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ABSTRACT 
 

Background: Breast cancer, comprising 15% of newly diagnosed malignancies, poses a formidable global 
oncological challenge for women. The severity of this malady stems from tumor infiltration, metastasis,  
and elevated mortality rates. Disulfidptosis, an emerging cellular demise mechanism, presents a  
promising avenue for precision tumor therapy. Our aim was to construct a prognostic framework centered 
on long non-coding RNAs (lncRNAs) associated with disulfidptosis, aiming to guide the strategic use of 
clinical drugs, enhance prognostic precision, and advance immunotherapy and clinical prognosis 
assessment. 
Methods: We systematically analyzed the TCGA-BRCA dataset to identify disulfidptosis-linked lncRNAs. 
Employing co-expression analysis, we discerned significant relationships between disulfidptosis-associated 
genes and lncRNAs. Identified lncRNAs underwent univariate Cox regression and validation through LASSO 
regression, culminating in the identification of eight signature lncRNAs using a multivariate Cox 
proportional risk regression model. Then, we utilized the selected genes to build prognostic prediction 
models. 
Results: The DAL model exhibited outstanding prognostic efficacy, establishing itself as an autonomous 
determinant for breast cancer prognosis. It adeptly differentiated low and high-risk patient cohorts, with high-
risk individuals experiencing significantly abbreviated survival durations. Notably, these cohorts displayed 
marked discrepancies in clinical markers and tumor microenvironment attributes.  
Conclusions: The DAL model has performed well in clinical prognostic assessment by combining it with other 
clinical traditional indicators to construct Nomogram plots and use gene expression data to calculate patients' 
disease risk scores. This approach provides new ideas for clinical decision support and personalized treatment 
decisions for patients with different risk levels. 
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INTRODUCTION 
 

Breast cancer stands as a pervasive malignancy, impacting 

women globally and yielding a substantial number of 

yearly diagnoses. Despite significant advancements in 

adjuvant therapies, resulting in an admirable 90% 5-year 

survival rate, breast cancer remains the second most 

prevalent cause of mortality in women, attributable to its 

invasive and metastatic proclivities [1–4]. On a global 

scale, breast cancer prevails as a highly prevalent 

malignancy, prompting a significant annual diagnostic 

burden. Notwithstanding advancements in adjuvant 

therapies that have contributed to a noteworthy 90% 5-

year survival rate, the invasive and metastatic 

characteristics of breast cancer underscore its persistence 

as the second most common cause of mortality among 

women [5, 6]. Conventional prognostic scoring systems 

encompass an array of patient factors, including age, 

tumor characteristics, grading, and staging, to facilitate 

diagnosis. Although TNM staging plays a significant role 

in cancer staging [7, 8], some studies have pointed out 

that immune markers are more accurate and even better 

than TNM staging for prognosis [9]. Also, the TNM 

system may ignore biological heterogeneity within the 

tumor [10]. Early diagnostic markers hold substantial 

promise in positively impacting the quality of life and 

survival duration for individuals grappling with breast 

cancer. 

 

Glucose deprivation in hypercells with upregulated 

SLC7A11 gives rise to disulfidptosis, an intriguing 

mechanism of cell death marked by an anomalous 

accumulation of intracellular disulfidptosis [11]. This 

unique mode of cellular demise not only orchestrates 

the demise of cancer cells but also relies on the 

vulnerability of the actin cytoskeleton to bond stress 

induced by disulfidptosis [12]. Thus, GLUT inhibitors 

cause glucose depletion and disulfidptosis in SLC7A11-

high tumor cells [13]. Despite its profound significance, 

explorations into disulfidptosis within tumors are in 

their nascent stages, and initial findings are currently 

underreported. 

 

Long non-coding RNAs (lncRNAs), distinguished by 

their lack of protein-coding capability and ranging in 

size from 200 nt to 100 kb, have emerged as crucial 

players in cancer diagnosis, straddling roles as both 

oncogenic factors and cancer suppressors [14–17]. The 

compelling association between lncRNA expression 

levels and breast cancer subtype classification positions 

these molecules as promising biomarkers with 

transformative potential [18–22]. However, to bolster 

diagnostic precision, a thorough exploration of the 

involvement of disulfidptosis-associated lncRNA (DAL) 

in the prognosis and tumor microenvironment of BRCA 

is indispensable. 

In our comprehensive investigation, we meticulously 

screened eight disulfidptosis-associated lncRNAs 

(DALs), constructing a model grounded in the TCGA-

BRCA cohort. Our analytical focus extended to 

unraveling the intricate interplay between DALs and 

critical facets such as immunotherapy response, the 

tumor microenvironment, and drug sensitivity. Our 

primary objective was to accentuate the positive 

significance of DALs in prognostic predictions for 

BRCA patients, presenting a valuable tool that not only 

enhances diagnostic accuracy but also aids in the 

meticulous selection of tailored treatments. This 

nuanced approach underscores the potential 

translational impact of our findings in advancing 

precision medicine within the realm of breast cancer 

therapeutics. 

 

MATERIALS AND METHODS 
 

The procurement and compilation of sample data 

 

A comprehensive dataset, encompassing 1097 instances 

of breast cancer (BRCA), was acquired from the TCGA 

database (https://portal.gdc.cancer.gov/). This dataset 

amalgamated gene expression profiles with relevant 

clinical particulars for each specimen, encompassing 

survival status, age, gender, survival duration, and TNM 

stage. In the initial preprocessing of transcriptomic data, 

a conversion from FPKM (Fragments Per Kilobase 

Million) to TPM (Transcripts per million) was executed 

[23]. Following this, the processed expression values 

underwent a logarithmic transformation with a base of 

2. This transformation facilitated the amalgamation of 

genes and their corresponding expression values, 

leading to the creation of comprehensive gene 

expression profiles for each sample. 

 

Concerning clinical information, a streamlined process 

of downloading and merging relevant datasets sufficed 

for the subsequent analysis. This meticulous approach 

ensures the robust integration of gene expression data 

and clinical parameters, laying a solid foundation for 

the in-depth exploration of breast cancer within this 

cohort. 

 

Development and validation of the model 

 

The dataset sourced from the TCGA database underwent 

a meticulous division into two sets, maintaining a 

balanced 1:1 ratio, to fulfill distinct roles in the analytical 

process. The training set assumed the pivotal role of 

model construction, while the validation set functioned  

as a critical evaluator of the model’s performance.  

To pinpoint noteworthy lncRNAs, a univariate Cox 

regression analysis was executed using the “glmnet” 

package in R. Subsequently, a LASSO regression 

https://portal.gdc.cancer.gov/
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approach, incorporating a tenfold cross-validation 

strategy, was employed to pinpoint the optimal point of 

minimal error [24]. This stringent methodology facilitated 

the discernment of pivotal genes and their corresponding 

parameters via a multivariate Cox regression analysis, 

leading to the revelation of eight differentially expressed 

long non-coding RNAs (DALs). These DALs formed 

the basis for constructing essential models, wherein 

each patient’s risk score was meticulously calculated. 

This score was computed by summing the product of 

the expression level of each long non-coding RNA 

(lncRNA) and its respective coefficient, offering a 

quantitative assessment of risk for each participant in 

the cohort. 

 

Correlation analysis of DAL with different clinical 

features 

 

To scrutinize the correlation between DALs and diverse 

clinical characteristics, a comprehensive exploration was 

undertaken. Utilizing the “Limma” package within the R 

software, a rigorous examination of differential gene 

expression was executed on the training dataset. The 

primary objective of this analysis was to discern 

variations in the expression levels of DALs associated 

with clinical indicators and risks. For a nuanced portrayal 

of the diversity in DAL expression across distinct clusters, 

we harnessed the capabilities of the “pheatmap” package 

in R, thereby generating heatmap representations. These 

depictions offer a visual elucidation of the disparate 

expression patterns of DALs concerning various 

clinicopathological features. Such visual aids serve to 

illuminate the intricate relationship between DAL 

expression and diverse clinical characteristics. 

 

Model equations 

 

To scrutinize the correlation between differentially 

expressed long non-coding RNAs (DALs) and various 

clinical characteristics, we conducted a thorough 

analysis of gene expression differences within the 

training dataset, utilizing the “Limma” package in R. 

The overarching goal of this analysis was to discern 

discrepancies in the expression levels of DALs 

associated with clinical indicators and risks. For a 

graphical representation of the nuanced variations in 

DAL expression across distinct clusters, we leveraged 

the capabilities of the “pheatmap” package in R, 

facilitating the generation of heatmap depictions. These 

visual representations vividly illustrate the distinct 

patterns of DAL expression in correlation with 

clinicopathological features. These visual aids constitute 

a valuable method for extracting insights into the 

intricate connection between the expression of 

differentially expressed DALs and diverse clinical 

characteristics. 

Development of an independent prognostic model 

and construction of a nomogram 

 

To establish the independent prognostic relevance of the 

risk score, we performed both univariate and multi-

variate Cox regression analyses. These assessments 

aimed to assess the association between the risk score 

and patient survival outcomes, concurrently accounting 

for other clinicopathological variables as covariates. 

Furthermore, employing the ‘rms’ package in R, we 

crafted histograms to visually illustrate the distribution 

of risk scores and clinicopathological variables. These 

graphical representations provided valuable insights 

into the interrelation between risk scores and various 

clinical characteristics. Subsequently, based on the 

results of the prognostic model, we devised a 

nomogram. Functioning as a graphical predictive 

instrument, this nomogram amalgamates the risk score 

with other pertinent clinical variables to estimate 

personalized survival probabilities for individuals 

within the TCGA-BRCA cohort. 

 

Investigation of enriched biological functions 

 

To glean insights into the functional annotation and 

enrichment pathways linked to the eight differentially 

expressed genes associated with DALs in BRCA, a 

comprehensive functional enrichment analysis was 

undertaken. For Gene Ontology (GO) analysis, the 

ClusterProfiler package in R was employed. 

Furthermore, GSVA analysis, utilizing the 

“c2.cp.kegg.v7.4.symbols.gmt” package from MSigDB 

and the “GSVA” package in R, was conducted to 

discern pathway disparities among distinct clusters. The 

outcomes of these analyses were visually presented 

using the ‘heatmap’ package in R. In addition, Gene Set 

Enrichment Analysis (GSEA) was carried out, 

employing the “c2.cp.kegg.Hs.symbols.gmt” package, 

to delve deeper into enriched pathways associated with 

the differentially expressed genes. These analytical 

endeavors were geared towards unraveling the 

biological functions and pathways potentially 

influenced by the identified DALs in the context of 

BRCA. 

 

Immunological scrutiny of risk attributes 

 

To examine the immunological attributes associated 

with risk assessment, a suite of robust algorithms, 

including EPIC, MCPCOUNTER, CIBERSORT, 

CIBERSORT-ABS, TIMER, XCELL, and 

QUANTISEQ, was deployed for the analysis of 

immune infiltration scores. Subsequently, using the 
“limma” package, we performed Spearman’s correlation 

analyses aimed at elucidating the relationship between 

the proportion of immune cells and risk assessment. 



www.aging-us.com 4 AGING 

Additionally, the CIBERSORT algorithm was utilized 

to categorize BRCA patients based on their immune cell 

characteristics.  

 

In order to assess the enrichment of genetic features 

associated with the cancer immune cycle and treatment, 

we performed GSVA analyses on high-risk cohorts 

using the “clusterProfiler” package [25]. Finally, the 

“ggcor” R package facilitated the establishment of 

connections between risk scores and genetic traits. 

These comprehensive immunological analyses were 

performed with the overarching objective of offering 

profound insights into the immune characteristics 

intricately linked with the risk levels identified in our 

study. 

 

Drug sensitivity 

 

The Genomics of Drug Sensitivity in Cancer (GDSC) 

repository, available at https://www.cancerrxgene.org/ 

(accessed on 22 March 2023) [26], serves as a valuable 

database enabling the categorization of BRCA patients 

into low- and high-risk groups based on their half-

maximal inhibitory concentration (IC50). This 

categorization offers crucial insights into the varying 

sensitivities of distinct patient populations to diverse 

treatments. To further scrutinize the response of these 

patient groups to specific therapeutic interventions, the R 

package “pRRophetic” proves instrumental. This package 

empowers the prediction of drug sensitivity grounded in 

genomic profiles, thereby enabling the personalized 

selection of treatments and the assessment of treatment 

responses in individuals affected by BRCA. 

 

Somatic mutations 

 

For the analysis of mutation information within BRCA 

samples, the TCGA-BRCA mutation database 

(https://portal.gdc.cancer.gov/, accessed on 22 March 

2023) served as the primary data source. Subsequently, 

the Maftools program [27] was employed for the 

comprehensive analysis and visualization of mutation 

profiles. In our investigation, particular emphasis was 

placed on evaluating the risk of breast cancer through a 

comparative examination of mutational load, commonly 

referred to as the tumor mutation burden score. The 

TMB score was calculated by multiplying the mutation-

to-covered bases ratio by 10^6, following the 

methodology outlined in the investigation by Chalmers 

and collaborators [28]. This approach enabled the 

quantification of the overall mutational burden, 

facilitating an assessment of its potential association 

with the risk of breast cancer within the analyzed 

samples. We also used the “limma” package to analyze 

the relationship between mapping tumor stem cells and 

risk scores. 

Statistical analysis 

 

All bioinformatics analyses were conducted leveraging 

the capabilities of R software version 4.2.2 and 

Strawberry Perl version 5.30.0. Spearman’s correlation 

analysis method was employed to scrutinize the 

relationship between immune cell infiltration and risk 

scores. To compare overall survival (OS) outcomes 

between the high-risk and low-risk groups, Kaplan-

Meier (KM) survival curves, complemented by log-rank 

tests, were utilized. Statistical significance was 

established at p-values < 0.05, with the control of false 

discovery rates (FDR) set at < 0.05. 

 

Data availability statement 

 

The datasets utilized in our investigation are accessible via 

the TCGA repository (http://cancergenome.nih.gov/). The 

unprocessed data can be obtained from jianguoyun  

at the following link: https://www.jianguoyun.com/ 

p/DXU0NlwQo47JCxiEw4MFIAA. 

 

RESULTS 
 

Identification of lncRNAs correlated with 

disulfidptosis-induced cellular demise 

 

Figure 1 presents a synopsis of the pivotal steps 

undertaken in this investigation. In the initial phase, an 

exhaustive analysis was performed on the TCGA-

BRCA dataset to sift through protein-coding genes, 

leading to the discovery of 13,162 lncRNAs. 

Subsequent to this, co-expression analysis was executed 

between ten established genes linked to disulfidptosis 

and the lncRNAs associated with disulfidptosis. The 

aim was to discern those manifesting noteworthy co-

expression relationships with disulfidptosis genes 

(Figure 2A). Moreover, the expression levels of these 

lncRNAs were extracted, and their affirmative and 

adverse regulatory associations were ascertained. 

Univariate Cox analysis was utilized to identify 

lncRNAs linked to elevated and diminished risk (Figure 

2B). This analysis facilitated the identification of 

lncRNAs significantly linked to the risk levels. 

Following this, the LASSO algorithm was employed to 

choose distinctive lncRNAs, utilizing LASSO 

regression and observing their regression validation 

trends to pinpoint the juncture with the lowest cross-

validation error (Figure 2C, 2D). Using a multivariate 

Cox proportional hazard regression model, eight 

disulfidptosis-related lncRNAs (MIR4435-2HG, 

AL139035.1, AL451085.2, AP001160.1, NRAV, 

AC015922.2, YTHDF3-AS1, TP53TG1) were chosen 

along with their corresponding regression coefficients 

for model construction. Furthermore, a comprehensive 

investigation into the correlation between the identified 

https://www.cancerrxgene.org/
https://portal.gdc.cancer.gov/
http://cancergenome.nih.gov/
https://www.jianguoyun.com/%0bp/DXU0NlwQo47JCxiEw4MFIAA.
https://www.jianguoyun.com/%0bp/DXU0NlwQo47JCxiEw4MFIAA.
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lncRNAs and the genes associated with disulfidptosis 

was undertaken (Figure 2E). The results unveiled a 

strong correlation between these long non-coding RNAs 

associated with disulfidptosis (DALs) and the genes 

implicated in disulfidptosis (Figure 2F). 

 

Development and validation of the prognostic model 

 

To formulate a resilient prognostic model, the cohort 

was stratified into two cohorts: the Training group and 

the Test group, ensuring an equitable distribution of 

samples in each. The Test group functioned as a 

validation set to appraise the model’s precision. The 

expression levels of the eight lncRNAs associated with 

disulfidptosis were multiplied by their respective 

regression coefficients for each sample. The resultant 

values were then aggregated to compute a risk score 

predicated on the lncRNA expression levels. Following 

this, samples were arranged in ascending order based on 

their risk scores, and the median score was employed to 

categorize them into high-risk and low-risk groups. This 

methodology was independently applied to all samples, 

encompassing both the Training and Test groups 

(Figure 3A–3C). 

 

 
 

Figure 1. The accompanying schematic diagram presents a thorough and all-encompassing summary of the primary cognitive 
processes conducted throughout the course of this study. 
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The correlation analysis between the risk score and 

survival status revealed a positive association, 

indicating that with an elevation in the risk score, there 

was a corresponding increase in the number of fatalities 

(Figure 3D–3F). Further examination of the expression 

patterns of the lncRNAs in the high-risk and low-risk 

groups, encompassing all samples, the Training group, 

and the Test group, disclosed that MIR4435-2HG, 

AL139035.1, and YTHDF3-AS1 lncRNAs exhibited an 

upregulated expression with a rising risk score in the 

 

 
 

Figure 2. Construction and evaluation of a predictive model for disease onset. (A) A co-expression analysis was executed to explore 
the intricate interplay between genes associated with disulfidptosis and pivotal lncRNAs, forming the cornerstone of our model.  
(B) Univariate Cox analysis was employed to pinpoint differentially expressed lncRNAs and assess their correlation with high- and low-risk 
cohorts. (C) Utilizing the LASSO algorithm, integrated with 10-fold cross-validation, we identified the most significant lncRNAs linked to 
disulfidptosis. (D) The coefficients obtained from the LASSO algorithm were scrutinized to establish the foundation for our predictive disease 
model. (E) A correlation heatmap was generated to delve deeper into the intricate relationships between the selected lncRNAs and 
disulfidptosis-related genes. (F) Subsequent analysis of the interconnections among the chosen lncRNAs provided valuable insights into the 
underlying mechanisms of disulfidptosis. 
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high-risk group. In contrast, AL451085.2, AP001160.1, 

NRAV, AC015922.2, and TP53TG1 lncRNAs displayed 

a downregulated expression (Figure 3G–3I). 

 

To evaluate the accuracy of the prognostic model, survival 

curves were plotted, and receiver operating characteristic 

(ROC) analysis was conducted at different time points. 

Consistently, the results demonstrated significantly lower 

survival rates in the high-risk group compared to the low-

risk group at various time points, with statistical 

significance at P < 0.05. The constructed model 

effectively differentiated between the high-risk and low-

risk groups (Figure 3J–3L). Furthermore, the ROC curves 

at different time points indicated that a larger area under 

the curve corresponded to higher predictive accuracy of 

the constructed model (Figure 3M–3O). 

 

 
 

Figure 3. Model construction and evaluation of disease predictive value. (A–C) The dataset, comprising the overall, training, and 

testing sets, underwent stratification based on the risk score. Following this, samples were delineated into high-risk (depicted in red) and low-
risk (depicted in blue) groups, utilizing the median risk score as the threshold. (D–F) The relationship between the risk score and both survival 
time and patient status was examined across the entire dataset, training set, and testing set. (G–I) Examination of the expression profiles of 
each Disulfidptosis-Associated LncRNA (DAL) was conducted, comparing high-risk and low-risk groups within the entire dataset, training set, 
and testing set. (J–L) Survival curves were juxtaposed between the high-risk and low-risk groups in the entire dataset, training set, and testing 
set to elucidate differences in survival outcomes. (M–O) Time-related Receiver Operating Characteristic (ROC) curve analysis was executed to 
appraise the predictive performance of the model across the entire dataset, training set, and testing set. 
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Principal component analysis (PCA) for gene 

expression 

 

To delve further into gene expression patterns, we 

performed principal component analysis (PCA) on four 

distinct categories: all genes, genes associated with 

disulfidptosis, long non-coding RNAs (lncRNAs) linked 

to disulfidptosis, and the eight lncRNAs employed in 

formulating the prognostic model. The PCA analysis 

unveiled discernible separation among these groups 

based on their expression profiles. Notably, upon 

comparing the PCA plots of disulfidptosis-associated 

genes, all genes, the model lncRNAs, and disulfidptosis-

associated lncRNAs, it became apparent that the model 

lncRNAs exhibited a more pronounced differentiation 

between the low and high-risk groups. This observation 

provides compelling evidence that the lncRNAs 

incorporated into the prognostic model possess the 

capability to effectively discriminate between low and 

high-risk sample groups (Figure 4A–4D). 

 

Examination of the correlation between DAL and 

clinical characteristics 

 

To investigate the association between the low and 

high-risk groups and diverse clinical features, we 

constructed heatmaps for a visual representation of the 

relationships. These heatmaps offered a comprehensive 

overview of the correlation between risk scores and 

clinical characteristics, encompassing tumor grade, 

gender, age, T, M, and N (Figure 5A). Moreover, we 

performed analyses to distinguish the distribution 

disparities of clinical features, including tumor grade, 

gender, age, T, M, and N, between the low and high-risk 

 

 
 

Figure 4. Principal component analysis (PCA) was employed to scrutinize the differentiation between the high-risk and low-
risk groups employing diverse gene sets. The four PCA plots depict the sample distribution within the corresponding risk groups based 
on distinct gene sets: (A) incorporating all genes, (B) comprising disulfidptosis-associated genes, (C) encompassing disulfidptosis-associated 
lncRNAs, and (D) involving model lncRNAs. The PCA analysis sought to appraise the unique clustering patterns and the potential 
discriminatory efficacy of these gene sets in distinguishing high-risk from low-risk groups. 
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groups. (Figure 5B–5H). These analytical methodologies 

yielded valuable insights into potential connections 

between Disulfidptosis-Associated LncRNAs (DALs) and 

various clinical characteristics, thereby illuminating the 

potential clinical implications of our findings. 

Subgroup analysis of a disulfidptosis-associated 

lncRNA model in predicting clinical outcomes 

 

To assess the prognostic implications of the DAL model 

within distinct clinical subgroups, a rigorous survival  

 

 
 

Figure 5. Correlation analysis of disulfidptosis-associated lncRNAs (DALs) with diverse clinical characteristics. (A) Heatmap 

illustrating the correlation between DALs and risk levels, along with various clinical attributes. (B) Age, (C) gender, (D) survival status,  
(E) staging, (F) T, (G) N, and (H) M distinctions between the high and low-risk cohorts. 
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analysis was undertaken. The low and high-risk groups 

were stratified based on gender (male and female), age 

(≤50 and >50 years), clinical stage (I-II and III-IV), and 

TNM (T1-2 and T3-4, N0-1 and N2-3, M0 and M1). The 

findings consistently underscored that individuals 

categorized in the high-risk group experienced markedly 

diminished survival durations in comparison to their 

counterparts in the low-risk category across all clinical 

subgroups (p < 0.05) (Figure 6A–6L). These results 

affirm the resilience and widespread applicability of the 

established long non-coding RNA (lncRNA) model 

associated with disulfidptosis in forecasting clinical 

outcomes among varied patient cohorts. 

 

Independent prognostic analysis of clinical features 

and the creation of nomograms 

 

To ascertain the autonomous prognostic efficacy of the 

formulated model, we executed independent prognostic 

analyses on clinical attributes. Univariate independent 

prognostic analysis was employed to scrutinize the 

association between singular clinical characteristics and 

the temporal and categorical aspects of survival. 

Additionally, a multivariate independent prognostic 

analysis was undertaken to appraise the collective impact 

of various clinical traits on survival metrics, taking into 

account plausible interactions between these factors. Our 

observations unveiled age, staging, and risk score as 

autonomous prognostic determinants, underscoring their 

potential to exert influence on patient outcomes 

irrespective of other variables (Figure 7A, 7B). 

 

Moreover, a nomogram was formulated, amalgamating 

diverse clinical attributes to forecast patient survival. 

The calibration curves for 1, 3, and 5 years 

demonstrated a close alignment with the gray line 

segment, denoting a commendable concordance 

between projected and actualized survival probabilities 

(Figure 7C, 7D). Remarkably, the C-index value and the 

area under the ROC curve for the risk score surpassed 

those of alternative clinical traits, indicating the superior 

predictive accuracy of the devised model in 

prognosticating patient survival (Figure 7E, 7F). These 

results highlight the robustness and superior prognostic 

ability of the developed model, underscoring its 

potential clinical utility in predicting patient outcomes. 

 

 
 

Figure 6. The capacity of the DAL model to forecast survival variations in high and low-risk groups among distinct clinical 
subgroups. (A, B) age (>50 and ≤50 years), (C, D) gender, (E, F) M stage, (G, H) N stage, (I, J) clinical stage, and (K, L) T stage. 
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Figure 7. Independent prognostic analysis of clinical characteristics and nomogram creation. (A) Assessment of the independent 

prognostic impact of each clinical factor individually. (B) Evaluation of the independent prognostic influence of multiple factors for each 
clinical variable. (C) Nomograms were formulated incorporating each clinical indicator and risk scores to present a visual aid for predicting 
personalized patient outcomes. (D) Calibration curves were generated to appraise the nomograms’ accuracy, comparing predicted survival 
probabilities with actual survival rates at 1-year, 3-year, and 5-year intervals. (E) Calculation of the C-index was performed to gauge the 
discriminatory efficacy of gender, age, stage, risk scores, T category, N category, and M category in forecasting patient outcomes. (F) Receiver 
operating characteristic (ROC) analysis was undertaken for each clinical indicator to ascertain its predictive performance and capacity to 
differentiate between distinct outcome groups. 
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Enrichment analysis of prognostic markers in breast 

cancer patients 

 

To unravel the functional implications of the identified 

prognostic markers, we conducted Gene Ontology 

(GO) enrichment analysis. The differential genes 

between the two groups were found to participate in 

diverse biological processes, encompassing ovulatory 

cycles and endocrine processes. At the cellular level, 

these genes were associated with blood particle 

composition and intermediate fibers, while at the 

molecular level, they exhibited activities such as 

peptide chain endonuclease activity and hormone 

functions (Figure 8A). 

 

Moreover, GSEA highlighted a notable upregulation 

of pathways associated with immune rejection and 

antigen processing and presentation within the high-

risk group (Figure 8B). For a holistic comprehension 

of differentially enriched pathways, GSVA enrichment 

analysis was executed. The outcomes unveiled 

heightened activity in pathways such as circadian 

rhythm in mammals, linoleic acid metabolism, and 

taurine and hypotaurine metabolism within the low-

risk group. Conversely, the remaining pathways 

exhibited augmented activity in the high-risk group 

(Figure 8C). 

 

These discoveries offer insightful revelations into the 

potential biological processes and pathways linked to 

the identified prognostic markers in individuals with 

breast cancer. The heightened activation of immune-

related pathways in the high-risk cohort implies the 

engagement of immune mechanisms in disease 

progression. Simultaneously, the divergent activities 

across pathways between the low and high-risk cohorts 

underscore potential molecular signatures associated 

with distinct risk profiles. 

 

 
 

Figure 8. Enrichment analysis of prognostic markers in breast cancer patients. (A) Illustrates the pathway enrichment of 
differentially expressed genes concerning cellular components, molecular functions, and biological processes. (B) GSEA enrichment analysis 
reveals five upregulated functional pathways. (C) GSVA is employed to analyze the differential expression of various KEGG pathways between 
the two risk groups. 
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Predictive analysis of the correlation between 

disulfidptosis-related lncRNA model and immune 

cell infiltration and tumor microenvironment 

 

To probe the interconnection between the disulfidptosis-

related lncRNA model and immune cell infiltration, along 

with the tumor microenvironment, a battery of algorithms, 

including QUANTISEQ, XCELL, TIMER, EPIC, 

CIBERSORT, MCPCOUNTER, and CIBERSORT-ABS, 

was employed. These analyses unveiled both affirmative 

and adverse correlations between risk scores and specific 

immune cell types (Figure 9A). CIBERSORT analysis 

additionally disclosed noteworthy distinctions in the 

abundance of plasma cells, Macrophages M2, T cells CD4 

memory resting, Macrophages M0, T cells CD8, B cells 

naive, Tregs, T cells CD4 memory activated, Monocytes, 

and Mast cells resting between the high and low-risk 

cohorts (Figure 9B). Furthermore, disparities in immune 

functions, such as Type II IFN Response, were noted 

between the two risk groups (Figure 9C, 9D). 

 

 
 

Figure 9. Analysis of immune cell infiltration and tumor microenvironment. (A) Bubble plots were employed for the visualization of 
immune cell infiltration within the tumor microenvironment. (B) Variances in immune response were evident through differential immune 
cell infiltration between the high and low-risk groups. (C, D) The high and low-risk groups exhibited significant disparities in immune function, 
implying modifications in immune activity associated with breast cancer risk. (E) Observable distinctions in tumor microenvironment scores 
between the high and low-risk groups indicated variations in the composition and characteristics of the tumor microenvironment. Statistical 
significance was denoted by * (p < 0.05), ** (p < 0.01), and *** (p < 0.001). 
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In addition, studies of the tumor microenvironment 

found that both stromal and immune cells were more 

abundant in the high-risk group than in the low-risk 

group, which may be related to their poor prognosis 

(Figure 9E).  

 

While further validation is warranted, these findings 

suggest that the constructed disulfidptosis-related 

lncRNA model can offer valuable insights into the 

relationship between immune cell infiltration, risk 

scores, and immunotherapy pathways in BRCA. 

 

Disparate analysis of drug sensitivity linked to long 

non-coding RNAs correlated with Disulfidoptosis-

induced mortality 

 

The investigation into disparities in drug sensitivity 

between cohorts classified as high and low risk 

represents a potential avenue for refining strategies in 

breast cancer therapeutics. Our scrutiny disclosed 

noteworthy distinctions in the IC50 values of 32 

pharmaceutical agents among these risk-stratified 

groups, implying that risk scores could function as 

predictive benchmarks for discerning drug sensitivity 

and informing judicious clinical dosing decisions. 

Notably, BI-2536, Erlotinib, KU-55933, and MG-132 

exhibited lower IC50 values in the high-risk group, 

implying enhanced efficacy of these drugs in treating 

high-risk breast cancer patients. Conversely, 

Afuresertib, BMS-345541, GNE-317, Ipatasertib, 

IWP-2, Leflunomide, Mitoxantrone, and MK-2206 

demonstrated relatively higher IC50 values in the 

high-risk group, suggesting potentially reduced 

effectiveness and the necessity for higher dosages in 

high-risk patients. These findings propose the potential 

utility of risk scores in drug selection and dosage 

optimization for breast cancer treatment. However, it 

is crucial to note that further validation is necessary to 

confirm these results and evaluate the clinical 

applicability of risk scores in predicting drug 

sensitivity (Figure 10A–10L). 

 

Comparison of somatic mutations in the low and 

high-risk groups 

 

We undertook an examination of somatic mutation 

frequencies in cohorts of breast cancer patients, aiming to 

discern variances between those deemed low and high 

risk. Our observations unveiled discernible patterns in the 

mutation frequencies of pivotal genes. In particular, the 

incidence of PIK3CA mutations was less frequent in the 

high-risk category (31%) in contrast to the low-risk subset 

(38%), while TP53 mutations exhibited a heightened 
prevalence in the high-risk group (42%) compared to their 

low-risk counterparts (21%). It is noteworthy that 

PIK3CA and TP53 emerged as the most frequently 

mutated genes among individuals with breast cancer 

(Figure 11A, 11B). 

 

Moreover, the cohort identified as high-risk demonstrated 

a markedly elevated tumor mutation load in comparison 

to their low-risk counterparts. Additionally, a discernible 

positive correlation emerged between the risk score and 

the tumor mutation load (R=0.18, P=2.5e-08) (Figure 

11C, 11D). Tumor stem cells (DNAss and RNAss) are 

crucial regulators in the advancement of tumors. We also 

investigated the relationship between stem cell scores, 

derived from transcriptomic data, and patient risk, 

revealing a positive correlation between the two (P=1.8e-

12, R=0.25) (Figure 11E). 

 

Survival analysis based on tumor mutational load 

demonstrated a gradual decrease in patient survival over 

time. Individuals with a diminished mutation load 

exhibited a more favorable prognosis compared to those 

harboring elevated mutation burdens, whereas those 

with concurrent high-risk scores and heightened tumor 

mutation burden demonstrated the most unfavorable 

prognosis (P<0.01) (Figure 11F, 11G). 

 

DISCUSSION 
 

Breast carcinoma (BC) stands as the most widespread 

malignancy impacting women on a global scale [29], 

constituting roughly 15% of all newly diagnosed cases 

[30]. Extensive evidence indicates that the effectiveness 

of conventional approaches such as chemotherapy, 

surgery, or radiotherapy in treating metastatic breast 

cancer remains consistently low [31]. Henceforth, the 

imperative lies in crafting multi-gene composite models 

capable of precision in prognosticating outcomes for 

breast cancer patients. 

 

Gan Boyi et al. recently introduced an innovative 

form of cellular demise termed disulfidptosis, which 

distinguishes itself from other mechanisms of cell 

death by relying on the intracellular accumulation of 

disulfidptosis for binding abnormal disulfidptosis to 

actin and cytoskeletal proteins [12]. This unique mode 

of cell death holds potential for effective induction in 

cancer treatment, thus presenting a promising avenue 

for targeted cancer therapy. Simultaneously, as cancer 

research progresses, the significance of lncRNAs in 

tumorigenesis is increasingly acknowledged. Notably, 

certain investigations have demonstrated that the 

abundance of lncRNAs even surpasses that of proteins 

in diseases like acute granulocytic leukemia and T 

acute lymphoblastic leukemia, underscoring the 

pivotal role of lncRNAs in cancer prediction [32]. 

 

Building upon the significant implications of 

disulfidptosis-induced cell death and the pivotal role of 
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lncRNAs in tumor biology, we developed a model 

comprising eight differentially expressed lncRNAs 

(DALs) with the objective of identifying their positive 

prognostic significance in patients with breast cancer 

(BRCA). Our approach involved employing Cox 

analysis in conjunction with LASSO regression cross-

validation to pinpoint eight DALs (MIR4435-2HG, 

AL139035.1, AL451085.2, AP001160.1, NRAV,  

 

 
 

Figure 10. DAL-related drug sensitivity analysis. (A) Afuresertib, (B) BI-2536, (C) BMS-345541, (D) Erlotinib, (E) GNE-317, (F) Ipatasertib, 

(G) IWP-2, (H) KU-55933, (I) Leflunomide, (J) MG-132, (K) Mitoxantrone, (L) MK-2206. 
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Figure 11. Comparative analysis of somatic mutation rates and influencing factors in high and low-risk groups.  
(A, B) Comprehensive assessment was undertaken to discern disparities in somatic mutations between the high and low-risk groups.  
(C) Observable distinctions in tumor mutation burden (TMB) were noted between the high and low-risk groups, signifying variations in the 
mutational landscape. (D) Investigation into the relationship between TMB and risk scores yielded insights into the connection between 
mutational burden and breast cancer risk. (E) Examination of the correlation between risk scores and cancer stem cells (CSCs) provided 
illumination on the potential involvement of CSCs in breast cancer risk. (F) Comparative analysis of survival curves over time between high 
and low tumor mutation burdens elucidated the impact of mutational burden on patient survival. (G) Survival curves over time were 
scrutinized for different combinations of tumor mutation burdens and risk scores, emphasizing the synergistic effect of mutational burden 
and risk scores on patient prognosis. 



www.aging-us.com 17 AGING 

AC015922.2, YTHDF3-AS1, TP53TG1) that exhibited 

independent predictive power, forming the basis of our 

model construction. 

 

Among these eight DALs, antecedent data suggests that 

MIR4435-2HG, AL451085.2, NRAV, AC015922.2, 

YTHDF3, and TP53TG1 exhibit potential as prognostic 

indicators in cancer. Conversely, additional scrutiny is 

warranted to validate the prognostic significance of 

AL139035.1 and AP001160.1. Remarkably, the 

aberration in MIR4435-2HG has been linked to an 

adverse prognosis in breast cancer, potentially 

amplifying cellular proliferation and invasiveness 

through its interaction with β-linked proteins [33]. 

Moreover, our discoveries correspond with prior 

investigations, affirming that elevated expression levels 

of AL451085.2 correlate with a propitious prognosis in 

patients [34]. 

 

NRAV, acknowledged as an immune-associated 

lncRNA and a pivotal mediator of antiviral innate 

immunity, has been implicated in diverse malignancies, 

including endometrial and breast cancers, gastric 

cancer, and glioma, elucidated by interactive molecular 

pathway analyses [35, 36]. The heightened expression 

of AC015922.2 has been discerned as a prognostic 

determinant in populations characterized by elevated 

risk [37]. In addition, YTHDF3 destabilizes lncRNA 

GAS5, thereby promoting the progression of colorectal 

cancer [38]. On the other hand, our investigation 

revealed TP53TG1 to be a safeguarding element. 

Previous investigations have demonstrated a significant 

association between TP53TG1 and lymph node 

infiltration in breast cancer patients, suggesting its 

potential oncogenic role in the official cavity subtype of 

breast cancer [39], possibly due to its characteristic 

expression in a specific subtype. Overall, our model 

based on these eight DALs holds promise for early 

detection and prognostic prediction in BRCA patients, 

highlighting the potential clinical significance of these 

lncRNAs in the management of breast cancer. 

 

Upon careful examination of the survival curves, a 

distinct divergence in the survival rates becomes 

evident over time between the groups categorized as 

high and low-risk. This differentiation is further 

supported by the successful application of principal 

component analysis, which effectively distinguishes 

these two risk groups. Moreover, the ROC curves, 

especially those pertaining to time points 1, 3, and 5, 

attest to the heightened accuracy of the devised model. 

 

To augment the clinical significance and practicality of 
our investigation, we formulated and authenticated 

nomograms encompassing various clinical parameters 

(each possessing autonomous predictive efficacy, with 

the exception of gender) and the exceedingly precise 

risk scores derived from the DAL model. Comparing 

the C-index and the area under the curve (AUC) for 

each indicator reveals that the risk scores obtained from 

our DAL model outperform other existing clinical 

indicators as better prognostic predictors. This 

integration of clinical indicators and risk scores through 

nomograms offers a more comprehensive and robust 

approach for prognostic assessment in clinical practice. 

 

Moreover, we conducted GO and GSEA to explore  

the functional characteristics of genes exhibiting 

differential expression between the low and high-risk 

groups. Our findings suggest the engagement of these 

disparately expressed genes in pivotal biological 

processes, including the ovulatory cycle, endocrine 

mechanisms, and hormone secretion. As we all know, 

drugs can act on estrogen receptor (ER) and 

progesterone receptor (PR) to achieve endocrine therapy 

for breast cancer, which shows the important role of 

hormones in breast cancer. The enrichment further 

illustrates that the prognostic predictor genes we 

screened play a regulatory role in endocrinology. 

Meanwhile, we found that the high-risk group was up-

regulated in allograft rejection and antigen processing 

and presentation. Combined with the immune 

correlation analysis, it is not difficult to see that the 

high-risk group has higher expression of many immune 

functions compared with the low-risk group, which to a 

certain extent confirms why HER-2 positive and triple-

negative breast cancers, usually have higher immune 

cell infiltration and worse prognosis [40]. This suggests 

the essential role of these genes in regulating and 

participating in these specific physiological processes. 

 

The outcomes of our investigation propose a close 

linkage between breast cancer and endocrine regulation. 

Tumor cells demonstrate proficiency in orchestrating 

their microenvironment through autocrine and paracrine 

secretions, thereby fostering their autonomous 

sustenance, proliferation, and maturation [41]. Given 

this perspective, we delved more profoundly into the 

breast cancer tumor microenvironment, frequently 

denoted as the tumor microenvironment, enshrining the 

cellular milieu where tumor or cancer stem cells reside, 

concomitant with the pivotal involvement of immune 

cells [42]. Our investigation extended to analyzing the 

immune infiltration patterns of the eight differentially 

expressed lncRNAs (DALs) in relation to tumor cells. 

We identified remarkable variances in the composition 

of immune cells between the high and low-risk cohorts. 

In the high-risk group, there was a downregulation 

observed in plasma cells, T cells CD8, Monocytes, Mast 
cells resting, B cells naïve, and T cells CD4 memory 

resting. Conversely, T cells CD4 memory activated, 

Macrophages M2, Neutrophils, Tregs, and Macrophages 
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M0 exhibited an upregulation in the high-risk group. 

Notably, naive B cells, which constitute the majority of 

B cells (accounting for 65%) in normal breast tissue 

[43], exhibited significant downregulation in the high-

risk group. This reduction could be ascribed to the 

transformation of naïve B cells into alternative immune 

cell types under the influence of myeloid-derived 

suppressor cells (MDSCs) associated with breast cancer 

[44, 45]. These converted naive B cells may acquire 

immunosuppressive properties, thereby suppressing T 

cell responses. Regarding plasma cells, studies provide 

conflicting evidence regarding their role in breast cancer 

prognosis. Some suggest that high expression of plasma 

cell subgenes correlates with a favorable prognosis, 

while others propose a promotive role, potentially 

indicating variations in expression depending on tumor 

type and subtype [46]. In the realm of invasive ductal 

carcinoma of the breast, the existence of tumor-

infiltrating lymphocytes, notably comprising CD8+ 

cells, has been recognized as a favorable prognostic 

indicator, exerting a substantial influence within the 

tumor microenvironment [47]. Tumor-associated 

macrophages (TAMs), a subset of monocytes, have 

been recognized as important monocytes within the 

breast cancer microenvironment, contributing to  

cancer metastasis to distant sites [48]. Notably, resting 

mast cells within fully developed breast tumors have 

been suggested to impede the progression of breast 

cancer [49].  

 

In the high-risk cohort, we noted elevated expression 

levels of activated CD4+ memory T cells in contrast to 

the low-risk group. This observation implies that CD4+ 

memory T cells were prompted and stimulated to 

sustain an immune response [50]. A study undertaken 

by Olkhanud et al. underscored the function of 

regulatory B cells (Bregs) in transforming quiescent 

CD25-, CD4+ T cells into CD25+, Foxp3+, CD4+ 

regulatory T cells (Tregs) among breast cancer patients 

[51]. Consequently, the upregulation of Tregs in breast 

cancer patients may be attributed to this conversion 

process. The elevation of M0 macrophages in the high-

risk cohort can be ascribed to the existence of 

circulating macrophages within the tumor micro-

environment. These macrophages have the potential to 

modify the tumor microenvironment, consequently 

fostering tumor progression [52]. Additionally, cancer-

associated fibroblasts (CAFs) in invasive breast cancer 

have been reported to facilitate the induction of 

monocytes into M2 macrophages [53, 54]. This implies 

that SAA1 might play a role in the immunosuppressive 

effects evident in individuals with breast cancer. These 

results underscore the intricate interplay between 
immune cells and the tumor microenvironment in breast 

cancer. The activation and modulation of specific 

immune cell populations, including CD4+ memory T 

cells, Tregs, macrophages, and neutrophils, can 

profoundly impact the advancement and prognosis of 

breast cancer. A comprehension of these immune inter-

actions offers valuable insights into the mechanisms 

governing tumor development and may offer guidance 

for the formulation of immuno-therapeutic strategies in 

breast cancer treatment. 

 

Our findings indicate that both the immune score and 

the stromal score were higher in the high-risk group 

compared to the low-risk group, an observation that 

suggests that both the stromal microenvironment and 

the immune microenvironment have a strong influence 

on the high-risk phenotype of breast cancer patients. It 

is firmly established that the interplay between stromal 

and epithelial constituents of the breast, facilitated by 

paracrine interactions, can sustain the growth and 

progression of breast tumors [55]. The established 

understanding dictates that the dynamic interplay 

between the stromal and epithelial constituents of the 

breast, facilitated through paracrine interactions, 

possesses the capacity to perpetuate the growth and 

progression of breast tumors. Significantly, 

accumulating evidence posits that the intercellular 

communication dynamics between stromal constituents 

and triple-negative breast cancer (TNBC) cells may 

contribute to fostering tumor growth, metastatic 

extravasation, and the colonization of TNBC tumors 

[56]. The stromal microenvironment appears to exert 

significant effects on various aspects of tumor growth 

and metastasis. These findings emphasize the 

importance of considering the stromal component in 

understanding breast cancer biology and its clinical 

implications. Targeting the stromal-epithelial inter-

actions and modulating the tumor microenvironment 

may hold potential for therapeutic interventions aimed 

at restraining tumor growth and metastasis among 

breast cancer patients at high risk. 

 

Breast cancer is generally not associated with a high 

tumor mutational burden (TMB). However, our findings 

indicate a trend of increasing TMB with higher risk 

scores, and there are variations in TMB among different 

breast cancer subtypes [57]. In both cohorts, PIK3CA 

and TP53 emerged as the most frequently mutated 

genes. Remarkably, the low-risk cohort displayed a 

heightened incidence of PIK3CA mutations compared 

to the high-risk cohort. PIK3CA mutations are 

renowned for instigating the PI3K-AKT-mTOR 

pathway, a pivotal regulator of cellular growth and 

survival frequently implicated in breast cancer [58]. The 

diminished occurrence of PIK3CA mutations in the 

high-risk demographic could imply that these mutations 
are primarily prevalent in the initial stages of breast 

carcinoma, such as ductal carcinoma in situ [59]. 

Alternatively, this observation might signify the pre-



www.aging-us.com 19 AGING 

existence of an activated PI3K-AKT-mTOR pathway in 

high-risk patients, thereby contributing to their 

heightened risk. Conversely, TP53 demonstrated an 

augmented mutation rate in the high-risk cohort in 

contrast to the low-risk group, suggesting a plausible 

involvement of TP53 in the progression of breast 

cancer. TP53 mutations are linked to genomic 

instability and therapy resistance, and the heightened 

frequency of TP53 mutations in the high-risk category 

could contribute to their unfavorable prognosis [60]. 

These discoveries underscore the significance of 

discerning distinct genetic modifications, particularly 

PIK3CA and TP53 mutations, within varied risk cohorts 

of breast cancer patients. The presence of these 

mutations may have implications for prognosis, 

therapeutic response, and potential targeted treatment 

strategies. Further investigations into the molecular 

mechanisms driven by these mutations could provide 

valuable insights for personalized management of breast 

cancer patients. 

 

Elevated tumor mutation burden (TMB) and augmented 

risk scores were linked to diminished patient survival in 

breast cancer, establishing their potential as pivotal 

prognostic indicators. The identified association 

between high-risk breast cancer cohorts and heightened 

TMB suggests a potential utility of immunotherapeutic 

modalities, encompassing immune checkpoint 

inhibitors, for these patients. Strategically targeting the 

immune milieu in high-risk cases holds promise for 

augmenting treatment efficacy. Furthermore, the 

positive correlation between risk scores and stem cell 

abundance intimates a potentially higher prevalence of 

cancer stem cells in high-risk breast cancer patients. 

Cancer stem cells, acknowledged for their implication 

in cancer advancement, resistance to therapies, and 

adverse prognoses, accentuate the intricacies of the 

disease. This finding further emphasizes the importance 

of considering risk scores in personalized treatment 

decision-making for breast cancer patients, as it could 

help identify patients who may require more aggressive 

treatment approaches or novel therapies targeting cancer 

stem cells [61].  

 

It has been suggested that leflunomide can inhibit 

mitochondrial fission in triple-negative breast cancer, and 

has also been shown to inhibit breast cancer growth in 

combination with doxorubicin [62, 63]. The difference in 

sensitivity of different drugs in high and low-risk groups 

provides doctors with clinical recommendations for more 

refined treatment, but more research is needed to further 

confirm the use of specific drugs. 

 
In summary, the results suggest that risk scores hold 

valuable information for predicting drug sensitivity, 

tumor mutation load, stem cell content, and patient 

prognosis in breast cancer. Incorporating risk scores 

into clinical decision-making could assist in tailoring 

treatment strategies to individual patients. However, 

additional validation and prospective studies are 

necessary to confirm these findings and assess their 

clinical utility in a broader patient population. 

 

Despite the clinical significance of our study in 

providing accurate prognostic predictions for BRCA 

patients and informing treatment decisions, there are 

several notable limitations that should be 

acknowledged. Firstly, individual variations among 

BRCA patients may have an impact on the expression 

patterns of the eight identified DALs, and it is 

challenging to completely eliminate these confounding 

factors. Future studies could consider incorporating 

additional patient-specific factors to enhance the 

precision of prognostic predictions. Due to the lack of 

comprehensive lncRNA information in other datasets 

such as GEO and ICGC, our study mainly utilized 

random group validation within the TCGA dataset. 

Despite diligent attempts to corroborate our results 

with external datasets, the persistent absence of 

consistent and precise lncRNA data across diverse 

platforms and cohorts poses an ongoing challenge. 

Subsequent studies ought to aspire towards the 

inclusion of larger, more diverse datasets to 

authenticate and broaden the scope of our findings. At 

the same time, this study lacked experimental 

validation of the constructed genes, and more 

experimental studies are still needed to exemplify the 

prediction of DAL for the difference in prognostic 

level of breast cancer. Notwithstanding these 

constraints, our inquiry imparts valuable insights into 

the prognostic relevance of the identified DALs in 

BRCA patients. The prospects for future research lie in 

the refinement of data collection and analysis 

methodologies to surmount these limitations, thereby 

amplifying the clinical utility of our discoveries. 

 

CONCLUSIONS 
 

In summary, our research underscores the prospective 

significance of lncRNAs associated with disulfidptosis 

in serving as prognostic indicators and therapeutic 

targets for breast cancer. Integrating eight identified 

DALs as prognostic benchmarks can enhance the 

accuracy of prognosis prediction for BRCA patients. 

This insight offers hope for clinicians to devise 

personalized treatment strategies (including chemo-

therapy and immunotherapy) based on an understanding 

of the immune environment and unique subtypes of 

breast cancer. Further follow-up studies and clinical 

validation are needed to thoroughly ascertain the 

effectiveness of their clinical assessment. 
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