune  

score (Supplementary Figure 1A) and stromal score 

(Supplementary Figure 1B) were significantly higher 

than those in the low expression group, which prompted 

us to conduct further analysis and research. First,  

we explored the association between marker genes  

of the chemokine related-pathway, receptor related-

pathway, and MHC related-pathway and S100A9, and 

found that almost all marker genes were differentially 

expressed between high- and low-expression groups  

of S100A9 (Figure 6A–6C), and had a significant 

positive correlation with S100A9 (Figure 6D–6F).  

This finding prompted us to further explore whether 

S100A9 could be used as a tool to predict the treatment 

response of tumor patients to ICIs. The results of 

differential expression analysis (Figure 7A, 7B) and  

correlation analysis (Figure 7C, 7D) showed that S100A9  

was closely related to immunostimulatory genes and 

immunoinhibitory genes, which suggested that S100A9 

might play a role in the treatment of GBM with ICIs. In 

two independent GBM cohorts, the TIDE algorithm was 

used to calculate the TIDE score for each GBM patient, 

 

 
 

Figure 3. The difference of tumor somatic mutation landscape between high- and low-expression groups of S100A9. (A) The 

distribution of the top 15 variants of mutated genes in the high- and low-expression groups of S100A9. The genetic alteration types were 
listed in the waterfall plots. The upper bar plots represent TMB. The numbers on the right of the bar plots indicated the mutation frequency 
of each gene. (B) Comparison of TMB between high- and low-expression groups of S100A9. (C) Differences in mismatch repair-relevant 
signatures between high- and low-expression groups of S100A9. 
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and then they were divided into responder and  

non-responder groups according to the TIDE score. 

Further evaluation results indicated that S100A9 could 

effectively predict the response of GBM patients to ICIs 

(Figure 7E), which was also verified in two independent 

melanoma immunotherapy cohorts (Figure 7F). 

 

 
 

Figure 4. Further bioinformatics analysis of S100A9 in glioma. (A) Comparison of the distribution of samples in TCGA, CGGA1, and 
CGGA2 cohorts before and after expression profile merging. (B) Presentation of the cross genes in TCGA, CGGA1, and CGGA2 cohorts. (C) 
The volcano plot displayed the DEGs between high- and low-expression groups of S100A9. (D) The heat map showed the relative expression 
levels of the top 40 genes with the most significant difference according to the median expression value of S100A9. (E, F) The enrichment 
analysis of KEGG pathways (E) and the terms of GO-BP (F) based on the DEGs. (G, H) The gene sets involved in tumor malignant progression 
(G), immune and inflammatory response (H) were enriched through differential expression levels of S100A9. 
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Then, we explored the TIICs in the TME from three 

perspectives: the difference analysis of the infiltration 

levels of TIICs between high- and low-expression 

groups of S100A9 (Figure 8A), the correlation 

between the infiltration levels of TIICs and S100A9 

(Figure 8B), and the clinical predictive value of TIICs 

(Figure 8C). Finally, we screened out eight types  

of TIICs with statistical significance in these three 

perspectives, namely B cells memory, macrophages 

M0, macrophages M2, neutrophils, NK cells activated, 

T cells CD4 memory resting, T cells follicular helper, 

and T cells regulatory (Tregs) (Figure 8D). Moreover, 

two sets of scRNA-seq data (GSE_148842 and 

GSE_162631) were utilized to explore the expression 

distribution of S100A9 among different types of cells 

in the TME of GBM (Figure 9A–9C). It was found that 

S100A9 was mainly expressed in monocytes and 

macrophages, and only a small amount was expressed 

in tumor malignant cells. 

 

S100A9 mediates the migration of M2 macrophages 

 

In IHC staining, the expression level of iNOS protein 

reflecting the infiltration level of M1 macrophages in 

GBM tissues is not significantly increased compared 

with its corresponding adjacent tissues (Figure 10A),

 

 
 

Figure 5. Upregulation of S100A9 promoted the proliferation of GBM cells. (A) Differential expression of S100A9 protein between 

human astrocyte cells (NHA) and five GBM cell lines. (B, C) Transwell assay (B) and wound healing assay (C) were utilized to detect the 
migration ability of U87 and LN229 cells transfected with knockout and overexpression S100A9 lentivirus. (D–F) Colony formation assay (D), 
CCK-8 assay (E), and EdU staining (F) were utilized to detect the proliferative activity of U87 and LN229 cells transfected with knockout and 
overexpression S100A9 lentivirus. 
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while the expression level of CD206 protein reflecting 

the infiltration level of M2 macrophages in GBM 

tissues is significantly increased compared with its 

corresponding adjacent tissues (Figure 10B). In Figure 

8A, 8B, the infiltration level of M2 macrophages was 

significantly higher than that of other types of TIICs, 

and there was a positive correlation between M2 

macrophages and SA100A9, which is not found in M1 

macrophages. Immunofluorescence staining showed 

that S100A9 protein had no obvious correlation with 

 

 
 

Figure 6. The relationship between S100A9 and the marker genes of the chemokine pathway, receptor pathway, and MHC 
pathway. (A–C) Differential expression of the marker genes between high- and low-expression groups of S100A9. (D–F) The correlation 
between S100A9 and the marker genes. 
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iNOS protein (Figure 10C), but had a certain positive 

correlation with CD206 protein (Figure 10D), which 

was consistent with the above bioinformatics analysis 

results. Finally, we further explored whether S100A9 

could promote the migration of M2 macrophages 

through cytological experiments in vitro. Human THP-1 

cells were induced to differentiate into M2 macrophages 

by adding biological inducers (Figure 10E), and then 

M2 macrophages were co-cultured with U87 cells 

transfected with knockout shS100A9-2 lentivirus  

using a transwell device (Figure 10F) to investigate 

whether S100A9 could promote the migration of M2 

 

 
 

Figure 7. S100A9 was an effective tool to predict the response of tumor patients to immune checkpoint inhibitors (ICIs). (A, 

B) Differential expression of immune stimulatory genes (A) and immune inhibitory genes (B) between high and low expression groups of 
S100A9. (C, D) The correlation between S100A9 and immune stimulatory genes (C) and immune inhibitory genes (D). (E) In the two glioma 
cohorts (GSE4412 and GSE53733), S100A9 can effectively predict patients’ responses to ICIs based on the TIED algorithm. (F) In the two 
independent melanoma immunotherapy cohorts (Gide2019 and Vanallen), S100A9 can effectively predict patients’ responses to ICIs. 
Abbreviations: PD: progressive disease; PR: partial response; SD: stable disease. 
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macrophages. The results showed that U87 cells with 

down-regulated S100A9 inhibited the migration of 

M2 macrophages (Figure 10G). On the contrary, 

LN229 cells with up-regulated S100A9 can promote 

the migration of M2 macrophages (Figure 10H).  

In a word, these findings indicated that S100A9  

was involved in mediating the migration of M2 

macrophages. 

 

 
 

Figure 8. Basic analysis of TIICs in the TME of GBM in TCGA cohort. (A) Differential analysis of TIICs between high- and low-

expression groups of S100A9. (B) The correlation between S100A9 and TIICs and the screening criteria was | CC | >0.2 and p < 0.05. (C) 
Venn diagram illustrated eight types of TIICs with statistical significance in differential expression analysis, correlation analysis, and survival 
analysis. (D) Survival curves of eight types of TIICs. 
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DISCUSSION 
 

In this study, we carried out a large-scale bioinformatics 

analysis and in vitro cytological experiments on S100A9 

in GBM and finally got several main findings: 
 

(1) S100A9 is up-regulated in GBM tissues and is 

associated with poor prognosis, and can be used as an 

independent prognostic factor in GBM patients; (2) 

S100A9 can be used as an effective tool to predict the 

immunotherapy response for GBM patients; (3) S100A9 

can promote the malignant progression of GBM;  

(4) S100A9 is mainly expressed in monocytes and 

macrophages, and the modest amount is also expressed 

in malignant tumor cells; (5) S100A9 contributes to the 

migration of M2 macrophages. 
 

Our findings indicate that S100A9 is a potential 

biomarker and therapeutic target for GBM. 

 

As the main cell populations of TME, immune  

cells are actively involved in various stages of  

cancer development, for instance, tumor occurrence, 

progression, recurrence, etc., [24, 25]. The expression of 

S100A9 is found in multiple cell types, which triggers 

various signaling pathways related to cell biological 

processes by binding with cell surface receptors, such  

as cell cycle, cell survival, cell differentiation, etc.,  

[14]. Numerous evidences indicated that S100A9 is up-

regulated in many types of tumors [26]. In addition, due 

to the fact that S100A9 protein not only exists in cancer 

cells but can also be secreted into the extracellular 

environment, its potential as a promising biomarker for 

tumor diagnosis or prognosis prediction has received 

widespread attention. Our study found that S100A9  

was also significantly up-regulated in GBM tissues, 

mainly expressed in monocytes and macrophages, and 

also expressed in malignant tumor cells. Moreover,  

the expression of S100A9 mRNA has prognostic 

significance for GBM patients. 

 

S100A9 produces stable homodimers or heterodimers 

with other members of the S100 family by changing its 

conformation, which is related to multiple signaling 

pathways. These cascade pathways control immune 

homeostasis and cellular metabolism, which often 

transition into specific states to promote tumor growth 

[27, 28]. To further study the function of S100A9 in 

 

 
 

Figure 9. Exploring the expression and distribution of S100A9 in two sets of GBM scRNA-seq data. (A) Cell clusters were 

identified in GBM cells and displayed in Uniform Manifold Approximation and Projection (UMAP). (B) UMAP plots of different cell types in 
GBM. (C) Expression and distribution of S100A9 in different types of cells. 
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GBM, we conducted GO and KEGG enrichment 

analysis on the DEGs screened from high- and low-

expression groups of S100A9 and found that S100A9 

participated in a variety of pathways and biological 

processes related to tumor progression and immune 

regulation. The enrichment results of GSEA also 

 

 
 

Figure 10. S100A9 is up-regulated in GBM tissues and contributes to the migration of M2 macrophages.  (A, B) 
Immunohistochemical staining of iNOS (A) and CD206 (B) in GBM and its adjacent tissues. (C) Representative image of multiplex 
immunofluorescence staining of DAPI, iNOS, and S100A9 in GBM tissue. (D) Representative image of multiplex immunofluorescence 
staining of DAPI, CD206, and S100A9 in GBM tissue. (E) The process of inducing THP-1 cells into M2 macrophages. (F) Sketch map of co-
culture of M2 macrophages and U87 cells transfected with knockout S100A9 lentivirus. (G, H) Transwell assay was utilized to detect the 
migration ability of M2 macrophages after co-culture with U87 cells transfected with lentivirus knockout S100A9 and LN229 cells 
transfected with lentivirus overexpressing S100A9. 
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highlighted some obvious HALLMARK gene sets 

related to tumor progression and immune regulation.  

To verify the results of bioinformatics analysis, we 

carried out some cytological experiments in vitro. U87 

and LN229 cell lines were used to construct stable 

knockout and overexpression S100A9 cell models  

by transfecting lentivirus. The results confirmed that 

the increased expression of S100A9 in GBM cells 

enhanced the malignant phenotype of GBM cells, 

especially the proliferation of GBM cells. 

 
Without the influence of immune cells, S100A9, as  

a calprotectin, may induce changes in cell function 

through its impacts on the internal environment of 

cells. Meanwhile, to verify the exocrine effect of 

S100A9 in GBM cells, we conducted an immune 

analysis in the TCGA cohort and found the expression 

of S100A9 was positively correlated with most of the 

immune markers. Moreover, S100A9 was found in two 

GBM cohorts and two melanoma cohorts as a robust 

tool for predicting cancer patients’ response to ICIs.  

In the TME of GBM, we found that M2 macrophages 

had the highest infiltration level and were positively 

correlated with S100A9 expression. In addition, the 

analysis of two sets of gliomas scRNA-seq data 

illustrated that S100A9 was mainly expressed in 

monocytes and macrophages. These findings prompted 

us to further investigate the relationship between 

S100A9 and M2 macrophages. From the perspective of 

GBM tissue sections, we found that M2 macrophages 

changed most significantly with the expression of 

S100A9 in tissues, also showing a positive correlation 

distribution trend, and suggesting that S100A9 may 

have a recruitment effect on M2 macrophages or 

promoting the polarization of macrophages to M2. To 

further verify the hypothesis, we conducted a cell  

co-culture experiment. The results showed that M2 

macrophages were more inclined to the environment 

with a higher level of S100A9. Previous research on 

S100A9 in tumors focused on immune-related cells and 

paracrine function while ignoring the effect of S100A9 

on tumor cells themselves. The above experimental 

results proved that S100A9 had both the ability  

to affect the malignant phenotype of GBM cells  

and change the extracellular microenvironment. This 

conclusion further enhanced the importance of S100A9 

as a potential therapeutic target in the treatment of 

GBM. 

 
Previous studies have suggested that a slightly  

higher extracellular S100A9 level can promote the 

development of tumors, but a higher S100A9 level can 

induce apoptosis of tumor cells; The concentration of 

S100A9 in cells may affect the epithelial-mesenchymal 

transformation signal [29]. In our study, we did not 

find cell apoptosis, which may be due to the limited 

amount of exocrine secretion after overexpression of 

S100A9 by tumor cells or the intensity of GBM cells to 

induce apoptosis of S100A9. In addition, the biological 

process of epithelial-mesenchymal transformation in 

GBM is quite different from that in other tumors [30]. 

Therefore, the research results of S100A9 in other 

types of tumors may not be fully applied to GBM cells 

and the specific effect of S100A9 in GBM needs 

further exploration. 

 

This study also has some limitations. We are  

unable to build a complete immune microenvironment 

model, and instead of reaching from the perspective  

of tumor cells and M2 macrophages. Although the 

variables were simple and the results were effective, 

we cannot exclude the unpredictable effects caused  

by the complex tumor microenvironment. Moreover,  

it is difficult to completely distinguish the effect  

of S100A9 in the intracellular and extracellular,  

which needs further experimental verification. In future 

work, we will conduct in-depth exploration from 

multiple perspectives such as biological mechanisms, 

drug targets, and biological model construction,  

in order to provide effective assistance for GBM 

treatment. 

 

CONCLUSIONS 
 

On the whole, this study not only highlights the 

potential value of S100A9 in predicting prognosis and 

immunotherapeutic response in GBM patients but also 

clarifies that S100A9 can promote the malignant 

progression of GBM and enhance the migration of M2 

macrophages. 

 

MATERIALS AND METHODS 
 

Data collection and preprocessing 
 

Twenty-five pairs of GBM tissues (World Health 

Organization grade IV) and adjacent non-tumor tissues 

were collected from Zhoukou Central Hospital. The 

expression data and corresponding clinical data of 

GBM samples were downloaded from the TCGA 

database (N = 160) (https://portal.gdc.cancer.gov/) and 

CGGA database (CGGAseq1, N = 237; CGGAseq2,  

N = 137) (http://www.cgga.org.cn/). Other GBM 

cohorts included in this study were obtained from the 

Data Visualization Tools for Brain Tumor Datasets 

(GlioVis, http://gliovis.bioinfo.cnio.es/). The unified 

standardized pan-cancer dataset (N = 19131, G = 

60499) was downloaded from the UCSC database 

(https://xena.ucsc.edu/) and the expression data was 

transformed with log2 (x + 0.001). If the sample size 

of a cancer species is less than three, it will not be 

enrolled in further analysis. 
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Basic analysis of S100A9 

 

Differential expression analysis and prognosis analysis 

of S100A9 from the perspective of pan-cancer was 

completed on the Biomedical data analysis box 

(SangerBox3.0, http://vip.sangerbox.com/home.html). 

The GEPIA2 website (http://gepia.cancer-pku.cn/) was 

used to conduct the differential expression analysis  

of S100A9 in the TCGA cohort. The R packages 

“ggpubr” (version 0.4.0) and “ggplot2” (version 3.3.3) 

were applied to analyze the differential expression of 

S100A9 in four GBM cohorts. Kaplan-Meier (K-M) 

survival curves were plotted for S100A9 in six GBM 

cohorts by using the R packages “surviver” (version 

0.4.9) and “survival” (version 3.3-1). Univariate and 

multivariate Cox regression analysis was performed  

to explore the independent prognostic value of S100A9 

in GBM patients by using the R packages “surviver” 

and “survival”. 

 

Investigation of tumor somatic mutation landscape 

 

The R package “TCGAbiolinks” was employed to 

download the somatic mutation data from the Genomic 

Data Commons (GDC) [31]. MuTect2 algorithm [32] 

was employed to process somatic mutation data. The 

top 15 genes with the highest mutation frequency were 

extracted and presented in the form of a waterfall using 

the R package “maftools” (version 2.6.05). Using 

Strawberry Perl (version 5.30.1) to calculate the tumor 

mutation burden (TMB) for GBM patients based on the 

somatic mutation data. The calculation of mismatch 

repair relevant signature scores for GBM patients refers 

to the study of Zeng et al. [33]. 

 

Signaling pathway and functional enrichment analysis 

 

Due to the limited number of GBM samples contained 

in a single cohort, we merged TCGA, CGGA1, and 

CGGA2 cohorts into a meta-glioma cohort using the 

COMBAT algorithm on the SangerBox3.0 platform 

[34]. Differentially expressed genes (DEGs) were 

screened with | log2 (fold change) | >1.3 and FDR <0.05 

based on the median expression value of S100A9 in the 

meta-GBM cohort by using the R packages “DESeq2” 

(Version 1.26.0) and “limma” (version 3.46.0) [35, 36]. 

The enrichment of the KEGG signaling pathways and 

the terms of GO-BP was carried out by using the R 

package “clusterProfiler” (Version 3.18.1) 22455463. 

Gene set enrichment analysis (GSEA) was conducted 

by using the GSEA software (4.2.3). 

 

Immune-related analysis 

 

Immune stimulatory and inhibitory genes, marker genes 

of the chemokine pathway, receptor pathway, and MHC 

pathway, were searched from previous studies [37, 38]. 

CIBERSORT algorithm was applied to calculate the 

enrichment scores of different types of tumor immune 

infiltrating cells (TIICs) in the TME, which revealed the 

infiltration levels of TIICs [39]. Based on the gene 

expression profiles of the tumor before treatment and 

the mechanisms of induction of T cell dysfunction and 

prevention of T cell infiltration in tumors, the Tumor 

Immune Dysfunction, and Exclusion module (TIDE, 

http://tide.dfci.harvard.edu/) can predict tumor patients’ 

response to ICIs [40]. Tumor samples highly correlated 

with T cell infiltration were classified as responders, 

otherwise, they were classified as non-responders. The 

R packages “limma” and “reshape2” (version 1.4.4) are 

used to perform differential expression analysis of 

multiple continuous variables between two groups. The 

correlation between continuous variables was explored 

by the R package “corrplot” (version 0.92). The 

transcriptome data and clinical data of two melanoma 

cohorts (Gide2019 and Vanallen) that have received 

immunotherapy are downloaded from TIDE website 

[41] to evaluate the application value of S100A9 in 

predicting clinical immunotherapy response. 

 

Single-cell RNA sequencing (scRNA-seq) analysis 

 

Two sets of scRNA-seq data, GBM-GSE148842 and 

GBM-GSE162631, were downloaded from the Tumor 

Immune Single-cell Hub 2 (TISCH2) (http://tisch.comp-

genomics.org/). Uniform Manifold Approximation and 

Projection (UMAP) technique was used to determine 

cell clusters [42]. The document column of the TISCH2 

website introduced the data processing process [43]. 

 

Cell culture and transfection 

 

The Chinese Academia Sinica Cell Repository provided 

us with cell lines. Except human monocyte THP-1  

was cultured in RPMI-1640 medium (Gibco, China), 

other cell lines were cultured in MEM (Gibco, China)  

or DMEM (Gibco, China) medium, and the medium 

contained 10% FBS (ExCell, China), 100 µg/ml 

streptomycin (Gibco, USA) and 100 U/ml penicillin 

(Gibco, USA), and the cell incubator was maintained at 

37°C and 5% CO2. The knockout and overexpression 

lentivirus of S100A9 were constructed by the Sheweisi 

Biotechnology Company (Tianjin, China) using U6-

MCS-CMV-zsGreen-PGK-Puromycin and CMV-MCS-

3FLAG-SV40-mCherry-IRES-Puromycin respectively. 

The sequence of S100A9 shRNA was as follows: 

shS100A9-1, 5′-CATCAACACCTTCCACCAATA-3′, 

shS100A9-2, 5′-ATGGAGGACCTGGACACAAAT-3′, 

and shS100A9-3, 5′-TCAAGAAGGAGAATAAG 
AATG-3′. For lentivirus transfection, refer to the 

instructions provided by the Sheweisi Biotechnology 

Company. 
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Protein extraction and western blotting 

 

The S100A9 rabbit polyclonal antibody (26992-1- 

AP, Proteintech, China), GAPDH rabbit polyclonal 

antibody (60004-1-Ig, Proteintech), and Beta Tubulin 

rabbit polyclonal antibody (10068-1-AP, Proteintech) 

were used as primary antibodies. Goat anti-rabbit IgG 

(SA00001-2, Proteintech) was used as the second 

antibody. The dilution ratio of antibodies was executed 

according to the corresponding instructions. Next, we 

will describe the extraction process of tissue protein. 

First, the tissue was weighed and cut, and put into a 2 

ml EP tube. High-efficiency radioimmunoprecipitation 

assay (RIPA) buffer and phenylmethanesulfonyl 

fluoride (PMSF, R0020, Solarbio, China) were mixed  

in the proportion of 100:1 to prepare tissue lysate.  

1 ml lysate was added to every 50 mg of tissue and 

homogenized, and then split on ice for 30 minutes. 

Finally, the tissue was centrifuged for 10 minutes with 

a high-speed centrifuge at 4°C and 12000 rpm. After 

discarding the tissue precipitation, 5× loading buffer 

solution was added to the upper clear solution, and 

then boil it about five minutes for later experiments. 

As for the extraction of cell protein, the first step  

is to collect cells and wash them with PBS twice.  

The subsequent steps are the same as the extraction  

of tissue protein. The operation process of western 

blotting refers to our previous study [44]. 

 

Immunohistochemical and immunofluorescence 

staining 

 

The tissues were fixed with 10% formalin for  

one week, then embedded with paraffin and  

sectioned (four-micrometer). The tissue sections were 

deparaffinized and dehydrated and treated with 3% 

hydrogen peroxide for about 10 minutes. After that, 

the primary antibody against S100A9 was used to  

stain tissues at 4°C for one night after blocking with 

5% BSA for about one hour at RT. Then, the tissue 

sections were treated with secondary antibody at  

RT for one hour, followed by DAB staining, target 

molecules detection, and hematoxylin counterstaining 

in turn. For immunofluorescent staining, tissue sections 

were immunostained with primary antibodies against 

S100A9, iNOS (22226-1-AP, Proteintech), and CD206 

(18704-1-AP, Proteintech) overnight at 4°C, and then 

incubated with fluorochrome-conjugated antibodies. 

After that, DAPI was added as a nuclear counterstain. 

A fluorescent microscope (Leica, Germany) was 

applied to collect the final image. 

 

Cell migration assay 

 

First, 150 µl serum-free medium and 700 µl  

medium containing 15% FBS were added to the  

upper and lower transwell chambers (Corning, USA) 

respectively. Then, 8 × 104 cells transfected with 

lentivirus were seeded in the upper chamber. After 24 

hours of incubation, a microcellular scraper was used 

to remove the cells remaining in the upper chamber. 

4% ice-precooled paraformaldehyde (Solarbio, P1110) 

was applied to fix the bottom of the upper chamber  

for 30 minutes, washed with phosphate-buffered saline 

(PBS), stained with 0.1% crystal violet (Solarbio, 

G1075) for 20 minutes. Finally, the chambers were 

washed several times, dried, and photographed with a 

microscope (Leica, Germany). The number of cells was 

calculated by ImageJ Software (Version 1.8.0.345). 

 

When the cell adhesion concentration in the six- 

well plates (Corning, USA) was 80–90%, a 200 µl 

sterile spear was used to cut through the bottom of  

the plate to create an artificial wound. After washing 

the floating cells, the adherent cells were continued 

cultured in a serum-free medium. At 0 and 24 hours, 

wound closure was photographed using an inverted 

Leica microscope. The wound closure at 0 and 24 

hours was recorded by a camera (KONKA, China). 

The wound area was calculated by ImageJ Software. 

 

Cell proliferation assay 

 

Cells were seeded into 6-well plates at 1000 cells/well 

and cultured for about 15 days. It was predicted that 

the cells would proliferate for about 5–7 generations. 

The culture medium was changed every three days, 

and the colony formation was closely observed. Cell 

culture was stopped when the number of cells in a 

single colony approached 50. The colonies were fixed 

with 4% ice-precooled paraformaldehyde for about 20 

minutes, then stained with 0.1% crystal violet for 

about 20 minutes. 

 

The Cell Counting Kit-8 (CCK-8, Beyotime, Shanghai) 

was employed to assay cell proliferation activity. Cells 

were seeded into 96-well plates at 2000 cells/well. 

Adding 10 ul CCK-8 reagent to each well and 

continuing to culture in the incubator for two hours, the 

absorbance of cells was measured at 450 nm every 24 

hours for 5 consecutive days. 

 

2 × 104 cells were seeded into each well of the  

24-well plate and cultured until the cell adhesion 

concentration reached about 75%. BeyoClick™ EdU 

Cell Proliferation Kit (Beyotime, Shanghai) was used 

to measure cell proliferation activity according to the 

manufacturer’s instructions. The nuclei of all cells 

with blue fluorescence and the positive cells with  
red fluorescence were photographed by fluorescence 

microscopy, and the results were analyzed by ImageJ 

Software. 
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Induction of human monocyte HTP-1 

 

THP-1 cells treated with Phorbol 12-myristate 13-

acetate (PMA, 150 ng/ml, Absin®, China) for 6–8 hours 

can be induced to differentiate into M0 macrophages, 

which attach to the bottom of the culture dish. After 

removing the non-adherent cells by discarding the 

medium and washing with PBS, the medium containing 

PMA (150 ng/ml), IL-4 (20 ng/ml), and IL-13 (20 

ng/ml) was added and continued to culture for about  

48 hours, and the M0 macrophages would be induced  

to differentiate into M2 macrophages. 

 
Migration activity of M2 macrophages 

 

The co-culture system was conducted in the transwell 

chambers and 24-well plates (Corning, USA). The 

shCtrl and shS100A9-2 groups of U87 cells were 

seeded into the lower chamber at 1 × 105 cells/chamber, 

respectively, and 1 × 105 M2 macrophages were seeded 

into the upper chamber. After 30 hours of co-culture, 

the following operations of cell fixation, staining, 

photography, and data processing are described above. 

 
Statistical analyses 

 

R software (version 4.0.3) and GraphPad Prism 

software (version 8.0.2) were applied for statistical 

analysis. Survival analysis was assessed by K–M 

curves with a log-rank test. Independent prognostic 

factors were identified by univariate and multivariate 

Cox regression analysis. The unpaired Student’s t-test 

and Mann–Whitney U-test were used to evaluate the 

statistical differences of normally and non-normally 

distributed continuous variables, respectively. The 

Fisher’s exact test or chi-square test was carried out  

to analyze the statistical significance of differences 

between categorical variables. The Spearman analysis 

method was performed to estimate correlation co-

efficients between two continuous variables. All 

experiments were independently repeated three times. 

Recognition criteria for statistical differences: *p < 

0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. 

 
Availability of data and materials 

 

Data associated with this study are summarized in the 

manuscript or included in the supplemental information. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Differential analysis of immune score and stromal score between high and low expression groups 
of S100A9. (A) The immune score of the S100A9 high expression group was significantly higher than that of the S100A9 low expression 
group. (B) The stromal score of the S100A9 high expression group was significantly higher than that of the S100A9 low expression group. 
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Supplementary Table 
 

Supplementary Table 1. Abbreviations of various cancers in pan-cancer. 

ACC Adrenocortical carcinoma 

BLCA Bladder Urothelial Carcinoma 

BRCA Breast invasive carcinoma 

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 

CHOL Cholangiocarcinoma 

COAD Colon adenocarcinoma 

ESCA Esophageal carcinoma 

GBM Glioblastoma multiforme 

HNSC Head and Neck squamous cell carcinoma 

KICH Kidney Chromophobe 

KIRC Kidney renal clear cell carcinoma 

KIRP Kidney renal papillary cell carcinoma 

LAML Acute Myeloid Leukemia 

LGG Brain Lower Grade Glioma 

LIHC Liver hepatocellular carcinoma 

LUAD Lung adenocarcinoma 

LUSC Lung squamous cell carcinoma 

OV Ovarian serous cystadenocarcinoma 

PAAD Pancreatic adenocarcinoma 

PRAD Prostate adenocarcinoma 

READ Rectum adenocarcinoma 

SKCM Skin Cutaneous Melanoma 

STAD Stomach adenocarcinoma 

TGCT Testicular Germ Cell Tumors 

THCA Thyroid carcinoma 

UCEC Uterine Corpus Endometrial Carcinoma 

UCS Uterine Carcinosarcoma 

COADREAD Colon adenocarcinoma/Rectum adenocarcinoma Esophageal carcinoma 

ALL Acute Lymphoblastic Leukemia 

STES Stomach and Esophageal carcinoma 

KIPAN Pan-kidney cohort (KICH+KIRC+KIRP) 

WT High-Risk Wilms Tumor 

PCPG Pheochromocytoma and Paraganglioma 
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