
www.aging-us.com 1 AGING 

INTRODUCTION 
 

Acute myocardial infarction (AMI) is usually  

caused by a ruptured plaque or thrombosis that  

blocks an artery and is characterized by decreased 
blood flow to the heart and cardiac muscle injury  

due to oxygen deficit, which can eventually lead  

to heart failure or even death [1]. Timely restoration 

of blood flow to ischemic and hypoxic tissues can  

reduce the occurrence of irreversible damage to 

functional cardiomyocytes, thereby improving the 

quality of survival and reducing mortality in  

patients with heart attacks [2]. Commonly used 
clinical measures to treat patients with myocardial 

infarction include thrombolytic therapy, reperfusion 

therapy, percutaneous coronary intervention (PCI), 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

Application of angiogenesis-related genes associated with immune 
infiltration in the molecular typing and diagnosis of acute 
myocardial infarction 
 

Guoqing Liu1,*, Wang Liao2,*, Xiangwen Lv3, Miaomiao Zhu4, Xingqing Long4, Jian Xie1 
 
1Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China 
2Department of Cardiology, The First People’s Hospital of Yulin, Yulin, Guangxi, China 
3Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China 
4Guangxi Medical University, Nanning, Guangxi, China 
*Equal contribution 
 
Correspondence to: Jian Xie; email: 202010021@sr.gxmu.edu.cn 
Keywords: acute myocardial infarction, angiogenesis, predictive model, immune infiltration, molecular typing 
Received: November 24, 2023 Accepted: May 3, 2024  Published: June 14, 2024 

 
Copyright: © 2024 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Background: Angiogenesis has been discovered to be a critical factor in developing tumors and ischemic diseases. 
However, the role of angiogenesis-related genes (ARGs) in acute myocardial infarction (AMI) remains unclear. 
Methods: The GSE66360 dataset was used as the training cohort, and the GSE48060 dataset was used as the 
external validation cohort. The random forest (RF) algorithm was used to identify the signature genes. 
Consensus clustering analysis was used to identify robust molecular clusters associated with angiogenesis. The 
ssGSEA was used to analyze the correlation between ARGs and immune cell infiltration. In addition, we 
constructed miRNA-gene, transcription factor network, and targeted drug network of signature genes. RT-qPCR 
was used to verify the expression levels of signature genes. 
Results: Seven signature ARGs were identified based on the RF algorithm. Receiver operating characteristic 
curves confirmed the classification accuracy of the risk predictive model based on signature ARGs (area under 
the curve [AUC] = 0.9596 in the training cohort and AUC = 0.7773 in the external validation cohort). 
Subsequently, the ARG clusters were identified by consensus clustering. Cluster B had a more generalized high 
expression of ARGs and was significantly associated with immune infiltration. The miRNA and transcription 
factor network provided new ideas for finding potential upstream targets and biomarkers. Finally, the results of 
RT-qPCR were consistent with the bioinformatics analysis, further validating our results. 
Conclusions: Angiogenesis is closely related to AMI, and characterizing the angiogenic features of patients with 
AMI can help to risk-stratify patients and provide personalized treatment. 
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and coronary artery bypass grafting (CABG) [3]. 

Although medications and interventions have 

significantly improved survival rates in patients with 

heart attacks, patients with AMI are at high risk  

for complications such as ischemia and reperfusion 

injury, which are the leading causes of chronic heart 

failure [4]. Therefore, it is necessary to explore further 

the mechanisms of occurrence and new treatments to 

preserve myocardial function in AMI and avoid the 

onset and progression of heart failure. 

 
Promoting angiogenesis is a potential protective 

strategy to prevent myocardial injury and  

improve the prognosis of myocardial infarction. 

Angiogenesis consists of the sprouting of endothelial 

cells from preexisting vessels that are primarily 

dependent on endothelial cells to promote the 

formation of new capillaries and collateral arteries 

that deliver nutrients to the infarcted region and  

also provide energy to myofibroblasts to prevent 

long-term left ventricular remodeling and chronic 

heart failure [5]. Angiogenesis is regulated by 

multiple signaling pathways, with triggers including 

hypoxia, intercellular communication, angiogenic 

factors, and inflammation-driven [6–9]. The hypoxia-

inducible factors (HIF), expressed in cardiomyocytes, 

endothelial, and inflammatory cells, are one of the 

main factors driving angiogenesis by hypoxia. The 

exosomes overexpressing HIF-1α can regulate the 

expression of vascular endothelial growth factor 

(VEGF), angiopoietin 1 (Ang-1), and other encoded 

angiogenic factors to induce angiogenesis [10, 11]. 

VEGF is a pro-angiogenic factor upregulated in 

ischemic heart disease, regulating angiogenesis by 

binding and interacting with VEGF receptors 

(VEGFRs) to facilitate myocardial repair [10]. 

Grellier et al. demonstrated the role of inter- 

cellular communication on primary angiogenesis by 

establishing a monolayer cell model of human 

umbilical vein endothelial cells [11]. The newly 

formed dense capillary network provides a pathway 

for inflammatory cells, promotes metabolism and 

energy exchange in the infarcted region, and protects 

normal cardiomyocyte function [12]. 

 
It has been demonstrated that immune infiltration  

is a critical procedure in the angiogenesis and  

repair phases of AMI. Monocytes/macrophages are 

the main immune regulators of angiogenesis [13].  

By establishing a mouse model of AMI, Wu et al. 

found that monocytes and macrophages secreted pro-

angiogenic factors other than VEGFA, such as growth 

factors and nuclear chemokines, which interacted with 

neighboring cells in a paracrine manner to promote 

angiogenesis after myocardial injury [14]. Neutrophils 

are divided into two main subtypes, N1 and N2, of 

which N2 is a critical player in tumor angiogenesis 

and metastasis in mice and humans [15]. These 

findings suggest that immune infiltration is a new 

direction to prevent infarct progression and that 

exploring immune infiltration and its relationship with 

angiogenesis can help analyze the pathogenesis of 

AMI and provide therapeutic strategies. 

 

Clinical research on angiogenesis in cardiovascular 

disease has progressed rapidly in recent years, but  

its mechanism of action in AMI is still unclear. In  

this study, we screened signature angiogenesis-related 

genes (ARGs) in AMI using machine learning 

algorithms. In addition, we performed an immune 

infiltration analysis of ARGs to explore the association 

of the immune microenvironment and angiogenesis, 

which provides a risk basis for clinical decision-

making and some rationale for new therapeutic 

approaches for AMI. 

 

MATERIALS AND METHODS 
 

Data sources and processing 

 

The GSE66360 and GSE48060 datasets containing 

AMI and normal samples were collected from the 

Gene Expression Omnibus (GEO) (https://www.ncbi. 

nlm.nih.gov/geo/) database. These two datasets were 

derived from the chip-based platform GPL570 [HG-

U133_Plus_2] Affymetrix Human Genome U133 Plus 

2.0 Array. The GSE66360 dataset (circulating 

endothelial cell samples from 49 AMI and 50 normal 

samples of humans) served as the training cohort, 

while the GSE48060 (serum samples from 31 AMI 

and 21 normal samples of humans) dataset served as 

the external validation cohort. 36 ARGs were 

downloaded from the MSigDB Team (Hallmark Gene 

set). In addition, we used the Perl software to annotate 

the dataset and convert the data into a gene expression 

profile for subsequent analysis. 

 

Differential expression and correlation analysis 

 

Differentially expressed ARGs in control and AMI 

samples were analyzed by the “limma” package  

in R. Samples with a P < 0.05 and |log2-fold change 

(FC)| ≥ 1 were considered as the threshold points for 

differentially expressed genes (DEGs). Furthermore, 

we performed a correlation analysis to explore co-

expression characteristics among ARGs. 

 

Construction and selection of algorithms 

 

In this study, we constructed and compared models 

based on two machine learning algorithms, including 

random forest (RF) and support vector machine (SVM). 
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RF incorporates a bagging algorithm and randomized 

feature algorithm, which can be effectively self-

supervised and has more significant advantages over 

other machine learning methods [16]. The SVM is 

constructed based on the statistical learning principle 

of risk minimization through structure and has been 

widely used for genome classification or subtyping  

in recent years [17]. We effectively evaluated both 

algorithms by box line plots of residuals, inverse 

distribution plots of residuals, receiver operating 

characteristic (ROC) curves, and random forest tree 

plots. 

 

Establishment of the nomogram 

 

We drew a nomogram to visualize the risk  

predictive model based on the signature genes to 

predict the occurrence of AMI. In the nomogram, the 

corresponding scores were assigned to the impact 

levels of each of the signature genes, and the score 

values of each gene were summed to obtain the total 

score, which in turn predicted the risk of disease 

occurrence by function transformation. In addition, 

decision curve analysis (DCA), calibration, clinical 

impact curves (CIC), and ROC curves were used to 

evaluate the accuracy of the risk predictive model. 

 

Molecular typing and immune infiltration analysis of 

ARGs 

 

We used the “ConsensusClusterPlus” package in  

R to perform consensus clustering to identify the 

ARG pattern. Subsequently, the groupings were 

validated by principal component analysis (PCA). 

Based on single sample gene set enrichment analysis 

(ssGSEA), we analyzed the correlation between ARGs 

and immune cell infiltration. ARGs associated with 

immune infiltration were selected for the subsequent 

study. 

 

Identification and functional analysis of DEGs 

 

The “limma” package was performed to identify 

DEGs between two ARG subclusters. And |log2-FC| ≥ 

1 and P < 0.05 were selected as the criteria.  

The “clusterProfiler”, “org.Hs.eg.db”, “GOplot”, and 

“enrichplot” packages were applied to perform the 

enrichment analyses of Gene Ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways, with a P-value filter < 0.05 item included. 

We plotted correlation graphs with the “corrplot” 

package to obtain bubble and string plots for the GO 

enrichment circle and KEGG enrichment analysis. We 
examined the potential biological functions of DEGs 

in terms of molecular functions (MF), biological 

processes (BP), and cellular components (CC). 

ARG scores in two different modes 

 

We mainly used PCA for ARG scores in the ARG 

cluster and ARG gene cluster and thus verified the 

accuracy of ARG pattern grouping. Subsequently, the 

“ggalluvial” package in R was used to analyze the 

association between the ARG cluster, gene cluster, and 

ARG scores. 

 

Construction of targeted drug network 

 

The search for targeted drugs for signature genes  

was based on the DGIdb database (http://dgidb. 

genome.wustl.edu/) [18], and the gene-drug network 

was drawn and visualized by the Cytospace software 

(version 3.7.2). 

 

Construction of miRNA network and transcription 

factor network 

 

Based on Network Analyst (https://www. 

networkanalyst.ca), we predicted the miRNA and 

transcription factors of signature genes. We then used 

Cytospace software (version 3.7.2) for visualization. 

 

Cell culture and construction of the model 

 

This study derived the AC16 cells (human 

cardiomyocyte cells) from the cell bank (Procell; 

Wuhan, China). We cultured AC16 cells in Dulbecco’s 

modified Eagle’s medium (DMEM) (Gibco, Thermo 

Fisher Scientific, Waltham, MA, USA), which included 

10% fetal bovine serum (FBS), 100 U/mL penicillin, 

and 100 mg/ml streptomycin (Beijing Solarbio Science 

and Technology Co., Ltd., Beijing, China), at a constant 

temperature of 37° C and the status of 5% CO2. 

 

A suitable density of cells in the logarithmic growth 

phase was seeded into a medium supplemented with 

10% FBS and incubated overnight. AC16 cells were 

split into the control group (Con group) and the 

oxygen-glucose deprivation treatment group (OGD 

group). 

 

According to the relevant experimental conditions, the 

AC16 cells were evenly dispersed and cultured in an 

incubator for 24 hours. We placed the plates in a 

hypoxic chamber with an inlet and outlet. Next, the 

outlet port valve was opened, and the anoxic chamber 

was filled with the mixed gas containing 5% CO2 and 

95% N2 through the inlet port. Shut the air inlet  

and outlet simultaneously to create an oxygen-free 

closed chamber, which would be put into an incubator 
at 37° C. The cells were taken out of the hypoxic 

chamber after 6 hours and needed additional tests by 

the follow-up experiments. 
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The analysis of reverse transcription quantitative 

polymerase chain reaction (RT-qPCR)  

 

The DMEM solution was supplemented with 10% 

FBS, where the cells were developed. When the cell 

confluence rate reached 70% to 80%, we cultivated all 

cells in an incubator with a constant temperature of 

37° C and the status of 5% CO2. Trypsin solution was 

employed to digest and subculture these cells, and 

then cells in the logarithmic growth stage would be 

removed for further RT-qPCR. 

 

The RNA in each group was extracted by TRIzol kit 

reagents (Invitrogen, Waltham, MA, USA) and was 

reverse transcribed into cDNA by QuanTiect reverse 

transcription kit (Qiagen, Hilden, Germany). RT-

qPCR was performed with SYBR Green (Takara, 

Shiga, Japan) CFX96 Real-time PCR system (Bio-Rad 

Laboratories, Hercules, CA, USA). GAPDH was used 

to normalize expression levels. Table 1 contains a list 

of primer sequences. The 2-ΔΔCT approach was used 

for data analysis. 

 

Statistical analysis 

 

Data processing and collation via Perl software (Version 

5.18.2). Data analysis was mainly implemented by R 

software (version 4.1.2). Student’s t-test or Wilcoxon’s 

rank sum test was used to detect the significant 

difference between the two independent groups. It was 

considered statistically significant with P < 0.05. 

 

RESULTS 
 

The landscape of the ARGs in AMI 

 

Differential expression analysis between healthy 

individuals and patients with AMI was performed,  

and 18 differentially expressed ARGs were selected 

(Figure 1A). Among them, the expression of most 

genes included APP, CXCL6, FSTL1, JAG2, LPL, 

OLR1, PF4, PGLYRP1, POSTN, PRG2, SERPINA5, 

SLCO2A1, THBD, TNFRSF21, VCAN, and VEGFA 

were significantly upregulated in AMI samples,  

while S100A4 and CCND2 were downregulated  

in AMI samples (Figure 1B). The location of the  

18 differentially expressed ARGs on the various 

chromosomes was displayed in Figure 1C. 

 

Correlation analysis of differentially expressed ARGs 

 

Linear correlation analysis was adopted to explore  

the association between each differentially expressed 

ARG (Figure 1D, 1E). Figure 1F showed a positive 

correlation network among THBD, VCAN, OLR1, 

TNFRSF21, VEGFA, JAG1, APP, and SERPINA5. 

VEGFA was positively correlated with THBD,  

JAG1, and TNFRSF21. The most substantial positive 

correlation relationship was found between VCAN 

and THBD. THBD was also negatively related to 

CCND2. In addition, the positive correlation between 

APP and JAG1, JAG1, and SERPINA5 was higher, 

with correlation coefficients over 0.6. 

 

Selection of algorithms and construction of 

predictive model 

 

Based on boxplots and reverse cumulative distribution 

plots of residuals (Figure 2A, 2B), we found that  

the RF algorithm had lower residuals than the  

SVM algorithm, indicating its higher accuracy for 

predicting the occurrence of AMI. Meanwhile, the 

ROC curve was plotted (Figure 2C). It further 

supported the conclusion that the RF algorithm was 

more appropriate than SVM because of its larger area 

under the curve (AUC). 

 

A 10-fold cross-validation curve was drawn to obtain a 

more reasonable and accurate evaluation of the model, 

exhibiting the error levels of the treatment groups, the 

control groups, and all samples (Figure 2D). The mean 

decrease Gini represents the importance of each gene, 

and the genes with a Gini index greater than 2 were 

selected for subsequent analysis (Figure 2E).  

 
The above findings revealed that the RF algorithm 

could be implemented as a valid model to forecast the 

risk of AMI. Based on the 7 signature genes, a binary 

logistic regression model was used to predict the risk 

of AMI. The ROC curve was exhibited in Figure 2F, 

2G. The training and the external validation cohorts 

for the classification model demonstrated satisfactory 

discrimination performance (AUC = 0.9596 and 

0.7773, respectively). 

 
Visualization and validation of the risk predictive 

model 

 

A nomogram was plotted to visualize the  

predictive models of AMI based on the sum of  

each gene expression score (Figure 3A). 7 genes 

included THBD, VCAN, CCND2, VEGFA, JAG1, 

POSTN and PGLYRP1 were involved in the model. 

The bias-corrected line was close to the ideal dotted 

line in Figure 3B, illustrating the model’s good 

prediction ability. Besides, DCA, in which the curve 

of ARGs deviated from two extreme ones, was 

performed, indicating the model’s great clinical utility  

(Figure 3C). The CIC proved the availability of a 

nomogram by comparing the number of predicted and 

actual patients under different probability thresholds 

(Figure 3D). 
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Table 1. Primers used for RT-qPCR. 

Gene Primers Sequence (5’–3’) 

THBD Forward GGAGACAACAACACCAGCTATA 

Reverse GGAAGTGGAACTCGCAGA 

VCAN Forward ACTGAAACTTCCTACGTATGCA 

Reverse CTCACAAAGTGCACCAACATAA 

CCND2 Forward TTTAAGTTTGCCATGTACCCAC 

Reverse ACGTCTGTGTTGGTGATCTTAG 

VEGFA Forward ATCGAGTACATCTTCAAGCCAT 

Reverse GTGAGGTTTGATCCGCATAATC 

JAG1 Forward ATTACCAGGATAACTGTGCGAA 

Reverse CAAATGTGCTCCGTAGTAAGAC 

POSTN Forward CACCAATGAGGCTTTTGAGAAA 

Reverse GACTGCTCCTCCCATAATAGAC 

PGLYRP1 Forward CACTCAGGTCACTTATGGAACC 

Reverse GTGTCCTTTGAGCACATAGTTG 

GAPDH 
Forward GGAGTCCACTGGCGTCTTCA 

Reverse GTCATGAGTCCTTCCACGATACC 

 

Relationship between 7 signature genes 

 

Figure 4A revealed the network of the  

relationships between the 7 signature genes and the 

proteins predicted by the GeneMANIA database.  

We found that PGLYRP1, PGLYRP2, PGLYRP3,  

and PGLYRP4 all belong to the peptidoglycan 

recognition protein family, sharing protein domains, 

and have a strong relationship with each other, but 

without a co-expression relationship. TGFBI and 

POSTN were another pair with a similar structure. 

The co-expression relationship between the individual 

proteins was universal. 

 

The result of the correlation analysis of each 

significant gene was shown in Figure 4B. A 

significant positive correlation between THBD and 

VCAN could not be ignored, while CCND2 was 

respectively negatively correlated with them. The 

correlation coefficient between any two genes in 

VEGFA, POSTN, THBD, and VCAN was about 0.4. 

 

Identification of ARG patterns 

 

To further explore the connection between ARGs  

and AMI, we performed a consensus clustering  

of angiogenic patterns based on 18 differentially 

expressed ARGs. Combining the result of Figure 5A–

5D, two ARG patterns were separated based on 7 

signature ARGs. Among the differentially expressed 

genes, the expression of OLR1, PGLYRP1, THBD, 

TNFRSF21, VCAN, and VEGFA was higher in 

cluster B (Figure 5E, 5G). The PCA showed that 7 

ARGs could distinguish two patterns (Figure 5F). 

The differences in the composition of diverse immune 

cells in the two ARG patterns were shown in Figure  

6A. The immune cells with significant differences in 

clusters A and B mainly included activated dendritic 

cells, immature dendritic cells, macrophages, mast cells, 

monocytes, neutrophils, regulatory T cells, natural killer 

cells, and eosinophils. All differentially expressed 

immune cells were higher in cluster B. Then, we assess 

the relationship between ARGs and immune cells 

(Figure 6B), CCND2, JAG1, and SERPINA5 were 

negatively correlated with immune cells, while OLR1, 

PF4, PGLYRP1, S100A4, THBD, TNFRSF21, VCAN, 

and VEGFA were directly proportional to many 

immune cells. We split the expression levels of 18 

ARGs into high or low groups to evaluate the diverse 

immune cell infiltration more thoroughly. Boxplots 

displayed that almost all discrepant immune cells 

involved activated dendritic cells, macrophages, mast 

cells, monocytes, natural killer cells, plasmacytoid 

dendritic cells, regulatory T cells, T follicular helper 

cells infiltrated in high expression of VCAN, OLR1, 

THBD, and TNFRSF21 apart from CD56dim natural 

killer cell which infiltrated more frequently in low 

expression group of TNFRSF21 (Figure 6C–6F).  

 

Functional pathway analysis and identification 

based on ARG gene patterns 

 

To better understand the feasible mechanisms of  

DEGs in AMI, we performed GO and KEGG analysis 

in two different ARG modes. GO results depicted  

that DEGs mainly aggregated in terms of BP and MF. 

These differential genes were mainly enriched in the 

positive regulation of phagocytosis, Fc-gamma receptor 
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Figure 1. Differentially expressed ARGs in AMI and correlation analysis. (A) Boxplots for differentially expressed ARGs between 
healthy and AMI groups. (B) Heat map of differential expression of the 18 ARGs. (C) Circos plot of 18 ARGs: showed the distribution of each 
gene on the chromosomes. (D) Chordal graph of 18 ARGs correlations. (E) Correlation heat map. (F) Interaction network analysis diagram: 
connecting lines represented interaction relationships. *P < 0.05; **P < 0.01; ***P < 0.001. 
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signaling pathway, cell recognition, external side of  

the plasma membrane, specific granule, and tertiary 

granule (Figure 7A, 7D). KEGG results showed that  

the DEGs were mainly enriched in cytokine-cytokine  

receptor interaction, drug metabolism-cytochrome P450,  

and arrhythmogenic right ventricular cardiomyopathy 

(ARVC) (Figure 7B, 7C). 

 

We used the consensus clustering method to divide  

the patients with AMI into different genetic models  

and found that the results were consistent with the  

ARG mode (Figure 8A–8C). The grouping accuracy 

was further supported by the findings of differential 

expression analysis and immune cell infiltration in gene 

patterns, which were comparable to those of the ARG 

model (Figure 8D, 8E). Moreover, we also used PCA to 

calculate the scores between different samples of the 

ARG model as well as the gene model, and the results 

showed higher scores for clusters B or gene clusters  

B (Figure 8F, 8G). Furthermore, the Sankey diagram 

showed the relationship between the ARG, the genes, 

and the ARG score (Figure 8H). 

Construction of miRNA network map and 

transcription factor network map based on signature 

genes 

 

The miRNA network map included 326 nodes, 

including 6 signature genes and 320 miRNAs. We 

found the highest number of identical target miRNAs 

responsible for regulating VEGFA with CCND2 and the 

lowest number of miRNAs responsible for regulating 

PGLYRP1. The network diagram showed that some 

miRNAs were associated with two signature gene 

expressions. MiR-335-5p target mRNA was PGLYRP1 

and THBD; miR-5003-3p target mRNA were VCAN 

and JAG1; has-miR-107 target mRNA were VCAN and 

VEGFA (Figure 9A and Supplementary Table 1). Figure 

9B showed the seven signature genes with transcription 

factors, and it showed that transcription factor FOXC1 

acted on PGLYRP1 and JAG1; transcription factor 

TFAP2C acted on THBD, VCAN, and PGLYRP1; 

transcription factor NFYA acted on VEGFA, VCAN, 

and POSTN; transcription factors USF1 and USF2 both 

acted on CCND2 and THBD (Supplementary Table 1). 

 

 
 

Figure 2. Comparison and selection of random forest (RF) and support vector machines (SVM). (A) Residual Boxplot of RF and 

SVM. (B) Reverse cumulative distribution of residual. (C) Receiver operating characteristic (ROC) curve of RF and SVM. The AUC of RF and 
SVM were 1.000 and 0,967, respectively. (D) RF prediction error curves based on a 10-fold cross-validation curve. Treat groups (red line), 
control groups (green line), and overall samples (black line). (E) The scoring plot of each gene. The higher the score, the more important.  
(F) The ROC curve of the logistic regression model constructed in AMI based on hub HRGs identified by RF algorithm in the training cohort. 
(G) The ROC curve of the logistic regression model constructed in AMI in the testing cohort. 
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Targeted drug prediction based on signature genes 

 

By visualizing the targeting drugs for the signature 

genes, we found the targeting drugs closely related  

to VEGFA, including Elmiron, docetaxel, MP-0250, 

bevacizumab, bevasiranib, celecoxib, sildenafil, 

phenytoin, and sunitinib. Targeted drugs closely 

related to THBD include levothyroxine, simvastatin, 

and warfarin. We also found the target drug 

abemaciclib for CCND2 and cyclosporine for VCAN 

(Figure 9C and Supplementary Table 1). 

 

Validation of the expressions of signature genes 

 

In contrast to control groups, the expression of  

THBD, VCAN, VEGFA, JAG1, POSTN, and 

 

 
 

Figure 3. Construction of the nomogram. (A) The nomogram based on 7 signature ARGs. (B) The calibration curve: assessed prediction 
accuracy. (C) Decision curve analysis (DCA) evaluated the clinical utility of the predictive model. (D) The clinical impact curve (CIC) proved the 
clinical value of the predictive model. 
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Figure 4. Relationship between 7 signature genes. (A) Genetics interaction networks of 7 signature ARGs based on GeneMANIA 

database. (B) Correlation analysis among 7 signature ARGs. *P < 0.05; **P < 0.01; ***P < 0.001. 
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Figure 5. Identification and gene expression analysis of ARG patterns. (A) Consensus matrix with k=2. (B) Cumulative distribution 
function (CDF) of consensus clustering. (C) Delta area plot of consensus clustering. (D) Tracking plot. The abscissa represented different 
samples, and various color blocks indicated subtypes. (E) The expression of 18 ARGs in different clusters. (F) Principal component analysis 
(PCA). (G) Differential expression heat map of 18 ARGs.  

10411



www.aging-us.com 11 AGING 

 

 
 

Figure 6. Immune cell infiltration analysis. (A) The correlation between infiltrating immune cells and ARG clusters. (B) Heat map of ARGs 

and immune cell relationships. (C–F) Comparison of immune cell abundance between the high and low expression groups of VCAN, OLR1, 
THBD, and TNFRSF21. *P < 0.05; **P < 0.01; ***P < 0.001. 
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PGLYRP1 in OGD groups was significantly increased, 

while the expression of CCND2 in OGD groups was 

significantly decreased (all P < 0.05) (Figure 10). It was 

consistent with the results of the bioinformatics analysis 

and further validated our conclusions. 
 

DISCUSSION 
 

Ischemia and hypoxia can initiate compensatory 

angiogenesis, which plays a vital role in injury repair 

after AMI [19]. In this study, we screened 7 signature 

ARGs from 18 differentially expressed ARGs between 

the control and AMI groups and constructed a risk 

predictive model of AMI. Moreover, we identified  

2 ARG patterns based on 18 differentially expressed 

ARGs and explored their association with immune 

infiltration level and risk score of AMI, guiding  

the early prevention and treatment in patients in 

different ARG clusters. We constructed the miRNA  

and transcription factor network, providing new ideas 

for finding potential upstream targets and biomarkers. 

In addition, we explored possible target gene drugs  

that characterize ARGs, providing evidence for targeted 

therapy. 

 

Precision medicine optimises outcomes by minimizing 

adverse events by adapting treatments to individual 

patient characteristics (clinically identified risk factors, 

biomarkers, pharmacogenomics, etc.) [20]. However, 

risk stratification of patients based on potential risk

 

 
 

Figure 7. Enrichment analyses of DEGs in different ARG pantens. (A) GO enrichment analysis circle diagram. (B) Chordal graph of 
KEGG pathways and 18 genes. (C) A bubble chart for KEGG analysis. (D) A bubble chart for GO analysis. 

10413



www.aging-us.com 13 AGING 

 

 
 

Figure 8. Identification and comparison of different ARG gene patterns. (A) Consensus matrix of DEGs with k=2. (B) CDF of 

consensus clustering. (C) Delta area plot of consensus clustering. (D) Differential expression analysis of clusters A and B genes based on ARG 
gene pattern. (E) Association of DEGs with immune cell infiltration in clusters A and B based on ARG gene pattern. (F) ARG score analysis 
between different clusters based on the ARG model. (G) ARG score analysis between different clusters based on the ARG gene model. (H) The 
association between ARG patterns, gene cluster, and ARG score was shown on the Sankey diagram. 
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factors and risk evaluation systems (such as the Global 

Registry of Acute Coronary Events [GRACE] and  

the Thrombolysis in Myocardial Infarction [TIMI]  

risk scores) no longer fully meets the needs of clinical 

practice [21]. Combining traditional models with 

genetic information, machine learning algorithms, and 

artificial intelligence techniques can help improve the 

accuracy of risk assessment. In this context, we further 

 

 
 

Figure 9. Regulatory network of 7 signature ARGs. (A) Network of miRNA-gene. (B) Network of transcription factor-gene. (C) Analysis 
of targeted drug prediction of signature ARGs. 
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explored the potential role of angiogenesis in AMI and 

identified signature ARGs that may serve as potential 

biomarkers by machine learning methods. 

 

Studies have shown that promoting angiogenesis  

at the border of the infarct is essential for cardiac 

repair. Endothelial progenitor cells (EPCs) can  

induce cardiovascular formation in the ischemic zone 

through the differentiation of endothelial colony-

forming cells (ECFCs) into endothelial cells and early 

outgrowth cells (EOCs) that secrete pro-angiogenic 

factors such as VEGF and chemokines [22]. VEGFA  

is the most important factor inducing angiogenesis, 

which is associated with VEGFR-1 and VEGFR-2 

receptors on the surface of endothelial cells to  

regulate their proliferation and migration increase 

vascular permeability, and promote the activation  

of inflammatory factors as well [23], initiating 

angiogenesis on the fourth to tenth day after AMI. 

CCND2 belongs to the highly conserved cyclin family 

and can bind to Cyclin-dependent kinases 4 (CDK4)  

to regulate the G1 to S phase in the cell cycle  

[24]. Research has demonstrated that Human-induced 

pluripotent stem cells with upregulated CCND2 can 

increase the number of VEGFR-positive cells and 

facilitate angiogenesis in the border zone of AMI  

[25]. It is proven that CCND2 can promote myocardial 

repair in AMI Amice and swine, being a potential 

measure for AMI therapy [25, 26]. Another benefit of 

AMI treatment is THBD. It has been regarded as an 

anticoagulant receptor distributed on the luminal 

surface of all vascular endothelial cells [27]. A study 

found that THBD secreted from vascular endothelial 

cells promotes EPC growth and reduces apoptosis  

[28, 29]. However, there needs to be more research on 

the relationship between these 7 ARGs and AMI. 

Thus, the results of this study will act as a theoretical 

basis for subsequent research on ARGs and AMI. 

 

This study divided the AMI sample into two ARG 

subclusters based on consensus clustering. Between 

clusters A and B, there were significant differences in 

15 different types of immune cell infiltration, all of 

which were higher in cluster B, including macrophage, 

monocyte, neutrophil, natural killer T cell, dendritic 

cell, and so on. It may suggest that group B may be 

more sensitive to immunotherapy. Persistent non-

resolving inflammation is one of the main factors  

in poor prognosis of AMI, and macrophages and 

neutrophils with phagocytic effect have a vital role. 

Previous studies have demonstrated that monocytes  

are recruited to the infarct site 2 hours after infarction, 

and cardiac resident macrophages die and are cleared 

within 24 hours and replaced by monocyte-derived 

macrophages. In the first 3 days, they exhibit 

inflammation subtypes (M1) initially, then transform 

into anti-inflammatory phenotypes (M2) to regulate 

the inflammatory cascade [30]. Neutrophils also have a 

 

 
 

Figure 10. Detection of mRNA expression levels of 7 signature ARGs by RT-qPCR. *P < 0.05; **P < 0.01; ***P < 0.001. 
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similar process; three days after AMI, pro-inflammatory 

neutrophils N1, a crucial factor in left ventricular infarct 

wall thinning, exhibit an anti-inflammatory phenotype 

and undergo apoptosis [30, 31]. They selectively 

degranulate during AMI depending on their protein 

profile and the extracellular matrix (ECM) environment 

[32]. Neutrophil gelatinase-associated lipocalin (NGAL) 

can polarize macrophages towards the M2 phenotype 

[33]. In general, the resolution of inflammation is a 

complex process in which multiple immune cells 

interact and influence each other. The effect of different 

immune cell subtypes should be considered when 

treating myocardial remodeling in AMI. 

 

We further explore the immune infiltration condition in 

high and low-expression groups of VCAN, OLR1, 

THBD, and TNFRSF21. All of them are positive 

correlation ARGs. Some kinds of dendritic cells, 

macrophages, mast cells, monocytes, natural killer  

cells, regulatory T cells, and T follicular helper cells 

significantly differed in their high expression group. 

Studies have shown that DCs can regulate post-infarction 

repair by promoting the release of inflammatory factors 

and activating fibroblasts; mast cells have a bidirectional 

effect on myocardial inflammation and fibrosis; Treg 

cells have anti-inflammatory properties while triggering 

fibrosis to promote repair [34]. In addition, natural killer 

cells may be related to monocytes via the cytokine axis 

T-bet/INF-γ/IL-12, promoting one another’s activity and 

stimulating inflammation in the infarction zone [35].  

In conclusion, immune cells are vital participants in 

AMI, impacting immunotherapy. Abnormal activation 

of angiogenesis may promote the degree of immune cell 

infiltration. However, the causal relationship between 

them and the specific regulatory mechanisms are 

unknown. A large number of future experimental studies 

are needed for verification. 

 

We performed functional enrichment analysis to further 

explore the possible biological functions played by  

the DEGs identified in different ARG patterns, GO  

and KEGG enrichment analyses were performed.  

These genes mainly enrich biological processes and  

molecular functions. More precisely, enrichment was 

most significant in regulating the phagocytosis process 

and cellular components in the lumen or membrane of 

specific or tertiary granules. Through a multi-granule 

delivery system, neutrophils release a wide range of 

antibacterial compounds and damaging enzymes [32]. 

AMI leads to a large number of apoptotic cells, and 

macrophages, on the one hand, promptly remove dying 

cells and inhibit the release of contents from them, 

causing secondary necrosis; on the other hand, they  
can change from a pro-inflammatory phenotype to a 

reparative phenotype by adjusting gene expression and 

participate in cardiac remodeling by secreting cytokines, 

regulating the phagocytic process of macrophages 

suggests an attractive idea for the treatment of AMI 

[30]. For instance, the alarming family member S100A9 

has been regarded as a potential diagnostic and 

therapeutic biomarker; long-term blockade will impair 

the phenotypic switching of reparatory macrophages 

[36]. In the KEGG analysis, cytokine-cytokine receptor 

interaction and drug metabolism-cytochrome P450 

attracted more attention. Traumatic myocardium triggers 

oxidative stress, inflammation, and the release of 

numerous cytokines. Many drugs like taraxerol [37] and 

gentiopicroside [38], which may reduce inflammatory 

cytokines, were considered to play a role in lowering 

myocardial damage. Cytochrome P450 is one of the  

key monooxygenases in drug metabolism, which can 

convert arachidonic acid into alcohols and epoxides 

with anti-inflammatory, antioxidant, and vasodilatory 

effects, providing myocardial protection after AMI [39].  

 

The network of miRNA and transcription factors 

displayed potential biomarkers and therapeutic targets 

for AMI. Several studies have explored the relationship 

between miRNAs and ARGs in various carcinomas.  

For example, Zhu et al. found that lncRNA RP11-

805J14.5 can compete with CCND2 for miR-34b-3p 

and miR-139-5p in lung adenocarcinoma [40]. Wen  

et al. suggested that regulating the TTTY15/miR-98-

5p/CCND2 axis may inhibit the progression of gastric 

cancer [41]. Salem et al. reported that miR-590-3p 

contributes to ovarian cancer growth and metastasis  

by stimulating the FOXA2 vesicant pathway [42]. 

However, the AMI-related literature is relatively sparse, 

with a portion of studies on extracellular vesicles  

(EVs). EVs are membrane vesicles containing lipids, 

proteins, nucleic acids, and metabolites secreted by 

cells, which can include three categories: exosomes, 

microvesicles, and apoptotic bodies. They participate  

in cellular communication and are widely applied  

in cardiovascular therapy [30]. Li et al. highlighted  

that small EVs containing miR-486-5p can promote  

cardiac angiogenesis through fibroblast MMP19/VEGFA 

cleavage signaling [43]. Yu et al. revealed that EVs 

produced from atorvastatin-pretreated mesenchymal 

stem cells improve heart repair after AMI by altering 

macrophage polarization through the miR-139-3p/ 

STAT1 pathway [44]. These results indicated that EVs 

might be a promising treatment for AMI, and more 

research in this area is still needed. Finally, we also 

visualized possible gene-targeted drugs, providing a 

theoretical basis for future research on AMI therapy. 

 

This study has some limitations. First, all sample data 

were downloaded from the GEO database and did not 
combine multiple databases constrained by limited 

public data for a more comprehensive validation. In 

addition, the AUC of the current model has a significant 
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difference between the training and testing sets, 

suggesting a possible overfitting of the model. It would 

require more future data to evaluate the current model's 

accuracy. Second, the current model lacks several 

clinical features, which are limited by the available 

public data. More clinical variables should be considered 

and introduced into the model to improve its diagnostic 

efficacy further. Third, the exact regulatory relationships 

involved in miRNA, TFs, and drugs targeting the 

signature genes predicted by the database still need  

to be further explored experimentally. Finally, the 

assessment of ARGs is based exclusively on the levels 

of mRNAs reported in the databases described above, 

which do not reflect the levels of functional proteins. 

The exact mechanism by which these characterized 

genes recruit specific immune cells to the myocardial 

infarct zone and other immune-related processes remains 

unclear. Their contribution to the progression of AMI 

requires further experimental validation. Despite some 

limitations of this study, it provides clues to investigate 

the potential mechanism of action of ARGs in AMI  

and offers options for immunotherapy and potential 

diagnostic markers. 

 
CONCLUSIONS 

 
In conclusion, we identified seven signature ARGs 

based on the RF algorithm and constructed a risk 

predictive model of AMI. Besides, this study splits AMI 

samples into two clusters depending on their different 

ARG patterns, and the high expression pattern of ARG 

may have a higher immunotherapy value. Based on 

these findings, characterizing the angiogenic features  

of patients with AMI could help identify populations 

with specific molecular profiles and provide precise 

treatments. However, additional multi-omics studies are 

still needed to further explore the angiogenic profile  

of AMI and provide new strategies for diagnosis, 

classification, targeted therapy, and prognosis prediction. 
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Supplementary Table 
 

Supplementary Table 1. Regulatory network of 7 signature ARGs. 

Gene Transcription factor miRNA Drug 

PGLYRP1 CEBPB, FOXC1, 

MEF2A, PPARG, E2F1, 

E2F6, TP53, and IRF2 

hsa-mir-16-5p and hsa-mir-335-5p 
 

POSTN JUND, FOXL1, YY1, 

NFYA, and SRF 

  

THBD CREB1, E2F1, E2F6, 

TP53, MAX, USF1, 

USF2, SREBF1, ELK1, 

SREBF2, and EN1, 

hsa-mir-192-5p, hsa-mir-215-5p, hsa-mir-335-5p, hsa-mir-578, hsa-mir-

1207-5p, hsa-mir-2115-5p, hsa-mir-3127-5p, hsa-mir-4763-3p, hsa-mir-

4436b-3p, hsa-mir-4632-5p, hsa-mir-6132, hsa-mir-6735-5p, hsa-mir-

6836-5p, hsa-mir-6879-5p, and hsa-mir-7843-5p 

CILOSTAZOL, 

CURCUMIN, 

LEVOTHYROXINE, 

SIMVASTATIN, and 

WARFARIN 

JAG1 FOXC1, TFAP2C, 

TP63, and SOX10 

hsa-let-7b-5p, hsa-mir-21-5p, hsa-mir-26a-5p, hsa-mir-26b-5p, hsa-mir-

98-5p, hsa-mir-199a-5p, hsa-mir-34a-5p, hsa-mir-199b-5p, hsa-mir-

214-3p, hsa-mir-124-3p, hsa-mir-137, hsa-mir-143-3p, hsa-mir-145-5p, 

hsa-mir-200c-3p, hsa-mir-375, hsa-mir-410-3p, hsa-mir-524-5p, hsa-

mir-607, hsa-mir-192-3p, hsa-mir-34b-3p, hsa-mir-1305, hsa-mir-4282, 

hsa-mir-3613-3p, hsa-mir-4480, hsa-mir-4698, hsa-mir-5003-3p, and 

hsa-mir-8063 

HYDROCORTISONE 

VEGFA GATA2, NFYA, E2F1, 

TFAP2A, E2F6, 

TFAP2C, ELK4, 

RUNX2, EGR1, and 

EN1  

hsa-mir-15a-5p, hsa-mir-16-5p, hsa-mir-17-5p, hsa-mir-20a-5p, hsa-

mir-21-5p, hsa-mir-29a-3p, hsa-mir-93-5p, hsa-mir-101-3p, hsa-mir-

29b-3p, hsa-mir-106a-5p, hsa-mir-107, hsa-mir-199a-5p, hsa-mir-199a-

3p, hsa-mir-147a, hsa-mir-34a-5p, hsa-mir-181a-5p, hsa-mir-203a-3p, 

hsa-mir-205-5p, hsa-mir-200b-3p, hsa-mir-1-3p, hsa-mir-15b-5p, hsa-

mir-133a-3p, hsa-mir-140-5p, hsa-mir-145-5p, hsa-mir-9-5p, hsa-mir-

125a-5p, hsa-mir-126-5p, hsa-mir-126-3p, hsa-mir-134-5p, hsa-mir-

150-5p, hsa-mir-185-5p, hsa-mir-186-5p, hsa-mir-195-5p, hsa-mir-206, 

hsa-mir-320a, hsa-mir-200c-3p, hsa-mir-106b-5p, hsa-mir-29c-3p, hsa-

mir-299-3p, hsa-mir-296-5p, hsa-mir-361-5p, hsa-mir-302d-3p, hsa-

mir-369-3p, hsa-mir-372-3p, hsa-mir-373-3p, hsa-mir-374a-5p, hsa-

mir-378a-3p, hsa-mir-383-5p, hsa-mir-330-3p, hsa-mir-335-5p, hsa-

mir-423-3p, hsa-mir-424-5p, hsa-mir-20b-5p, hsa-mir-429, hsa-mir-

329-3p, hsa-mir-410-3p, hsa-mir-495-3p, hsa-mir-497-5p, hsa-mir-

520g-3p, hsa-mir-520h, hsa-mir-503-5p, hsa-mir-504-5p, hsa-mir-567, 

hsa-mir-568, hsa-mir-576-5p, hsa-mir-603, hsa-mir-646, hsa-mir-363-

5p, hsa-mir-297, hsa-mir-16-1-3p, hsa-mir-101-5p, hsa-mir-7-1-3p, hsa-

mir-7-2-3p, hsa-mir-141-5p, hsa-mir-125a-3p, hsa-mir-34b-3p, hsa-mir-

362-3p, hsa-mir-374b-5p, hsa-mir-374b-3p, hsa-mir-1293, hsa-mir-205-

3p, hsa-mir-670-5p, hsa-mir-718, hsa-mir-3126-5p, hsa-mir-3163, hsa-

mir-4263, hsa-mir-3646, hsa-mir-3662, hsa-mir-3924, hsa-mir-3941, 

hsa-mir-4483, hsa-mir-4497, hsa-mir-4524a-5p, hsa-mir-4719, hsa-mir-

451b, hsa-mir-4735-5p, hsa-mir-4789-5p, hsa-mir-5193, hsa-mir-

4524b-5p, hsa-mir-5682, hsa-mir-5692c, hsa-mir-5688, hsa-mir-5692a, 

hsa-mir-5694, hsa-mir-5692b, hsa-mir-660-3p, hsa-mir-1277-5p, hsa-

mir-95-5p, hsa-mir-598-5p, hsa-mir-942-3p, hsa-mir-1252-3p, hsa-mir-

6745, hsa-mir-6748-5p, hsa-mir-6756-5p, hsa-mir-6759-5p, hsa-mir-

6766-5p, hsa-mir-6769a-5p, hsa-mir-6793-5p, hsa-mir-6838-5p, hsa-

mir-6769b-5p, hsa-mir-6870-3p, hsa-mir-6871-3p, hsa-mir-6873-5p, 

hsa-mir-6875-5p, hsa-mir-1-5p, and hsa-mir-8485 

AFLIBERCEPT, 

ZALTRAP, 

MUPARFOSTAT, 

CONBERCEPT, 

BROLUCIZUMAB, 

BEVACIZUMAB, 

RANIBIZUMAB, 

PEGAPTANIB SODIUM, 

REGORAFENIB, 

NAVICIXIZUMAB, 

LENALIDOMIDE, 

FLUOROURACIL, 

BEVASIRANIB, 

SORAFENIB, 

BEVACIZUMAB 111IN, 

LEUCOVORIN, CDC-801, 

IRINOTECAN, ABICIPAR 

PEGOL, RISUTEGANIB, 

CISPLATIN, OSI-632, 

SILDENAFIL, 

OXALIPLATIN, 

DOCETAXEL, 

FENOFIBRATE, 

SUNITINIB, 

CELECOXIB, 

GENTAMICIN, MP-0250, 

CARBOPLATIN, 

DOMATINOSTAT, 

CAPECITABINE, 

SQUALAMINE, 

CILOSTAZOL, 

ENALAPRIL, 

PHENYTOIN, and 

ELMIRON 
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VCAN GATA2, FOXL1, 

NFYA, HNF4A, 

NFKB1, RELA, TP53, 

and STAT1 

hsa-mir-103a-3p, hsa-mir-107, hsa-mir-129-5p, hsa-mir-218-5p, hsa-

mir-23b-3p, hsa-mir-302c-5p, hsa-mir-507, hsa-mir-545-3p, hsa-mir-

557, hsa-mir-578, hsa-mir-643, hsa-mir-361-3p, hsa-mir-335-3p, hsa-

mir-450b-5p, hsa-mir-3185, hsa-mir-3680-3p, hsa-mir-4436b-5p, hsa-

mir-5003-3p, hsa-mir-5011-3p, hsa-mir-5197-3p, hsa-mir-4666b, hsa-

mir-552-5p, hsa-mir-627-3p,  and hsa-mir-6777-3p 

CYCLOSPORINE 

CCND2 GATA2, POU2F2, 

E2F1, HINFP, TFAP2A, 

MAX, USF1, USF2, 

EN1, and E2F4 

hsa-let-7a-5p, hsa-let-7b-5p, hsa-mir-15a-5p, hsa-mir-16-5p, hsa-mir-17-

5p, hsa-mir-19a-3p, hsa-mir-19b-3p, hsa-mir-20a-5p, hsa-mir-26a-5p, hsa-

mir-26b-5p, hsa-mir-29a-3p, hsa-mir-96-5p, hsa-mir-98-5p, hsa-mir-29b-

3p, hsa-mir-196a-5p, hsa-mir-198, hsa-mir-30c-5p, hsa-mir-182-5p, hsa-

mir-15b-5p, hsa-mir-124-3p, hsa-mir-130a-3p, hsa-mir-191-5p, hsa-mir-

146a-5p, hsa-mir-154-5p, hsa-mir-185-5p, hsa-mir-195-5p, hsa-mir-206, 

hsa-mir-320a, hsa-mir-155-5p, hsa-mir-106b-5p, hsa-mir-29c-3p, hsa-mir-

302a-3p, hsa-mir-301a-3p, hsa-mir-130b-3p, hsa-mir-302b-3p, hsa-mir-

302c-3p, hsa-mir-302d-3p, hsa-mir-372-3p, hsa-mir-373-3p, hsa-mir-378a-

5p, hsa-mir-378a-3p, hsa-mir-382-5p, hsa-mir-340-3p, hsa-mir-342-3p, 

hsa-mir-324-3p, hsa-mir-335-5p, hsa-mir-424-5p, hsa-mir-497-5p, hsa-

mir-520e, hsa-mir-519c-3p, hsa-mir-520a-3p, hsa-mir-519b-3p, hsa-mir-

520b, hsa-mir-520c-3p, hsa-mir-520d-3p, hsa-mir-519a-3p, hsa-mir-503-

5p, hsa-mir-505-3p, hsa-mir-603, hsa-mir-610, hsa-mir-615-3p, hsa-mir-

548c-3p, hsa-mir-646, hsa-mir-656-3p, hsa-mir-454-3p, hsa-mir-765, hsa-

let-7a-3p, hsa-mir-16-1-3p, hsa-mir-33a-3p, hsa-mir-192-3p, hsa-mir-145-

3p, hsa-mir-138-1-3p, hsa-mir-340-5p, hsa-mir-423-5p, hsa-mir-545-5p, 

hsa-mir-890, hsa-mir-541-5p, hsa-mir-744-3p, hsa-mir-877-5p, hsa-mir-

877-3p, hsa-mir-665, hsa-mir-301b-3p, hsa-mir-1228-3p, hsa-mir-1237-3p, 

hsa-mir-1200, hsa-mir-663b, hsa-mir-1297, hsa-mir-1248, hsa-mir-1255a, 

hsa-mir-1263, hsa-mir-302e, hsa-mir-1252-5p, hsa-mir-1255b-5p, hsa-mir-

2114-3p, hsa-mir-2682-3p, hsa-mir-3125, hsa-mir-3134, hsa-mir-3163, 

hsa-mir-3173-3p, hsa-mir-4295, hsa-mir-4303, hsa-mir-4306, hsa-mir-

4275, hsa-mir-3200-5p, hsa-mir-3613-3p, hsa-mir-3616-3p, hsa-mir-3653-

3p, hsa-mir-3666, hsa-mir-3672, hsa-mir-3916, hsa-mir-4419a, hsa-mir-

4428, hsa-mir-4434, hsa-mir-4436a, hsa-mir-4465, hsa-mir-4503, hsa-mir-

2392, hsa-mir-4510, hsa-mir-4516, hsa-mir-4521, hsa-mir-4524a-5p, hsa-

mir-4524a-3p, hsa-mir-3074-5p, hsa-mir-3976, hsa-mir-4644, hsa-mir-

4668-5p, hsa-mir-4668-3p, hsa-mir-4709-3p, hsa-mir-4779, hsa-mir-4795-

5p, hsa-mir-5000-3p, hsa-mir-5192, hsa-mir-4524b-5p, hsa-mir-548aw, 

hsa-mir-5692c, hsa-mir-5692a, hsa-mir-5697, hsa-mir-5703, hsa-mir-

5692b, hsa-mir-548g-5p, hsa-mir-1277-5p, hsa-mir-548x-5p, hsa-mir-

548aj-5p, hsa-mir-6127, hsa-mir-6129, hsa-mir-6130, hsa-mir-6133, hsa-

mir-6501-5p, hsa-mir-6505-5p, hsa-mir-1468-3p, hsa-mir-548f-5p, hsa-

mir-6730-3p, hsa-mir-6744-5p, hsa-mir-6751-3p, hsa-mir-6760-5p, hsa-

mir-6765-3p, hsa-mir-6770-5p, hsa-mir-6772-3p, hsa-mir-6781-3p, hsa-

mir-6792-5p, hsa-mir-6797-5p, hsa-mir-6823-3p, hsa-mir-6827-3p, hsa-

mir-6828-5p, hsa-mir-6838-5p, hsa-mir-6847-5p, hsa-mir-6859-5p, hsa-

mir-6864-3p, hsa-mir-6868-3p, hsa-mir-6878-5p, hsa-mir-6891-5p, hsa-

mir-7152-5p, hsa-mir-7849-3p, hsa-mir-8063, hsa-mir-8064, hsa-mir-

8083, hsa-mir-1199-5p, hsa-mir-203a-5p, and hsa-mir-1249-5p 

RIBOCICLIB and 

ABEMACICLIB 
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