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INTRODUCTION 
 

Gastric cancer (GC) is a common worldwide  

cancer that presents a major risk to health [1, 2]. Its 

intricate evolution involves the interplay of dietary 

factors, host genes, Helicobacter pylori infection, and 

environmental elements [3–5]. Because of atypical 

symptoms, gastric cancer at an early stage is frequently 

not identified until it has progressed to a more advanced 

stage. This leads to a poor prognosis characterized  

by a high likelihood of local recurrence and distant 

metastasis [6, 7]. 

Tumor endothelial cells (TECs) are crucial 

components of the tumor microenvironment (TME) 

and play a pivotal role in promoting tumorigenesis and 

metastasis [8–13]. Throughout tumor development, 

TECs contribute not only to the formation of new 

blood vessels but also impact the biological behavior 

of tumor cells by secreting a variety of bioactive 

molecules, including growth factors, cytokines, and 

enzymes [12, 14, 15]. Additionally, TECs possess the 

capability to modulate immune responses. They can 

produce immunosuppressive molecules such as TGF-β 

and IL-10, which dampen the activity of immune cells, 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

Characterization of tumor endothelial cells (TEC) in gastric cancer 
and development of a TEC-based risk signature using single-cell 
RNA-seq and bulk RNA-seq data 
 

Meng Fan1, Xiaofei Xu1, Yu Hu1 
 
1Department of Gastrointestinal Surgery, Zhu Cheng People’s Hospital, Weifang, China 
 
Correspondence to: Yu Hu; email: fsjxhuyu1986@wfmc.edu.cn 
Keywords: tumor endothelial cells, gastric cancer, risk signature, immunotherapy 
Received: December 7, 2023 Accepted: April 22, 2024 Published: June 12, 2024 

 
Copyright: © 2024 Fan et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Background: Tumor endothelial cells (TECs) are essential participants in tumorigenesis. This study is focused on 
elucidating the TEC traits in gastric cancer (GC) and constructing a prognostic risk model to predict the clinical 
outcome of GC patients. 
Methods: Single-cell RNA sequencing (scRNA-seq) data were obtained from the GEO database. Using specific 
markers, the Seurat R package aided in processing scRNA-seq data and identifying TEC clusters. Based on TEC 
cluster-associated genes identified by Pearson correlation analysis, TEC-related prognostic genes were screened 
by lasso-Cox regression analysis, thereby constructing a risk signature. A nomogram was created by combining 
the risk signature with clinicopathological features. 
Results: Based on the scRNA-seq data, 5 TEC clusters were discovered in GC, with 3 of them showing prognostic 
associations in GC. A total of 163 genes were pinpointed among 3302 DEGs as significantly linked to TEC 
clusters, leading to the formulation of a risk signature comprising 8 genes. Furthermore, there was a notable 
correlation between the risk signature and the immune cell infiltration. Multivariate analysis findings indicated 
that the risk signature served as an independent prognostic factor for GC. Moreover, its efficacy in forecasting 
immune response was validated. 
Conclusion: TEC-based risk model is highly effective in predicting the survival outcomes of GC patients and can 
forecast the immune response. Targeting TECs may significantly inhibit tumor progression and enhance the 
efficacy of immunotherapy. 
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thereby facilitating tumor cells to evade immune 

detection and destruction [14]. 

 

Additionally, TECs are also able to influence the 

invasive and metastatic ability of tumor cells through 

direct interaction with them [16]. For instance, by 

secreting enzymes like matrix metalloproteinases 

(MMPs) that aid in tumor cell extravasation and 

basement membrane penetration, TECs assist tumor cells 

in traversing the vessel wall, entering the bloodstream, 

and establishing distant metastases [14, 17–19]. Of note, 

TEC has the capacity to interact with a variety of cells 

and molecules present in the TME [14]. Other cell types 

within the tumor microenvironment (TME), such as 

cancer-associated fibroblasts (CAFs) and immune cells, 

synergistically cooperate with TEC in establishing a 

favorable microenvironment for tumor progression and 

metastasis by secreting signaling molecules or engaging 

in direct cell-to-cell interactions [20, 21]. 

 

It has been reported that distinguished from normal 

endothelial cells (NECs), TECs exhibit chromosomal 

instability, altered gene expression, enhanced proliferative 

capacities, and resistance to anti-angiogenic drugs [22, 

23]. Targeting TECs can inhibit tumor progression and 

prolong patient survival by blocking the formation of 

tumor blood vessels [16, 22, 24]. Based on the scRNA-

seq analysis, the study by Yin et al. revealed a TEC 

cluster in GC tissues that exclusively expressed IGFBP5 

and displayed malignant characteristics [23]. Patients with 

TECs overexpressing IGFBP5 and IGFBP3 demonstrated 

significantly lower overall survival (OS). While numerous 

studies have been undertaken, a comprehensive under-

standing of the systematic characteristics of TECs and 

their correlation with GC prognosis and response to 

immunotherapy remains elusive. 

 

In this research, we acquired scRNA-seq and 

transcriptome data, identifying distinct TEC clusters  

and developing a risk signature based on TECs. We 

assessed the clinical significance of the risk signature 

and examined the relationship between the risk signature 

and TME, immune response. Subsequently, we created  

a new nomogram that combines the risk signature  

with clinicopathological characteristics, to enhance its 

performance in predicting the clinical outcome of GC. 

Our study provides new insights into the molecular 

mechanisms underlying the occurrence and progression 

of GC, allowing for more individualized therapies. 

 

METHODS 
 

Data acquisition and processing 

 

From the public online website (https://dna-

discovery.stanford.edu/research/datasets/) [25], we 

acquired scRNA-seq data of GC tissues, which 

included 9 GC samples, 10 normal samples, 2 samples 

of peripheral blood mononuclear cells (PBMC), and  

1 sample of metaplasia. Our focus was specifically  

on the 9 GC tissue samples and their corresponding 

normal samples. 

 
We used strict standards for scRNA-seq data, ensuring 

that each gene was expressed in a minimum of 3 cells 

and that each cell expressed at least 250 genes. To ensure 

quality control (QC) with the Seurat R package [26], 

cells with mitochondrial gene expression percentages 

higher than 15% were eliminated. Additional filtering 

based on QC criteria (nFeature RNA ≥ 200 and 

nFeature RNA ≤ 5000 and nCount_RNA ≥ 500) was 

applied. Normalization was executed using Seurat  

R package’s “NormalizeData” function, resulting in 

37,440 cells. We adjusted the number of principal 

components (PCs) to 30 for the generation of cell 

clusters. The identification of cell clusters was 

performed using the FindClusters function with a 

resolution set to 1, and the results were visualized 

through UMAP method. 

 

The Cancer Genome Atlas (TCGA) provided RNA-seq 

data, single-nucleotide variant (SNV), copy number 

variant (CNV) data, and clinical information for  

GC. After additional curation, the transcriptome data 

yielded a total of 345 tumor samples and 32 para-

cancerous samples. Furthermore, for further validation, 

GSE62254 (300 GC samples) and GSE15459 (192 GC 

samples) cohorts were obtained from the GEO data-

base (https://www.ncbi.nlm.nih.gov/geo/). Moreover, 

ten pathways related to cancer were acquired from the 

literature [27]. 

 
Definition of TEC 

 

The Seurat R package enabled a thorough re-examination 

of scRNA-seq data to characterize the signature of TECs. 

The function ‘FindIntegrationAnchors’ was used to 

handle batch effects in 18 samples. The uniform manifold 

approximation and projection method with 30 principal 

components (PCs) and a resolution of 0.25 was employed 

for non-linear dimensional reduction. The process of 

clustering was executed by utilizing the functions 

‘FindNeighbors’ and ‘FindClusters’. The function 

‘RunUMAP’ was utilized to apply UMAP dimensionality 

reduction. Endothelial cells were characterized by 8 

marker genes, namely VWF, ENG, PLVAP, MCAM, 

PECAM1, CLDN5, SELE, and SELP. Furthermore, 

UMAP dimensionality reduction was applied to the 

endothelial cell clusters. Marker genes for each TEC 

cluster were determined using the FindAllMarkers 

function. The Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analysis on TEC cluster 

https://dna-discovery.stanford.edu/research/datasets/
https://dna-discovery.stanford.edu/research/datasets/
https://www.ncbi.nlm.nih.gov/geo/


www.aging-us.com 3 AGING 

marker genes was conducted using the clusterProfiler R 

package [28]. Additionally, the CNV characteristics 

within the TEC clusters were analyzed using the Copykat 

R package to discern between malignant and non-

malignant cells in each sample [29]. 

 

TEC-related gene identification 

 

The limma R package was used to identify DEGs 

between tumor and normal tissue, with an adjusted 

p-value of less than 0.05 and an absolute log2 (fold 

change) greater than 1 [30]. Correlations between  

DEGs and TEC clusters were evaluated, with a focus 

on the identification of crucial TEC-associated genes. 

The genes associated with prognosis were further 

determined through univariate Cox regression analysis 

in the survival package with a significance level of  

p < 0.05. In order to reduce the number of genes, a 

lasso-Cox regression analysis was conducted, followed 

by a multivariate Cox regression analysis using a 

stepwise regression approach. Based on the outcomes 

of the multivariate Cox model, a risk signature was 

developed utilizing the formula: risk score = Σβi × 

Expi, where i represents the gene in the risk signature, 

expi denotes the expression of gene i, and βi indicates 

the coefficients of gene i in the multivariate Cox 

model. Subsequent to zero-mean normalization, the 

patients were stratified into high- and low-risk groups. 

The predictive performance of the risk signature was 

evaluated through receiver operating characteristic 

curve (ROC) analysis using the timeROC R package. 

 

Immune landscape analysis 

 

The CIBERSORT algorithm evaluated the proportions 

of 22 distinct immune cell types within the context of 

GC [31]. By computing StromalScores, ImmuneScores, 

and ESTIMATEScores, the ESTIMATE algorithm 

facilitated the investigation of the connection between 

the risk genes and the TME [32]. 

 
The ability to respond to immune checkpoint inhibitors 

 

We acquired transcriptomic and clinical information 

from GC patients who received treatment with 

immunotherapy from the IMvigor210 and GSE78220 

cohorts [33, 34]. The assessment was conducted to 

determine the potential significance of the risk signature 

in predicting the effectiveness of immune checkpoint 

inhibitors (ICIs). 

 
Statistical analysis 

 

R software (Version 4.2.1) was utilized for all the 

analyses. A p-value less than 0.05 was deemed to be 

statistically significant. 

Data availability statement 

 

The datasets presented in this study can be found  

in online repositories. The names of the repository/ 

repositories and accession number(s) can be found in 

the article. 

 

RESULTS 
 

Screening of TECs in scRNA-seq samples 

 

Figure 1 depicts the study’s flow chart. At first, a  

total of 37,440 cells were obtained from scRNA- 

seq data after an initial QC. After log-normalization 

and dimensionality reduction, a total of 36 subgroups 

were observed, uncovering a single TEC population 

distinguished by 8 marker genes: VWF, ENG, 

PLAVP, MCAM, PECAM1, CLDN5, SELE, and 

SELP (Supplementary Figure 1A, 1B). Afterward, 

TEC group cells went through further clustering and 

dimensionality reduction. The TEC populations were 

divided into five clusters using the identical clustering 

algorithm (Supplementary Figure 1C, 1D). In Figure 

2A, the UAMP plot shows the distribution of 18 

samples. As a result, five TEC clusters were finally 

generated and used for subsequent analysis (Figure 

2B). 601 DEGs were identified among the 5 TEC 

clusters. Figure 2C displays the expression of the  

top 5 DEGs, which act as marker genes for the TEC 

clusters. Figure 2D indicates the proportion of the five 

TEC clusters in each sample. The analysis of KEGG 

showed enrichment in different pathways, including 

mineral absorption, ferroptosis, necroptosis, ribosome, 

focal adhesion, rap 1 signaling pathway, regulation of 

actin cytoskeleton, platelet activation, ECM-receptor 

interaction, adherens junction, and cell adhesion 

molecules (Figure 2E). Moreover, five TEC clusters 

were identified to comprise 839 tumor cells and 1137 

normal cells according to CNV traits (Figure 2F). 

 

Expression of cancer-related pathways in TEC 

 

To explore the relationship between TECs and 

tumorigenesis, we calculated GSVA scores for  

ten oncogenic signaling pathways across distinct  

TEC subtypes, utilizing the GSVA R package. The 

heatmap indicated the significant activation of 

multiple oncogenic signaling pathways in TEC_1  

and TEC_4 (Figure 3A). Notably, the TEC_0 and 

TEC_3 clusters exhibit a substantially higher 

proportion of malignant cells compared to the other 

three clusters (Figure 3B). Furthermore, we conducted 

a comprehensive comparison of GSVA scores for 

oncogenic signaling pathways among five TEC 

clusters, revealing distinctions between malignant and 

non-malignant cells. The findings suggest that the cell 
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cycle, HIPPO, NOTCH, and RAS pathways are highly 

activated in non-malignant cells (Figure 3C–3G). 

 

In order to evaluate the correlation between TEC 

clusters and prognosis, the ssGSEA scores of the 

marker genes (the top 5 DEGs of TEC clusters) were 

calculated for each TEC cluster using the TCGA cohort. 

The findings showed elevated TEC scores for the 

TEC_2 cluster in tumor tissues compared to normal 

tissues, whereas the TEC_3 and TEC_4 clusters 

displayed a contrasting pattern (Figure 4A–4E). Kaplan-

Meier (KM) survival analysis showed that, in the  

high TEC score group, GC patients exhibited a worse 

prognosis across TEC_1, TEC_2, TEC_3, and TEC_4 

clusters compared to the low-TEC score group. 

Conversely, TEC_0 showed no significant association 

with GC prognosis (Figure 4F–4J). Supplementary 

Figure 2 revealed that the difference in TEC scores 

between different clinical variables such as T stage,  

N stage, M stage, and pathological stage. 

 

Discovering hub genes related to TEC 

 

To construct a risk signature, we conducted a 

differential analysis between tumor and normal tissues 

and identified a total of 2717 DEGs, comprising 2259 

genes with up-regulation and 458 genes with down-

regulation, as illustrated in Figure 5A. Regarding 

biological processes (BP), these genes exhibited 

enrichment in organelle fission, nuclear division, 

chromosome segregation, DNA replication, mitotic 

nuclear division, and mitotic cell cycle phase 

transition (Figure 5B). Furthermore, KEGG analysis 

indicated that these genes are predicted to positively 

regulate the cell cycle, Fanconi anemia pathway, DNA 

replication, motor proteins, and cellular senescence 

(Figure 5C). 

 

A total of 163 genes with predictive performance were 

identified through univariate Cox regression analysis 

(Figure 5D). The utilization of lasso-Cox regression 

analysis led to an additional decrease in the number of 

genes to 16, as illustrated in Figure 5E, 5F. Following  

a multivariate Cox regression analysis employing a 

stepwise regression approach, 8 genes were selected for 

incorporation into the risk signature (Figure 5G). These 

genes are ATP citrate lyase (ACLY), Sushi Domain 

Containing 1 (SUSD1), Angiopoietin 2 (ANGPT2), 

Ribonuclease A Family Member 1 (RNASE1), 

Neuronal Pentraxin 1 (NPTX1), RAB19, Kinesin 

 

 
 

Figure 1. The flow chart of this study. 
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Family Member 24 (KIF24), and Transcription Factor 

20 (TCF20). The formula for calculating the risk score 

is as follows: RiskScore = 0.276 × ANGPT2 − 0.349 × 

KIF24 + 0.175 × RNASE1 + 0.459 × ACLY + 0.143 × 

NPTX1 − 0.229 × RAB19 + 0.369 × SUSD1 − 0.384 × 

TCF20. GC samples were categorized into high- and 

low-risk groups based on the median risk scores. Figure 

5I, 5K, 5M show that the AUC values of the risk model 

varied between 0.7, 0.7, and 0.74 in the TCGA cohort, 

0.67, 0.69, and 0.68 in the GSE62254 cohort, and 0.63, 

0.61, and 0.59 in the GSE15459 cohort for 1-, 3-, and 5-

year survival. In the TCGA and GEO cohorts, the KM 

survival analyses revealed that high-risk patients had 

worse clinical outcomes than low-risk patients, as 

shown in Figure 5H, 5J, 5L. 

Identification of independent risk factors and 

nomogram development 

 

To enhance the predictive accuracy of the risk model, 

we integrated clinical pathological features and risk 

scores and conducted univariate and multivariate Cox 

regression analyses. The results confirmed that the risk 

score was the most significant independent prognostic 

factor for GC (Figure 6A, 6B). Additionally, based  

on the risk score and clinical variables such as T stage 

and N stage, we constructed a nomogram to assess  

the clinical outcomes of GC patients (Figure 6C).  

The calibration curve demonstrated that the nomogram 

can effectively forecast the actual clinical outcomes 

(Figure 6D). As shown in Figure 6E, decision curve 

 

 
 

Figure 2. The identification of TEC clusters based on scRNA seq data of GC patients.  (A) UMAP plot of the distribution of 18 

samples. (B) UMAP plot of the distribution of five TEC clusters after clustering. (C) Dot plot of the top 5 marker gene expression of TEC 
clusters. (D) The proportion of the five TEC clusters in tumor samples and normal samples. (E) KEGG enrichment analysis of 5 TEC clusters. 
(F) UMAP distribution map of malignant and non-malignant cells predicted by Copykat package. 
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analysis (DCA) confirmed that the nomogram and risk 

score had better predictive efficacy in identifying high-

risk patients compared to the N stage and T stage. 

Time-dependent ROC analysis demonstrated that, in 

the TCGA cohort, the area under the curve (AUC) of 

the risk score and nomogram was higher than other 

indicators (Figure 6F). 

 

Mutation and pathway analysis of the hub genes 

 

Next, we analyzed the SNV mutation status of 8 genes 

in the risk model. The results showed that TCF20, 

ANGPT2, SUSD1, KIF24, ACLY, and NPTX1 

exhibited SNV mutations in GC samples, while no 

SNV mutations were found in RAB19 and RNASE1 

(Figure 7A). The probability of co-occurrence among 

the identified key genes and the top 10 most mutated 

genes was examined. Figure 7B shows no significant 

co-occurrence probability between mutations in RAB19 

and NPTX1. However, ACLY, SUSD1, ANGPT2, and 

TCF20 exhibit a notable probability of co-occurrence 

with mutations in TTN, ARID1A, FAT4, and PCLO. 

Among the 8 genes, that only a minimal number of  

GC samples experienced gain/loss of copy number 

variation (CNV) (Figure 7C). To further elucidate  

the associations between the risk genes and GC, we 

analyzed the correlations between these genes and 

several molecular signatures of GC. The results 

demonstrated that RNASE1 had significantly negative 

correlations with aneuploidy score, fraction altered, 

and number of segments, whereas ANGPT2, KIF24, 

ACLY, and SUSD1 showed significantly positive 

correlations with homologous recombination defects, 

fraction altered, and number of segments (Figure 7D).

 

 
 

Figure 3. The characteristics of tumor-related pathways in TEC clusters. (A) Heatmap of 10 tumor-related pathway scores enriched 

in TEC cells. (B) Comparison of TEC clusters in malignant and non-malignant cells. (C–G) Comparison of GSVA score of each pathway 
between malignant and non-malignant cells in TEC_0 (C), TEC_1 (D), TEC_2 (E), TEC_3 cluster (F), and TEC_4 cluster (G). *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001, Abbreviation: ns: not significant. 
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Furthermore, the analysis of pathways indicated  

a strong correlation between eight genes and six 

pathways, including myogenesis, UV-response-DN, 

mitotic spindle, spermatogenesis, E2F targets, and 

G2M checkpoints (Figure 8A, 8B). 

Associations between risk genes and tumor 

immunity 

 

Our data revealed significant positive correlations 

between RNASE1 and StromalScore, ImmuneScore, and 

 

 
 

Figure 4. The associations between the five TEC cluster and prognosis of GC patients. (A–E) Comparison of five TEC scores in 

cancer and normal tissues, **P < 0.01, ***P < 0.001, ****P < 0.0001, Abbreviation: ns: not significant. (F–J) K-M curves of the high and low TEC 
score groups in the TEC_0 cluster (F), TEC_1 cluster (G), TEC_2 cluster (H), TEC_3 cluster (I), and TEC_4 (J). 
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ESTIMATEScore, whereas KIF24 exhibited significantly 

negative correlations with the three scores (Figure 9A, 

9B). Based on the median of gene expression, we further 

evaluated the ImmuneScore difference between patients 

with high- and low-risk genes. The high-expression 

group for RNASE1 and NPTX1 genes exhibited a higher 

ImmunScore (Figure 9C). Correlation analysis reveals  

a significant negative correlation between ANGPT2, 

SUSD1, and ACLY with CD8 T cells, regulatory T cells, 

and activated NK cells, while ANGPT2, SUSD1, and 

 

 
 

Figure 5. Identification of the hub genes to construct a risk signature. (A) Volcano plot of differentially expressed genes of cancer 

and normal tissues in TCGA cohort. (B) GO analysis. (C) KEGG analysis. (D) Volcano plot of prognosis-related genes identified from 
univariate Cox regression analysis. (E) The trajectory of each independent variable with lambda. (F) Plots of the produced coefficient 
distributions for the logarithmic (lambda) series for parameter selection (lambda). (G) The multivariate Cox coefficients for each gene in the 
risk signature. (H) K-M curves of risk model constructed by 8 genes in TCGA cohort. (I) ROC curves of risk model constructed by 8 genes in 
TCGA cohort. (J) K-M curves of risk model constructed by 8 genes in GSE62254 cohort. (K) ROC curves of risk model constructed by 8 genes 
in GSE62254 cohort. (L) K-M curves of risk model constructed by 8 genes in GSE15459 cohort. (M) ROC curves of risk model constructed by 
8 genes in GSE15459 cohort. 
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Figure 6. The development of a nomogram for predicting the prognosis of GC. (A, B) Univariate and multivariate Cox analysis of risk 
score and clinicopathological characteristics. (C) Nomogram model integrating the risk score and T stage, N stage was constructed. (D) 
Calibration curves for 1, 3 years of nomogram. (E) Decision curve for nomogram. (F) Comparison of predictive capacity of clinicopathological 
features and the nomogram using time-ROC analysis. ***P < 0.001. 

 

 
 

Figure 7. The characteristics of mutations of the genes included in the risk signature. (A) Waterfall diagram of SNV mutations of 

8 key genes. (B) Colinearity and mutual exclusion analysis of 8 key genes and the 10 most mutated genes in tumors. (C) CNV mutations 
(gain, loss, none) of 8 key genes. (D) Correlation heatmap of 8 key genes with Aneuploidy Score, Homologous Recombination Defects, 
Fraction Altered, Number of Segments, and Nonsilent Mutation Rate. 
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ACLY show a significant positive correlation  

with resting NK cells, M0 macrophages, activated 

mast cells, and neutrophils (Figure 9D). Moreover,  

the MCPcounter algorithm revealed an association 

between ANGPT2 and neutrophils, endothelial cells, 

and fibroblasts (Figure 9E). 

 

Assessment of the predictive efficacy of risk models 

for immunotherapy 

 

Immunotherapy, represented by ICIs, has become  

a crucial therapeutic approach for extending the 

survival of patients with advanced tumors. The 

response of patients to immunotherapy determines the 

ultimate treatment benefits. Therefore, we evaluated 

the predictive efficacy of risk features for immune 

response based on the IMvigor210 and GSE78220 

cohorts. In the IMvigor210 cohort, patients in the  

low-risk group showed a favorable prognosis and a 

prolonged OS compared to the high-risk group (Figure 

10A, p = 0.00011). Similar patterns were observed  

in the GSE78220 cohort (Figure 10F, p = 0.002). 

Furthermore, in the IMvigor210 and GSE78220 

datasets, the proportion of stable disease (SD) and 

progressive disease (PD) was higher in the high- 

risk group compared to the low-risk group (Figure 

10B, 10C, 10G, 10H). Of note, there is a significant 

difference in survival between patients in Stages I+II 

(Figure 10D, p = 0.0068) and Stages III+IV (Figure 

10E, p = 0.0081) in the high- and low-risk groups. 
 

DISCUSSION 
 

The dynamic interplay among various components 

within the TME, including cancer cells, stromal cells, 

immune cells, and the extracellular matrix (ECM),  

plays a crucial role in fostering tumor heterogeneity, 

clonal evolution, and multidrug resistance mechanisms 

[35–38]. This process ultimately contributes to tumor 

progression and metastasis. It has been reported that 

proangiogenic factors secreted by TECs and their 

interaction with tumor and immune cells are vital for 

tumor proliferation, angiogenesis, metastasis, and 

chemoresistance [9, 16, 22, 39]. The main objective of 

this research is to examine the variety of TEC clusters 

to analyze and categorize TECs in GC. We discovered 

five TEC clusters exhibiting unique characteristics. 

Previous studies have confirmed that a specific TEC 

cluster is essential for GC development, implying worse 

clinical outcomes [40]. Our study identified five TEC 

clusters, four of which were significantly associated 

with the prognosis of GC. Notably, differences in cell 

cycle, HIPPO, NOTCH, and RAS among TEC clusters 

may participate in GC growth and metastasis. 

 

 
 

Figure 8. Identification of the pathways in which the risk genes are implicated. (A) Heatmap showing the correlation between 
genes and pathways. (B) Heatmap displaying the enrichment scores for key pathways. *P < 0.05, **P < 0.01, ***P < 0.001. 
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The Hippo pathway is a critical tumor suppressor 

signaling pathway that maintains tissue homeostasis by 

regulating cell differentiation and proliferation [41–43]. 

The activation of YAP/TAZ in the Hippo signaling 

pathway greatly enhances cell proliferation, migration, 

invasion, and anti-apoptotic processes in different solid 

 

 
 

Figure 9. The relationship between the risk genes and immune landscape. (A, B) The correlation matrix of the risk genes and 

StromalScore, ImmuneScore, and ESTIMATEScore. (C) Comparison of high and low expression of 8 key genes and ImmuneScore. (D) 
Correlation between 8 key genes and immune cell score predicted by CIBERSORT analysis. (E) Correlation between 8 key genes and 10 
immune cell types predicted by MCPcounter analysis. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. 
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tumors, including GC [43–45]. It has been shown that 

DUB1, a deubiquitinating enzyme, shows significantly 

elevated expression in GC tissues and is correlated 

with the activated TAZ protein and patient prognosis 

[46]. Mechanistically, DUB1 inhibits TAZ K48-linked 

polyubiquitination, reducing TAZ degradation and 

increasing its stability, thereby promoting GC stemness 

and progression. Furthermore, the Hippo pathway 

interacts with other important oncogenic signaling 

pathways, such as Wnt, Notch, EGFR, PI3K/AKT, 

MAPK, etc., [47]. This interaction affects the key 

components of the Hippo pathway, thereby determining 

cell fate. 

 

Based on the predictive values of three TEC clusters, 

we developed a risk signature consisting of 8 genes.  

It consisted of three protective genes (RAB19, KIF24, 

and TCF20) and five risk genes (ACLY, SUSD1, 

ANGPT2, RNASE1, and NPTX1). In our study, SNV 

mutations were observed in RAB19 and RNASE1 

without significant co-occurrence probability. SNV 

mutations affect protein activity or function, leading to 

GC development. Notably, CDC27 and FLG genes 

were mutated at the single-cell level but not detected in 

the corresponding tumor tissues, and they could promote 

cell growth by modulating the inflammatory response. 

KLF4 is a tumor suppressor, and KIF4 SNV may affect 

its DNA binding ability and apoptotic function [48]. 

Research has discovered a prevalent SNV in the zinc 

finger 2 region of the KLF4 gene in the foveolar-type 

gastric adenoma (FGA) tissues of Helicobacter pylori-

negative patients. Compared to the wild-type KLF4 

gene, the mutated KLF4 significantly inhibits cell 

proliferation and induces early apoptosis [48]. 

 

Additionally, we discovered that the 8 genes exhibited a 

significant correlation with 6 pathways. The protective 

genes showed a strong positive correlation with 

MITOTIC SPINDLE, E2F targets, G2M checkpoints, 

and spermatogenesis, while the risk genes (such as 

KIF24 and NPTX1) were significantly linked to 

myogenesis and UV-response-DN. E2F-1 participates in 

the G2/M checkpoint process, and as a transcription 

factor, it regulates the cell cycle, proliferation, and

 

 
 

Figure 10. The response of risk score to immune checkpoint inhibitors in IMvigor210 cohort and GSE78220 cohort.  (A) 
Prognostic differences among risk score groups in the IMvigor210 cohort. (B) Differences in risk scores among immunotherapy responses in 
the IMvigor210 cohort. (C) Distribution of immunotherapy responses among risk score groups in the IMvigor210 cohort. (D) Prognostic 
differences between risk score groups in early-stage patients in the IMvigor210 cohort. (E) Prognostic differences between risk score 
groups in advanced patients in the IMvigor210 cohort. (F) Prognostic differences in risk score groups in the GSE78220 cohort. (G) 
Differences in risk scores among immunotherapy responses in the IMvigor210 cohort. (H) Distribution of immunotherapy responses among 
risk score groups in the GSE78220 cohort. *P < 0.05, ***P < 0.001. 
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apoptosis. Overexpression of E2F-1 can decrease the 

expression of c-Myc, Skp2, Bcl-2, cyclin D1, and 

survivin, while increasing the expression of Bax, 

ultimately inhibiting the growth of GC cells [49, 50]. 

Furthermore, G2/M checkpoint arrest significantly 

inhibits the occurrence and development of GC [51,  

52]. Hence, this data offers guidance for further 

investigating the regulatory mechanism of these risk 

genes in GC. 

 

Recent evidence suggests that the interplay between 

TECs and the tumor immune microenvironment (TIME) 

plays a crucial role in tumor progression [9, 22]. 

Tumor-associated lymphatic endothelial cells (LECs) 

promote the growth and remodeling of lymphatic 

vessels by responding to factors in the TME, increasing 

lymph node metastasis [53]. Our research discovered a 

positive correlation between RNASE1 and ImmuneScore 

and a negative correlation between KIF24, ACLY, and 

ImmuneScore. These results imply potential crosstalk 

between risk genes and the TME in GC, highlighting 

their potential as therapeutic targets. 

 

In the TME, various immune cell populations collectively 

determine the anti-tumor immune status of GC patients 

[35, 54, 55]. TECs can interact with these immune cells, 

establishing an immunosuppressive TME that facilitates 

tumor cell evasion from immune surveillance [8, 14]. In 

the risk model, memory B cells, plasma cells, regulatory 

T cells, activated NK cells, and activated dendritic cells 

show negative correlation with risk genes. Furthermore, 

our data suggest that a risk signature based on TECs  

can predict responses to immunotherapy. These findings 

provide new insights into the biological role of TECs in 

tumor immunity. However, the molecular mechanisms of 

TECs in GC and their potential value in immunotherapy 

still require further exploration. 

 
Despite our progress in understanding the role of  

TECs in the development of GC, there remain some 

limitations. Firstly, the TEC clusters and the TEC-based 

risk signature we constructed are based on retrospective 

data from public databases, meaning our conclusions 

could be limited by the data collection and analysis 

methodologies. To ensure the accuracy and reliability of 

these findings, future research should be validated in a 

prospective, multicentric cohort of GC patients to better 

simulate the situation in clinical practice and provide 

stronger evidence to support our conclusions. Secondly, 

our study mainly focused on exploring the potential 

prognostic value of the TEC-based risk signature, that 

is, predicting the prognosis of GC patients by analyzing 

TEC characteristics. However, we have not fully revealed 

the specific molecular mechanisms involved by TECs  

in the occurrence and development of GC. To deeply 

understand how TECs affect the biological process of 

GC, future research needs to adopt a variety of 

experimental methods, including gene expression 

analysis, proteomics studies, and experiments using cell 

and animal models, to reveal the molecular action 

pathways of TECs in GC and potential therapeutic 

targets. Moreover, we also need to consider the 

heterogeneity of GC, that is, different types of GC 

patients may have different TEC characteristics and risk 

patterns. Therefore, future research should consider a 

more detailed classification of GC subtypes and explore 

the role of TECs in different subtypes, in order to 

provide more personalized treatment plans for patients. 

 

Finally, although our research provides a new 

perspective for the prognosis assessment and treatment 

of GC, we must recognize that any single biomarker or 

risk signature cannot completely predict the progression 

of the disease. Future studies should explore integrating 

multiple biomarkers with clinical parameters to develop 

a more comprehensive prognostic model for risk 

assessment, enhancing the accuracy and effectiveness of 

GC treatment. 
 

CONCLUSION 
 

Our study delineated five distinct TEC clusters within 

GC tissues, four of which exhibit significant associations 

with the prognosis of GC patients. Utilizing lasso-Cox 

analysis, we identified 8 risk genes to formulate a  

TEC-based risk signature, which holds high clinical 

application value by accurately predicting the prognosis 

of GC patients and their response to immunotherapy. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The clustering of TEC populations and dimensionality reduction. (A) Distribution of subpopulations 

after clustering of all cells. (B) UMAP map of TEC marker gene expression. (C) Distribution of subpopulations after re-clustering of TEC. (D) 
UAMP diagram of marker expression in five TEC clusters. 
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Supplementary Figure 2. The differences between TEC scores and clinical variables in five TEC clusters (A–E). 

 

 


