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ABSTRACT 
 

Prior studies showed increased age acceleration (AgeAccel) is associated with worse cognitive function among 
old adults. We examine the associations of childhood, adolescence and midlife cognition with AgeAccel based 
on DNA methylation (DNAm) in midlife. 
Data are from 359 participants who had cognition measured in childhood and adolescence in the Child Health and 
Development study, and had cognition, blood based DNAm measured during midlife in the Disparities study. 
Childhood cognition was measured by Raven’s Progressive Matrices and Peabody Picture Vocabulary Test (PPVT). 
Adolescent cognition was measured only by PPVT. Midlife cognition included Wechsler Test of Adult Reading 
(WTAR), Verbal Fluency (VF), Digit Symbol (DS). AgeAccel measures including Horvath, Hannum, PhenoAge, 
GrimAge and DunedinPACE were calculated from DNAm. Linear regressions adjusted for potential confounders 
were utilized to examine the association between each cognitive measure in relation to each AgeAccel. 
There are no significant associations between childhood cognition and midlife AgeAccel. A 1-unit increase in 
adolescent PPVT, which measures crystalized intelligence, is associated with 0.048-year decrease of aging 
measured by GrimAge and this association is attenuated after adjustment for adult socioeconomic status. 
Midlife crystalized intelligence measure WTAR is negatively associated with PhenoAge and DunedinPACE, and 
midlife fluid intelligence measure (DS) is negatively associated with GrimAge, PhenoAge and DunedinPACE. 
AgeAccel is not associated with VF in midlife. 
In conclusion, our study showed the potential role of cognitive functions at younger ages in the process of 
biological aging. We also showed a potential relationship of both crystalized and fluid intelligence with aging 
acceleration. 
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INTRODUCTION 
 

Many neurodegenerative pathologies such as amyloid 

plaques and neurofibrillary tangles develop long before 

the clinical diagnosis of cognitive disorders [1]. This 

has led to many investigations of early-life cognitive 

outcomes, which have been demonstrated to be 

instructive in studying late-life cognitive impairment 

and dementia [2]. Recent research showed that both 

level of and change in language-based cognition during 

adolescence were associated with midlife cognition [3], 

suggesting that prevention of cognitive disorders may 

be able to start as early as adolescence. 

 

DNA methylation (DNAm), which can regulate gene 

expression without altering the DNA segments by 

adding a methyl group at cytosine residues, has been 

found to be associated with cognitive abilities [4]. 

DNAm may contribute to learning and memory 

through a variety of mechanisms including synaptic 

plasticity and neurogenesis, stem cell function, 

immunosenescence, circadian rhythms, and the effects 

of cumulative stress through glucocorticoid signaling 

[5]. In recent years, epigenetic clocks were created 

based on DNAm to estimate the construct of 

‘biological’ age [6–10]. DNAm age accelerations, 

defined as the difference between epigenetic clocks 

and chronological age or the residuals in epigenetic 

clocks independent of chronological age, were 

proposed to measure the discrepancy between 

chronological and biological age. These DNAm age 

accelerations have been repeatedly shown to be 

associated with early-life exposures and diverse age-

related disorders and premature mortality [11–15]. 

Investigating the relationship between cognitive 

functions and DNAm age acceleration could be useful 

for identification of mechanisms underlying the 

development of cognitive disorder independent of 

known neuro-pathologies. 

 

To date, only a handful of studies have examined the 

relationship between cognitive function and DNAm age 

acceleration. While previous evidence from a small 

number of cross-sectional studies was inconsistent [5, 

16–19], three recent longitudinal studies on cognition at 

older age (>65 years old) have found that a faster age 

acceleration was associated with cognitive decline [5, 

20, 21]. Two other studies showed that the negative 

associations between DNAm age acceleration and 

cognitive skills may exist in late adolescence [22, 23]. 

However, the relationship between cognitive function 

and DNAm age acceleration from adolescence to 

midlife hasn’t been explored. In the current study, we 

investigated whether cognitive function in childhood 

and adolescence is related to DNAm age acceleration 

assessed 35 years after the cognitive function 

assessment. Many studies have demonstrated the role of 

epigenetic modifications in cognitive aging at old age 

[5, 20, 21, 24]. Others have suggested DNAm age 

acceleration is a mediator for sex differences in verbal 

memory and processing speed [25, 26]. Thus, we 

hypothesized that the DNAm age acceleration 

influenced by cognitive skills at early age could in turn 

affect one’s cognition in later life and examined the 

cross-sectional associations of DNAm age acceleration 

and cognitive measures in midlife. By using this unique 

study design, we hope to make the first step to 

understand the relationship between cognition at 

younger age and aging, which might potentially help 

refine the strategy to prevent cognitive aging in the 

future. 

 

RESULTS 
 

We provide an overview of the study population and 

workflow in Figure 1. Briefly, data from 359 

participants who had cognition measured in childhood 

and adolescence in the Child Health and Development 

study (CHDS), and had cognition, blood based DNAm 

measured during midlife in the Disparities study 

(DISPAR) were used. Childhood (9–11 years) fluid 

intelligence was measured by Raven Colored 

Progressive Matrices (RCPM-9) and crystallized 

intelligence was measured by Peabody Picture 

Vocabulary Test (PPVT-9). Adolescent (15–17) 

cognition was measured only by Peabody Picture 

Vocabulary Test (PPVT-15). Midlife crystallized 

intelligence was measured by Wechsler Test of Adult 

Reading (WTAR) and fluid intelligence was measured 

by Verbal Fluency (VF), Digit Symbol (DS). Midlife 

DNAm age acceleration measures including Horvath, 

Hannum, PhenoAge, GrimAge and DunedinPACE were 

calculated from DNAm. Linear regressions adjusted for 

potential confounders were utilized to examine the 

associations between each cognitive measure in relation 

to each DNAm age acceleration. To align with our 

hypotheses mentioned above, childhood/adolescent 

cognitive measures were used as independent variables 

in the childhood/adolescent analyses while midlife 

cognitive measures were used as dependent variables in 

the midlife analyses. 

 

Characteristics of analytic sample 

 

Sociodemographic and clinical characteristics of the 

participants are summarized in Table 1. Approximately 

half of the study population are female (46.8%). Over 

half are non-Hispanic White (56.5%) and 61 (34.3%) 

are non-Hispanic Black based on self-identified race of 

the participants in the DISPAR study. Participants who 

did not self-identify as non-Hispanic White or Black are 

included as “Other race/ethnicity” (n = 33). 
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All 5 DNAm age acceleration measures follow a normal 

distribution (Supplementary Figure 1) but DunedinPACE 

has a much smaller standard deviation (SD) (Table 1). We 

show that DunedinPACE has a moderate correlation with 

GrimAge (R = 0.6) but neither measure correlates with 

Horvath or Hannum (R ≤ 0.15) (Supplementary Figure 

2C). PhenoAge has a weak positive correlation with all 

other age acceleration measures (R ≈ 0.4). 

 

All cognitive scores were comparable to average scores 

in the general population. All cognitive measures in 

childhood and adolescence are positively correlated 

with each other before and after multiple imputation 

(Supplementary Figure 2A, 2B). Distributions of 

midlife cognitive function are similar before and after 

multiple imputation (Supplementary Figure 3). VF and 

DS follow a normal distribution and WTAR is 

moderately left-skewed. WTAR shows moderate 

correlations with all childhood and adolescent cognitive 

measures, especially PPVT-15 (R = 0.77) as they all 

measure crystallized intelligence that’s developed at an 

early age (Supplementary Figure 2B). The three midlife 

cognitive measures have low correlations with each 

other (R ranges 0.21–0.4), given they assess different 

components of adult cognition [27–30]. 

 

Childhood/adolescent cognitive function and midlife 

DNAm age acceleration 

 

There are no statistically significant associations 

between childhood cognitive function and midlife 

DNAm age acceleration measures (Figure 2). 

Adolescent cognitive measure (PPVT-15) is not 

significantly associated with Horvath, Hannam and 

PhenoAge age acceleration but GrimAge and 

DunedinPACE. A 1-unit increase in PPVT-15 is 

associated with 0.048-year (1.1% SD) decrease of aging 

measured by GrimAge and 0.001 decrease (0.71% SD) 

in the pace of aging measured by DunedinPACE 

(Figure 2). However, the latter is not statistically 

significant after adjusting for multiple testing. 

Associations from complete case analyses are similar to 

the ones from analyses after multiple imputation 

(Supplementary Figure 4). After adjusting for adulthood 

SES, the absolute value of Beta for the associations of 

PPVT-15 with GrimAge and DunedinPACE has shrunk 

to half (Table 2). 

 

Midlife cognitive function and midlife DNAm age 

acceleration 

 

WTAR shows negative associations with all 5 age 

acceleration measures but only two are statistically 

significant with FDR-q value less than 0.05 (Figure 3). 

Specifically, 1-SD increase in PhenoAge is associated 

with 0.89-unit decrease in WTAR score. A 1-SD 

increase in DunedinPACE is associated with 1.12-unit 

decrease in DunedinPACE. Associations between 

WTAR on PhenoAge and DunedinPACE are no longer 

in complete case analysis than analysis after multiple 

imputation (Supplementary Figure 5). 

 

VF test score decreases by 0.94 per SD increase of pace 

of aging measured by DunedinPACE and remains

 

 
 

Figure 1. Overview of study population and workflow. 
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Table 1. Demographic and clinical characteristics of the child health and development studies (CHDS) and the 
racial disparities (DISPAR) Aging study participants in childhood, adolescence, and midlife (n = 359). 

 Childhood Adolescence Midlife 

Female, n (%) 168 (46.8%)   

Race/Ethnicity, n (%)    

Non-Hispanic White 203 (56.5%)   

Non-Hispanic Black 123 (34.3%)   

Other Race/Ethnicity 33 (9.2%)   

Age, mean (SD) 10.0 (0.9) 16.6 (0.6) 49.3 (1.3) 

RCPM, mean (SD) 32.3 (10.2) – – 

PPVT, mean (SD) 81.3 (11.2) 114 (16.5) – 

WTAR, mean (SD) – – 33.8 (10.2) 

VF, mean (SD) – – 23.4 (6.1) 

DS, mean (SD) – – 58.8 (18.1) 

Socioeconomic status1, n (%)    

Low 119 (33.1%) 119 (33.0%)  

Medium 178 (49.6%) 155 (43.2%)  

High 62 (17.3%) 85 (23.7%)  

BMI, mean (SD) 17.7 (2.7) 22.0 (4.10) 29.6 (6.4) 

Lived with someone that smoked, n (%) 215 (59.9%) 215 (59.9%) – 

Cigarette use2, n (%)    

Never – 307 (85.5%) 192 (53.5%) 

Past – 46 (12.8%) 90 (25.1%) 

Current – 6 (1.7%) 77 (21.4%) 

Alcohol use2, n (%)    

Never – 86 (24.0%) 83 (23.1%) 

Past – – 77 (21.4%) 

Current – 273 (76.0%) 199 (55.4%) 

Hypertension, n (%) – – 98 (27.3%) 

Horvath3, mean (SD) – – 0.0 (4.34) 

Hannum3, mean (SD) – – 0.0 (4.11) 

GrimAge3, mean (SD) – – 0.0 (4.39) 

PhenoAge3, mean (SD) – – 0.0 (5.94) 

DunedinPACE, mean (SD) – – 1.0 (0.136) 

Abbreviation: RCPM: Raven Colored Progressive Matrices; PPVT: Peabody Picture Vocabulary Test; WTAR: Wechsler Test of 
Adult Reading; VF: Verbal Fluency; DS: Digit Symbol; SES: Socioeconomic Status; BMI: Body Mass Index. 1One SES measure 
was created based on maternal education at birth, paternal occupation, and family income at birth, ages 9–11 and 15–17 to 
represent SES at both childhood and adolescence. Midlife SES index was developed by combining information on college 
education, self-reported family income and occupational status. 2Information on cigarette and alcohol use in adolescence 
were measured and defined in difference matrices from those in midlife. 3Horvath, Hannum, GrimAge and PhenoAge are the 
residuals in the corresponding epigenetic clocks after regressing out chronological age. 

 

 

significant after adjusting for multiple testing (Figure 

3). Although the estimated beta coefficient is similar to 

the one in the complete case analysis, it is no longer 

significant in the complete case analysis 

(Supplementary Figure 5). VF is not significantly 

associated with other age acceleration measures. 
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Table 2. Comparison of associations of adolescent cognitive function (PPVT-15) with midlife DNA methylation 
age accelerations before and after adjustment for adult SES. 

 Before adjustment for adult SES After adjustment for adult SES 

Age acceleration Beta SE Age acceleration Beta SE Age acceleration Beta SE 

Horvath −0.018 0.016 0.283 −0.406% −0.014 0.017 0.413 −0.323% 

Hannum 0.012 0.013 0.373 0.285% 0.011 0.014 0.421 0.268% 

GrimAge −0.048 0.015 1.693E-03 −1.101% −0.025 0.015 0.105 −0.566% 

PhenoAge −0.009 0.021 0.665 −0.154% −0.005 0.022 0.804 −0.092% 

DunedinPACE −9.653E-03 4.453E-03 0.031 −0.710% −4.521E-03 4.549E-03 0.321 −0.332% 

Column “% SD change” is showing that 1-unit change in PPVT-15 is associated with X.XXX% standard deviation (SD) change in 
DNA methylation age acceleration. SD for each DNA methylation age can be found in Table 1. 
 

DS is not significantly associated with Horvath and 

Hannum age acceleration (Figure 3). A 1-SD year 

increase in aging measured by GrimAge, PhenoAge and 

DunedinPACE is associated with 3.57, 2.91 and 4.1 

decrease in DS respectively. These three associations 

remain significant even after multiple testing 

adjustment, however, the precision of the estimates is 

low (wide 95% confidence interval). In complete case 

analysis, associations are larger than analysis after 

multiple imputation, with 1-SD year increase in 

GrimAge, PhenoAge or DunedinPACE associated with 

more than 4-unit decrease in DS. 

 

DISCUSSION 
 

We investigated the associations between childhood, 

adolescent and midlife cognitive function with DNAm 

age acceleration in midlife. Our findings show that 

those with poorer crystalized intelligence (PPVT-15) in 

adolescence are more likely to have accelerated 

GrimAge in their midlife. We also show that 

accelerated PhenoAge and DunedinPACE in midlife is 

associated with both reduced crystalized intelligence 

(WTAR) and fluid intelligence (DS), while accelerated 

GrimAge in midlife is only associated with crystalized 

intelligence (WTAR). In the complete case analyses, the 

magnitude of the associations is similar, however, only 

the associations of DNAm age acceleration with fluid 

intelligence remain statistically significant, which could 

be due to the reduced sample size. 

 

In previous studies among adults older than 65 years old 

[5, 20, 21], it’s hypothesized that DNAm age 

acceleration influences cognitive functions through 

 

 
 

Figure 2. Forest plot showing associations of childhood and adolescent cognitive function with midlife DNA methylation 
age accelerations. Betas multiplied by 10 were shown for associations with DunedinPACE for better visualization. Column “Change” is 
showing that 1-unit change in childhood or adolescent cognitive function is associated with X.XX% standard deviation (SD) change in DNA 
methylation age acceleration. SD for each DNA methylation age can be found in Table 1. 
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numerous mechanisms such as synaptic plasticity and 

neurogenesis and immune dysfunction [31, 32]. Our 

study showed that crystallized intelligence measured by 

PPVT-15 is associated with age acceleration measured 

35 years later, demonstrating the possibility of a reverse 

causation or even a bidirectional relationship, that is, the 

possibility that cognitive function at a younger age 

could be a cause rather than just the consequences of 

biological aging. Further research with more time points 

of cognitive function and DNAm age acceleration is 

needed to establish causality. 

 

The effect of early crystallized intelligence on later 

biological aging could be through its influence in daily 

stress processes, behavior, lifestyle or health [33], which 

might be starting to accumulate during adolescence. For 

example, a higher crystallized cognition may increase 

the likelihood of exposure to daily stressors [33], which 

could influence DNAm age acceleration [34]. The 

attenuated association between adolescent crystallized 

intelligence and GrimAge acceleration after adjusting for 

adult SES suggests that adult SES could be a potential 

mediator (Supplementary Figure 6A) and improving 

SES could be helpful for slowing down some aspects of 

biological aging associated with cognition at younger 

ages. However, the attenuated association could also be 

due to unmeasured confounders in our study that induce 

confounding or collider bias through adult SES 

(Supplementary Figure 6B, 6C). 

 

On the other hand, accelerated aging is associated with 

both crystallized and fluid intelligence in midlife. 

Crystallized intelligence measured by WTAR in midlife 

is statistically associated with PhenoAge and 

DunedinPACE but not GrimAge. This observed 

heterogeneity may be explained by the inherent 

difference in the methodology used to construct the 

epigenetic clocks. Early cognition may be more related 

to biological aging in response to physiological risk 

factors and stress factors [9], while later cognition may 

be more related to biological aging in terms of 

phenotypic changes and organ failures [8, 35]. 

GrimAge, PhenoAge and DunedinPACE are 

significantly associated with fluid intelligence measured 

by DS, and all associations are robust to sensitivity 

analyses. This suggests that it is possible that fluid 

intelligence, which refers to the capacity to process 

complex information involved in reasoning and 

problem-solving tasks, may be more affected by 

accelerated aging than language processing skills. 

Midlife DNAm age acceleration may influence midlife 

crystallized and fluid intelligence through inflammatory 

or oxidative stress pathways [36]. 

 

Previous studies in older population found that faster 

decline of memory and executive function are 

associated with Horvath and Hannum DNAm age 

acceleration [5, 20], but neither of these measures are 

predictive of any cognitive function measure in our 

study. This could be due to a smaller sample size or 

usage of different cognition measures in our study. 

Conversely, our results suggest that a more progressive 

DNAm age acceleration measure that indicates 

mortality or morbidity such as GrimAge, PhenoAge and 

 

 
 

Figure 3. Forest plot showing associations of midlife DNA methylation age acceleration with midlife cognitive function. 
Betas divided by 100 were shown for associations with DunedinPACE for better visualization. Column “Change” is showing that 1-standard 
deviation (SD) change in DNA methylation age acceleration is associated with X.XX-unit change in midlife cognitive function. SD for each 
DNA methylation age can be found in Table 1. 
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DunedinPACE may be more sensitive to changes in 

cognitive function compared to DNAm age acceleration 

that only considers chronological age.  

 

To the best of our knowledge, this is the first study to 

show the association of cognition at younger age with 

midlife age acceleration, and associations between 

midlife age acceleration measures and cognitive 

function that are independent of childhood and 

adolescent cognition. This aligns with our hypothesis 

that cognitive function at early age may affect aging in 

midlife and in turn affect cognitive function in midlife. 

However, we only have one time point of DNAm in 

midlife and no information on cognition, DNAm or 

other covariates during the 35-year gap. This limits the 

inference on the causal relationship between cognitive 

function and DNAm age acceleration. Selection of 

participants into the DISPAR study at midlife was 

limited to those who continued to live in California at 

midlife, which may have introduced selection bias [3]. 

Another limitation that warrants mention is that the 

fluid intelligence was only administered in childhood, 

so we could not assess its association with DNAm age 

acceleration in midlife. Additionally, the measures of 

crystalized and fluid intelligence were different between 

childhood/adolescence and midlife, so we were not able 

to efficiently describe cognitive function trajectories 

over time. The differences in measures may also 

account for the observed difference in their associations 

with DNAm age acceleration. 

 

In conclusion, our study brings attention to the potential 

influence of adolescent crystalized intelligence on age-

related DNAm at older age. We showed a potential 

relationship of both crystalized and fluid intelligence 

with aging acceleration in midlife. Moreover, we 

demonstrated that GrimAge, PhenoAge, DunedinPACE 

age acceleration measures could prove valuable for 

studying the relationship between aging and cognitive 

function. Future studies with longitudinal cognitive 

functions and DNAm age accelerations at more time 

points across the lifespan are needed to decipher their 

relationships. 

 

MATERIALS AND METHODS 
 

Study population 

 

Our study utilized data from adult offspring of mothers 

that were recruited in the Child Health and 

Development Studies (CHDS), which was a prospective 

study of pregnant women seeking prenatal care from the 

Kaiser Foundation Health Plan in Oakland, California 

from 1959 to 1966 [37]. This original cohort was 

comprised of 19,044 live births from participating 

mothers with diverse race/ethnic background. Extensive 

sociodemographic, behavioral and clinical information 

on the offspring and their mothers were collected 

through in-person interviews and medical records [37]. 

Follow-up assessments of cognitive function in specific 

subsets of offspring were conducted subsequently at age 

5, 9–11, and 15–17 years. 

 

After approximately 35 years, a subset of the adult 

offspring who had assessments during adolescence were 

selected for another follow-up examination and 

interview for the CHDS Disparities (DISPAR) study 

[38]. Among 985 eligible pool that could be located and 

recruited by phone, 605 were successfully enrolled and 

participated in a telephone interview, 510 completed a 

home visit and 497 completed a self-administered 

questionnaire. At the home visit, participants completed 

a short cognitive battery and a blood draw that resulted 

in 400 viable serology samples after excluding 

participants who refused or had a technical issue during 

the draw [39]. 

 

The current study, DISPAR Aging, builds from the 

CHDS DISPAR study by using the blood samples it 

collected to profile for DNA methylation. From the 

sample of 400, we further excluded adult offspring 

who refused DNA analysis or use of their blood 

samples for future studies, resulting in a final analytic 

sample of 359. 

 

Cognitive function measures 

 

Childhood cognitive function was measured by two 

tests, the Raven Colored Progressive Matrices test at the 

age of 9–11 years (RCPM-9) and the Peabody Picture 

Vocabulary test at the age of 9–11 years (PPVT-9) [3]. 

RCPM-9 consisted of series of items each containing a 

matrix display of 12 graphical patterns where one of 

them was missing. The children were provided with 6 

alternative patterns and asked to choose the best that fits 

the missing element. It is a test for logical and 

perceptual reasoning and is typically used to assess fluid 

intelligence [40]. In PPVT-9 test, participants were 

shown a series of sheets with 4 pictures and were asked 

to indicate which best represents a target word said by 

the examiner. This is a test for vocabulary and language 

processing, which is typically used to assess crystallized 

intelligence [41]. Adolescent cognitive function was 

only measured by the Peabody Picture Vocabulary Test 

at the age of 15–17 years (PPVT-15) [3]. The RCPM-9 

raw score can range from 0–60. The average range for 

PPVT raw scores is 72.28–92.18 at the age of 11 years 

and 90.98–119.24 at the age of 17 years. 

 
Three cognitive function measures were assessed in 

midlife, including the Wechsler Test of Adult Reading 

(WTAR) [27], Verbal Fluency (VF) test [28], the 
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Wechsler Adult Intelligence Scale-Revised Digit 

Symbol (DS) test [29]. WTAR intended to measure 

participants’ intellectual functioning, reading and 

recognition abilities by asking the participants to 

pronounce a list of 50 phonetically incorrect words [27]. 

VF was typically used to evaluate participants’ executive 

functions, semantic fluency, and speed of processing by 

asking participants to name as many animals as possible 

within 1 minute [28]. For DS test, each participant was 

presented with a sheet with a number-to-symbol key at 

the top, along with a grid of numbers and blank boxes, 

and was asked to write down as many correct 

corresponding symbols underneath each number. This 

test measures participants’ executive functions and speed 

of processing [29]. The WTAR and DS test can range 

from 0–50 and 0–133 respectively. There is no limit for 

the maximum VF test score, however, a VF test score 

less than 15 could indicate potential cognitive 

impairment [42]. Details of the cognitive measures have 

been previously published [3]. Spearman correlations 

were calculated between cognitive function measures. 

 

DNAm age acceleration in midlife 

 

Genomic DNA was extracted from whole blood 

samples using with the PureLink® Genomic DNA Mini 

Kit by Invitrogen (Carlsbad, CA, USA). DNA 

methylation was measured using 850K BeadChips 

following the standard protocol. Intensity files in IDAT 

format were imported in R using minfi package [43]. 

Intensity values with a detection P-value ≥ 0.001 were 

set to missing for each DNAm site and DNAm sites 

missing in more than 5% of the samples were removed. 

All samples passed a call rate of 95%. Normal-

exponential out-of-band background correction was 

used to account for technical variation in the intensity 

values, which were then used to generate a β value for 

each DNAm site. We calculated the proportions of 6 

cell types including CD4+ T cells, CD8+ T cells, 

natural killer T cells, B cells, monocytes, and 

granulocytes in blood by applying algorithm developed 

by Houseman et al to the DNAm data [44]. 

 

We considered 5 different measures of DNAm age 

acceleration, including Horvath [10], Hannum [7], 

GrimAge [9], PhenoAge [8] and DunedinPACE [35]. 

For Horvath [10] and Hannum [7] epigenetic clocks, the 

difference in DNAm between younger and older people 

represents biological processes of aging while GrimAge 

and PhenoAge epigenetic clocks are using the 

difference in DNAm patterns that predict mortality and 

health, respectively, to represent biological processes of 

aging [8, 9]. These four epigenetic clocks were 
generated by uploading the DNAm β values of 30,084 

prespecified DNAm sites and information on age and 

sex to the online DNA Methylation Age Calculator 

(https://dnamage.genetics.ucla.edu/) with the 

“normalization” and “advanced analysis in blood” 

options. DNAm age accelerations were calculated as  

the residuals in epigenetic clocks after regressing  

out chronological age, thus a positive DNAm age 

acceleration reflects more rapid biological aging. 

 

Recently, Belsky et al. applied elastic-net regression to 

develop a DNA methylation model that predicts the 

pace of aging, which was quantified from 19 organ-

system integrity data of four time points spanning two 

decades [35]. This resulted in a new epigenetic 

biomarker named DunedinPACE, with values larger 

than 1 indicating faster aging and values less than 1 

indicating slower aging. The idea behind DunedinPACE 

is that the DNAm responses to the variation in function 

decline of multiple organ systems represents the 

biological processes of aging. DunedinPACE measures 

someone’s pace of aging in 20 years while the other 

clock-based age acceleration measures the accumulated 

years of aging at the time of assessment in a cross-

sectional setting. We calculated DunedinPACE using 

the DunedinPACE R package. Spearman correlations 

were calculated between DNAm age acceleration 

measures. 

 

Additional covariates 

 

Childhood and adolescence 

Participants’ exact age, school grade level and BMI at 

the time of cognition assessment were recorded. A 

composite score for childhood/adolescence socio-

economic status (SES) was created based on maternal 

education at birth, paternal occupation, and family 

income at birth, ages 9–11 and 15–17 [38]. At the age 

of 15–17 years, participants were asked how often they 

had consumed alcoholic beverage in the past 6 months 

and those who answered at least one drink were defined 

as current drinkers. They were also asked if they had 

ever ‘regularly’ smoked at least 1 cigarette daily and if 

they currently smoked cigarettes. Alcohol and cigarette 

use at age 9–11 was not recorded. Additionally, during 

interviews in midlife, participants were asked to recall if 

they had lived with a regular cigarette, cigar, or pipe 

smoker who smoked in their home when they were 

young. We note that information on BMI, alcohol use 

and personal cigarette use in childhood and adolescence 

was only used in multiple imputation but not in analyses 

examining cognition and age acceleration associations 

(see multiple imputation and statistical analyses method 

section for more details). 

 

Midlife 

Participants’ exact age and BMI were collected at the 

time of midlife cognition assessment. Midlife SES 

index was developed by combining information on 
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college education, self-reported family income and 

occupational status. Details on how SES indices were 

developed have been described in detail in a prior 

publication [39]. Participants were asked about alcohol 

and cigarette use during the midlife interviews in 

DISPAR. If they had ever consumed any alcoholic 

beverages at least once a month for six months over the 

past 12 months, they were defined as current drinkers. If 

they had done so but not over the past 12 months, they 

were defined as past drinkers. Otherwise, they were 

categorized as “never drink”. Participants were also 

asked if they had ever smoked at least 1 cigarette per 

day for one month or more and if they smoked at any 

time in the past 12 months. If they answered yes to both 

questions, they were defined as current smokers. If they 

answered yes to the first question but no to the second 

question, they were defined as past smokers. Otherwise, 

they were categorized as “never smokers”. Blood 

pressure was measured during the home visit and 

hypertension was defined as having systolic blood 

pressure over or equal to 120 mm Hg or diastolic blood 

pressure over or equal to 80 mm Hg, or currently taking 

hypertension medication. 

 

Multiple imputation 

 

Of the 359 participants who had DNAm data, 26 were 

missing RCPM-9, 34 were missing PPVT-9, 61 were 

missing PPVT-15 and 19 were missing WTAR. We 

found that RCPM-9, PPVT-9, PPVT-15 and WTAR 

were positively correlated (Supplementary Figure 2A), 

thus, we used multiple imputation by chained equations 

to impute missing values on cognitive function and 

other covariates. Multiple imputation was performed 

among participants that were successfully enrolled in 

DISPAR, with or without DNAm data, and had at least 

one measure of RCPM-9, PPVT-9, PPVT-15 or WTAR 

(n = 599, Figure 1). We assumed missing at random and 

performed multiple imputation using Predictive mean 

matching by MICE package in R [45]. We assumed 

variables at the same time point can predict each other 

and variables from different time points cannot predict 

each other except for the variables that measure related 

information, such as adolescent and midlife smoking 

status. The predictor matrix is presented in 

Supplementary Table 1. Twenty complete datasets were 

imputed, and estimates obtained by statistical 

analyses were combined using “pool” function in the 

MICE package in R [45]. The convergence of 

cognitive function measures is shown in Supplementary 

Figure 7. 

 

Statistical analyses 

 

All analyses were conducted in R (4.3.0). Potential 

confounders were identified through literature review 

and directed acyclic graphs (DAG) (Supplementary 

Figure 8A–8C). 
 

Childhood and adolescence 

Linear regressions were used to assess associations of 

each childhood or adolescent cognitive function 

measure (independent variable) with each DNAm age 

acceleration measure in midlife (dependent variable). 

All models were adjusted for age and school grade level 

at assessment, sex, race, household smoking status and 

cell type proportions. According to the DAG for 

adolescent cognitive function, BMI, alcohol use and 

personal cigarette use in adolescence could be potential 

mediators [46–49] (Supplementary Figure 8B). Thus, 

these covariates were not included in the linear 

regressions but were used in multiple imputation. In a 

separate model, we additionally adjusted for adult SES 

to assess its impact on the associations between 

adolescent cognition and midlife aging. In order to 

adjust for multiple testing, Benjamini-Hochberg false 

discovery rate (FDR) adjustment was applied and FDR-

q-values < 0.05 were used to define statistical 

significance. Sensitivity analyses by complete case 

analyses (n = 286) were performed to test the robustness 

of the associations. 
 

Midlife 

Another set of linear regressions were used to assess 

associations of each DNAm age acceleration measure in 

midlife with each midlife cognitive function measure. 

Similar to the majority of the current literature, we 

hypothesize that age acceleration in midlife reflects 

general deterioration and has an impact on cognitive 

function in midlife. Thus, in these analyses, age 

acceleration was treated as the independent variable and 

cognitive function was treated as the dependent 

variable. All models were adjusted for age at blood 

draw, sex, race, SES, BMI, alcohol and cigarette use, 

RCPM-9, PPVT-9, PPVT-15 and cell type proportions. 

We included RCPM-9, PPVT-9 and PPVT-15 in the 

models because we wanted to evaluate the associations 

in midlife independent of the influence from cognition 

at younger age. Unlike in childhood and adolescence, 

BMI, alcohol, and cigarette use in midlife are likely to 

be confounders (Supplementary Figure 8C), and thus 

were adjusted in the models. Sensitivity analyses by 

complete case analyses (n = 211) were performed to test 

the robustness of the associations. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Distribution of DNA methylation age acceleration measures in midlife, including (A) Horvath, (B) Hannum, (C) 

GrimAge, (D) PhenoAge, (E) DunedinPACE. 
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Supplementary Figure 2. Heatmaps showing correlations between adolescent cognitive function measures (A) before (participants 

without missing values in any cognitive function measure, n = 269) and (B) after multiple imputation (n = 359), and (C) between midlife DNA 
methylation age acceleration measures (n = 359). 

 

 
 

Supplementary Figure 3. Distributions of cognitive function in midlife. These include (A) Wechsler Test of Adult Reading (WTAR), 

(B) Verbal Fluency (VF), (C) Digit Symbol (DS) before multiple imputation (n = 211) and (D) WTAR, (E) VF, (F) DS after multiple imputation (n 
= 359). 
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Supplementary Figure 4. Sensitivity analyses of the associations between childhood/adolescent cognitive function and 
midlife DNA methylation age accelerations by complete case analysis (n = 286). Betas multiplied by 10 were shown for 
associations with DunedinPACE for better visualization. Column “Change” is showing that 1-unit change in childhood or adolescent 
cognitive function is associated with X.XX% standard deviation (SD) change in DNA methylation age acceleration. SD for each DNA 
methylation age can be found in Table 1. 

 

 
 

Supplementary Figure 5. Sensitivity analyses of the associations between midlife cognitive function and midlife DNA 
methylation age accelerations by complete case analysis (n = 211). Betas divided by 100 were shown for associations with 
DunedinPACE for better visualization. Column “Change” is showing that 1-standard deviation (SD) change in DNA methylation age 
acceleration is associated with X.XX-unit change in midlife cognitive function. SD for each DNA methylation age can be found in Table 1. 
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Supplementary Figure 6. Directed acyclic graphs (DAGs) for possible causal relationship between adolescent cognitive function, 
Adult SES and midlife DNA methylation age acceleration. (A) SES is a mediator. (B) SES is associated with confounders. (C) SES is a collider. 

 

 
 

Supplementary Figure 7. Traces of convergence of cognitive function measures in multiple imputation algorithm. 

 

9366



www.aging-us.com 18 AGING 

 
 

Supplementary Figure 8. Directed acyclic graphs (DAGs) conceptualizing the causal relationships between (A) childhood, (B) 
adolescence, (C) midlife cognitive function and midlife DNA methylation age accelerations. 
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Supplementary Table 
 

Please browse the Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Predictor matrix for multivariate imputation by chained equations. “X” specifies the 
columns used as predictors for imputation of the targeted rows. 
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