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INTRODUCTION 
 

Although blood transfusion is life-saving in various 

clinical scenarios, patients are at risk of developing 

significant post-transfusion complications [1, 2]. Despite 

reassuring evidence from randomized controlled trials 

(RCTs), new literature is constantly emerging regarding 

potential clinical sequelae (other than mortality) from 

blood transfusions [3–5]. There are potential etiological 

links between storage lesions and adverse outcomes 

following transfusion. Retrospective observational 

studies have revealed that transfusion of long-term-stored 

blood leads to poor clinical results including a higher 

incidence rate of multiple organ failure, nosocomial 

infection, and mortality [5–7]. These unfavorable 

outcomes are thought to be partly due to the 

immunosuppressive effects of blood transfusion. In long-

term-stored blood, cytokines and inflammatory cellular 

components are released into the plasma, resulting in 

gradual biochemical and morphological changes [8]. 

Cytokine production can occur in whole blood samples 

within 2 h of blood collection [9]. Extending the duration 
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ABSTRACT 
 

Background and Objectives: Blood transfusion is a common therapeutic procedure in hospitalized patients. Red 
blood cell (RBC) units undergo various biochemical and morphological changes during storage (storage lesion). 
miRNAs have been studied intensively regarding cellular metabolic processes, but the effect of miRNAs on 
blood storage is not well defined. 
Materials and Methods: We performed bioinformatics analysis on the public data set of miRNA expression of 
RBC based on R language, and performed the Kyoto encyclopedia of genes and genomes (KEGG) enrichment 
analysis on the target genes of differentially expressed miRNA. The expression of miRNA differential genes in 
blood samples stored at different times was verified by qRT-PCR. Next, we used ELISA and qRT-PCR to verify the 
expression of IL-1β, IL-6, IL-12 and TNF-α in blood at day 1 and day 42. In addition, in vitro, we transfected 
macrophages with overexpressed miRNA, and the effects of overexpressed miRNA on macrophage polarization 
and the release of inflammatory factors were verified by flow cytometry and qRT-PCR and ELISA. 
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inflammatory factors were significantly doubled by ELISA, as well as the higher mRNA expression at 42 day. 
Experimentally verified that miR-33a-5p promoted the M1 type macrophage polarization and increased the 
release of related inflammatory factors through PPARα/ACC2/AMPK/CPT-1a axis regulation. 
Conclusions: This study elucidates a potential mechanism of inflammatory factor accumulation in long-term 
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reactions. 
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of storage can result in significant increase in the release 

of inflammatory cellular components [8, 10, 11]. The 

RBCs used for transfusion are refrigerated in a 

preservation solution, thus prolonging their shelf life.  

The duration of storage is dependent on how they  

are collected. The longest is 42 days for example in  

the US, but some products have shorter storage 

durations in different jurisdictions [12]. The RBCs 

undergo many physical and chemical changes during 

cold storage. These changes, collectively referred to as 

RBC storage lesions, affect the quality and function of 

the RBCs, diminishing the in vivo survival of transfused 

RBCs. 

 

MicroRNAs (miRNAs), a group of small non-coding 

RNAs (approximately 19-22 nucleotides), regulate post-

transcriptional gene expression by inhibiting translation 

or inducing target-specific messenger RNA (mRNA) 

[13]. These miRNAs participate in various physiological 

and pathophysiological processes, including immunity, 

cancer cell proliferation, and drug resistance [14]. Each 

miRNA targets multiple mRNAs, either alone or in 

combination with other miRNAs, thus miRNAs can 

regulate complex gene expression regulatory networks 

[15]. In blood, miRNAs, are commonly referred to as 

circulating miRNAs. Some studies suggested a 

relationship between miRNAs and the physiological 

state of the RBCs [16, 17]. Therefore, RBC miRNAs are 

considered appropriate surrogates for RBC storage 

lesions. The miRNAs could be potential predictors, 

indicating the safety and efficacy of blood products [18]. 

miR-33a-5p plays a crucial role in regulating cholesterol 

and lipid metabolism and is associated with their host 

genes, and the bioinformatics website further validated 

the miR-33a-5p targeting fork box K2 (FOXK2) and 

participated in the PI3K/AKT/mTOR signaling pathway 

through in vitro experiments [19, 20]. In addition, the 

expression level of miR-33a-5p in the circulation is 

disordered in diabetes patients and pre-diabetes patients, 

indicating that miRNA has potential diagnostic use in 

the detection of type 2 diabetes [21]. However, there 

have been no reports on the role of miR-33a-5p 

expression in circulation in regulating immune inflam-

mation in stored blood. 

 

Peripheral blood mononuclear cells and macrophages 

play a pivotal role in blood immune regulation. In this 

study, differentially expressed miRNAs in long-term-

stored blood were identified by dataset analysis, and 

our results were combined with the findings from 

blood samples. The role of miRNAs in macrophage 

polarization was also validated through in vitro 

experiments, and the underlying mechanisms of 
inflammatory factor accumulation and transfusion-

related adverse reactions in long-term-stored blood 

were determined. 

MATERIALS AND METHODS 
 

Gene expression data analysis 

 

Gene expression data was obtained from miRNA 

analysis of stored RBC using the microarray data assay. 

The time-changing miRNAs in RBC were identified 

based on the publicly available Gene Expression 

Omnibus data base (GEO) (GSE114990) in the National 

Center of Biotechnology Information (NCBI). The 

time-gene sequence differential gene-based software 

package ‘ImpulseDE2’ was used in the R language. The 

R package ‘miRNetR’ was used to predict the target 

genes of miRNAs, and the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) was used to perform 

enrichment analysis of the target genes. The results 

were visualized. 

 

Function annotation and gene set enrichment 

analysis 

 

Differentially expressed genes (DEGs) were identified 

using the limma package. Gene ontology (GO) is a 

community-based bioinformatics resource that includes 

biological processes (BP), cell components (CC), and 

molecular functions (MF). KEGG is a knowledge base 

for the systematic analysis of gene functions that links 

genomic information with higher-order functional 

information. GO and KEGG enrichment results were 

generated by the R packages “ggplot2,” “enrichplot,” 

“clusterProfiler,” and “GOplot” for the purpose of 

analysis. The statistical algorithm (Fisher’s exact test) 

was used to find out which specific functional items a 

group of genes was most related to each item in the 

analysis results corresponds to a statistical value  

P-value to indicate the significance. The smaller the  

P-value is, the greater the relationship between the item 

and the input gene is. Gene Set Enrichment Analysis 

(GSEA) was performed to compare the samples by 

GSEA software (version 4.0.3). Functional annotations 

with a | log2 FC | > mean ± 2SD and P-value < 0.05 

were considered statistically significant. 

 

Blood collection 

 

Cold-stored, low-titer, O-positive, non-leukoreduced 

whole blood units were obtained from 20 healthy 

donors by our regional blood bank, and informed 

consent was obtained from each donor and acquired 

hospital ethics approval (Blood collection batch No: 

ISFX21012166, ISFX21012488). Whole blood (400 

mL) was collected in citrate phosphate dextrose (CPD; 

3 mg/mL citric acid, 26.30 mg/mL sodium citrate, 2.22 
mg/mL monobasic sodium phosphate, and 25.51 

mg/mL dextrose) and stored as 1.5 mL aliquots in 1.7 

mL blood bag catheter (a catheter filled with whole 
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blood) at 4° C for up to 42 days. A separate aliquot of 

fresh whole blood from the same donor was used to 

generate standard packed RBC units. Packed RBC units 

were generated via centrifugation at 300 g for 7 min 

after which the supernatant containing the platelets was 

discarded. Subsequently, the blood was subjected to 

centrifugation at 1000 g for 15 min and the supernatant 

containing the buffy coat was discarded. Additive 

Solution-3 (AS-3; 0.42 mg/mL citric acid, 5.88 mg/mL 

sodium citrate, 2.76 mg/mL monobasic sodium 

phosphate, 4.10 mg/mL sodium chloride, 10 mg/mL 

dextrose, and 0.30 mg/mL adenine) was added to the 

remaining erythrocytes in a ratio of 2:9 and stored as 

1.5 mL aliquots in a 1.7 mL microcentrifuge tubes at 4° 

C for up to 42 days. 

 

Human THP-1 cell culture 

 

THP-1 cells (human acute monocytic leukemia cell line) 

from American Type Culture Collection (ATCC, USA) 

were cultured in RPMI-1640 media (Invitrogen, 11875, 

USA) supplemented with 10% heat-inactivated fetal 

bovine serum (FBS) and 0.05 mM 2-mercaptoethanol 

(Sigma-Aldrich, M6250, USA) and incubated at 37° C 

in a 5% CO2 incubator. Macrophages were obtained 

after 72 h of THP-1 cell culture in RPMI-1640  

media supplemented with 80 nM phorbol 12-myristate 

13-acetate (PMA, MedChemExpress, HY-18739, 

China). 

 

Plasmid generation and cell transfection 

 

Hsa-miR-33a-5p mimics (Mimic; #B01001, sense: 5′-

GUGCAUUGUAGUUGCAUUGCA-3′, with modified 

mature miRNA strand: 2 phosphorothioates at the 5’ 

end, 4 phosphorothioates at the 3’ end, 3’ end 

cholesterol group, and full-length nucleotide 2’-

methoxy modification) hsa-miR-33a-5p agomir 

Chemical Structure), inhibitor (Int; #B04004, sense: 

5′-UGCAAUGCAACUACAAUGCAC-3′, full-length 

nucleotide 2’-methoxy modification), and mimic 

negative control (Mimic-NC; #B04001, sense: 5′-UGA 

AUGUUGGAUCGCUUCAUG-3′) were synthesized 

by MedChemExpress (HY-R00703, HY-RI00703, 

China), and negative inhibitor control (Int-NC;  

sense: 5′-GCACUAUACAUGAACUCGCAA-3′) were 

synthesized by Thermo Fisher Scientific (AM17010, 

USA). The cells were then transfected using 

Lipofectamine™ 3000 reagent (Thermo Fisher Scientific, 

L3000001, USA), according to the manufacturer’s 

instructions. The specific transfection steps were as 

follows: transfection was performed when the 

inoculated cells were passaged to 70-90% confluence. 
Then we used the Opti MEM™culture medium to 

dilute the Lipofectamine™ 3000 reagents. Next, the 

Opti MEM™ was used to dilute the target plasmid 

with culture medium. Then the Lipofectamine™ 3000 

diluent and the target plasmid diluent were in a 1:1 

ratio incubated at 37° C for 15 minutes, and was added 

to the cells for 48 hours, and then analyzed the 

transfected cells. 

 

Enzyme-linked immunosorbent assay (ELISA) 

 

The levels of inflammatory factors, including 

interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-

12 (IL-12), and tumor necrosis factor-α (TNF-α), were 

determined using a commercial ELISA kit (Elabscience, 

E-EL-H0149c, E-EL-H0102c, E-EL-H0150c, and E-

EL-H0109c, China). All experiments were conducted 

according to the manufacturer’s protocol. Briefly, for 

the treatment of blood sample, we used a centrifuge 

tube containing anticoagulant to conduct centrifugation 

(centrifugation condition:4° C, 2000-3000 rpm, 20 min) 

within 30 minutes after collecting the sample, and 

carefully collected the supernatant (plasma). And for the 

determination of the content of inflammatory factors in 

the cell supernatant, we collected the cell supernatant 

(centrifugation condition: 4° C, 600-800 rpm, 5 min) 

after transfected with different plasmids 24 hours. 100 

μL standard working solution or sample was added into 

the corresponding plate well and incubated at 37° C for 

90 min. The liquid in the plate was discarded and 100 

μL biotinylated detection antibody working solution 

was added to each well and the plate incubated at 37° C 

for 60 min. The liquid in the plate was discarded and the 

plate was washed three times. Then 100 μL of Diluted 

Streptavidin HRP working solution (the secondary 

antibody) was added per well and the plate was placed 

in the Warm bathtub at 37° C for 30 min, after that the 

liquid in the plate was discarded and the plate was 

washed five times. Ninety microliters of substrate 

solution were added per well and incubated at 37° C for 

approximately 15 min. Termination solution (5 μL) was 

then added to each well, and the absorbance value was 

recorded at the wavelength of 450 nm using a 

microplate reader (Multiskan Spectrum, Thermo Fisher 

Scientific, USA). 

 

Flow cytometry 

 

Flow cytometry staining and analysis were performed 

according to the manufacturer’s protocol [22]. 

Approximately 1 × 106 cells were transferred to 1.5 mL 

tube, washed twice with PBS containing 10% FBS and 

1% sodium azide (NaN3), and incubated with 10 μg/mL 

Anti-CD86 antibody (Abcam, ab239075, USA) [23] 

(one of the CD surface markers for M1-phenotype 

macrophage) and Anti-NOS2 (Abcam, ab283655, USA) 
[24] (nitric-oxide synthase 2, overexpressed in M1-

phenotype macrophage) in 3% BSA/PBS in the dark for 

30 min, at room temperature. The cells were then 
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washed three times by centrifugation and resuspended 

in 500 μL PBS. Flow cytometry was performed using a 

Becton Dickinson FACSCalibur flow cytometer (San 

Jose, CA, USA). Data were analyzed using the FlowJo 

10.4.2 software (BD Biosciences). 

 

Quantitative real-time PCR (qRT-PCR) 

 

Total miRNA in whole blood was extracted using the 

miRcute miRNA Isolation Kit (Tiangen, DP501, 

China). Extracted RNA (1 μg) was reverse transcribed 

using a reverse transcription kit (Takara, RR047A, 

China). Quantitative real-time PCR was performed 

using gene-specific primers and an Applied Biosciences 

7500 Real-Time PCR system was used for qRT-PCR. 

Relative expression levels of miR-33a-5p were 

calculated using the 2−∆∆Ct method. All qRT-PCR 

reactions were performed in triplicate. The primer 

sequences used are listed in Table 1. 

 

Statistical analysis 

 

All data were analyzed using GraphPad Prism 7.0 

(GraphPad Software, CA, USA). All data were 

presented as mean ± standard deviation (SD) of at least 

three independent experiments. Student’s t-test and one-

way analysis of variance (ANOVA) were used to 

determine the statistical significance for comparisons of 

two or more groups. Pearson correlation was performed 

for fold-change in level of miR-33a-5p and expression 

level of inflammatory factors (IL-1β, IL-6, IL-12, and 

TNF-α). For all analyses, differences were considered 

statistically significant at P < 0.05. 

 

RESULTS 
 

Differential expression of miRNA in long-term-

stored RBC 

 

Differences in stored blood RBC miRNAs were 

determined by gene expression data analysis and 

significantly changed miRNAs with longer storage 

times were determined by timing analysis 

(GSE114990). The relatedness of the different samples 

in the dataset were evaluated for subsequent analyses 

(Figure 1A). The differences in the miRNA expression 

levels between samples in the different groups was also 

demonstrated (Figure 1B). The top ten differentially 

expressed miRNAs were miR-720, miR-33a-5p, miR-

198, miR-152, miR414, miR-32-5p, miR442, miR-144-

3p, miR-142-5p, miR-590-5p (Figure 1C). Some 

metabolic substances gradually increase in the first two 

weeks under the action of oxidative stress during blood 

storage and significantly decrease after 14 days [25, 26], 

which was similar to our results. They reached a peak 

on the 10th day and then decreased rapidly. Then we 

validated the expression of the top five miRNAs  

using qRT-PCR of the RBC samples we collected  

from the donors (Figure 1D). The results showed  

that only miR-720 and miR-33a-5p levels were 

significantly elevated. However, over time, the level of 

miRNA in the circulation will significantly degrade, 

while the level of miR-720 did not significantly 

decrease and remained higher than the normal group 

after 10 days, indicating that it was not a conventional 

miRNA. Therefore, we chose miR-33a-5p as a follow-

up study. 

 

More inflammatory factors are accumulated in long-

term-stored blood 

 

ELISA and qRT-PCR experiments were performed on 

the collected whole blood samples of the day 1 and the 

day 42. We first evaluated fold-change in level of miR-

33a-5p and expression level of inflammatory factors 

(IL-1β, IL-6, IL-12, and TNF-α) typically released or 

overexpressed upon the macrophage M1 type activation 

through Pearson correlation analysis, which proved that 

there was correlation between them (Table 2). The 

results showed that the blood stored for a long period of 

time (day 42), compared to fresh blood samples, 

accumulated the more protein levels (increased 2-3 

times) (Figure 2A) as well as the high mRNA 

expression (increased 2-5 times) (Figure 2B). These 

inflammatory factors are typically released or expressed 

upon macrophage M1 type activation [27]. Therefore, 

we hypothesized that the differential expression of 

miRNAs was correlated with M1-like polarization of 

macrophages in blood that was stored for long periods 

of time. 

 

MiR-33a-5p drives macrophage polarization toward 

M1 type and promotes the release of inflammatory 

factors 

 

To verify this hypothesis, the Flow cytometry and qRT-

PCR were performed on macrophages (induced by 

THP-1 with PMA) transfected with the miR-33a-5p 

mimic. Polarized macrophages were characterized by 

their differential expression of CD surface markers and 

cytokine secretion. We selected CD86 and NOS2 

(generally considered as regulatory genes for M1 

polarization of macrophages) [23, 24] to judge the 

effect of miR-33a-5p on macrophage polarization. 

Compared with non-transfected normal macrophages 

(NC), macrophages transfected with the miR-33a-5p 

mimic (Mimic) expressed more CD86 and NOS2, 

resulting in the M1 type polarization (Figure 3A), as 

well as the mRNA (increased 1-2 times) (Figure 3B) 
and the protein levels of the release of inflammatory 

factors IL-1β, IL-6, IL-12, and TNF-α (increased 1-4 

times) (Figure 3C). 
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Table 1. Primer sequences used in real-time PCR analysis. 

Target gene Forward primer (5’–3’) Reverse primer (5’–3’) 

miR-720 GCGTGCTCTCGCTGGGG GCGTGCTCTCGCTGGGG 

miR-33a-5p CCTCATAAGCGGTGCATTGTA TATGCTTGTTCTCGTCTCTGTGTC 

miR-198 GGTCCAGAGGGGAGAT GAATACCTCGGACCCTGC 

miR-152 CGCGCTAGCAGCACGTAAAT GTGCAGGGTCCGAGGT 

miR-32-5p TATTGCACATTACTAAGCCTT GAATACCTCGGACCCTGC 

18S ACACGGACAGGATTGACAGA GGACATCTAAGGGCATCACA 

AMPK TTGAAACCTGAAAATGTCCTGCT GGTGAGCCACAACTTGTTCTT 

ACC2 TCAGCCTACAAAACCGCCCA AAGGCCGTCCACGATGTAGG 

CPT1A TCCAGTTGGCTTATCGTGGTG TCCAGAGTCCGATTGATTTTTGC 

PPAR-α ATGGTGGACACGGAAAGCC CGATGGATTGCGAAATCTCTTGG 

IL-1β ACAAGGAGAACCAAGCAACG GCCGTCTTTCATTACACAGG 

IL-6 CCACTCACCTCTTCAGAACGAAT CCTCTTTGCTGCTTTCACACAT 

IL-12 ACCCTGACCATCCAAGTCAAA TTGGCCTCGCATCTTAGAAAG 

TNF-α GGTATGAGCCCATCTATC GCAATGATCCCAAAGTAG 

GAPDH GCACCGTCAAGGCTGAGAAC ATGGTGGTGAAGACGCCAGT 

 

 
 

Figure 1. (A) Correlation Heatmap of samples (GSE114990). (B) Heatmap of miRNA expression (GSE114990) (The abscissa represents days of 
storage). (C) The top 10 miRNAs that changed significantly with storage time were miR-720, miR-33a-5p, miR-198, miR-152, miR414, miR-32-
5p, miR442, miR-144-3p, miR-142-5p, miR-590-5p. (D) The qRT–PCR to examine the top five miRNAs using qRT-PCR of the RBC samples we 
collected from the donors. All data are means ± SD; n = 3 (*P<0.05). 
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Table 2. Statistical analysis of correlations between levels of miR-33a-5p and 
inflammatory cytokines.  

  qIL-6 qIL-12 qTNF qIL-1a 

Unadjusted  

(n=20) 

Pearson Correlation  

with exp(ΔΔCT miR-33a-5p) 
.288 -.102 -.364 .081 

 Sig. (2-tailed) .218 .168 .115 .733 

Adjusted*  

(n=18) 

Pearson Correlation  

with exp(ΔΔCT miR-33a-5p) 
-.415 .096 -.600** -.066 

 Sig. (2-tailed) .016 .003 .008 .795 

*The 2 outliers exp(ΔΔCT miR-33a-5p) are removed. 
qIL-6 = IL6Day 42/IL6Day 1, qIL-12 = IL-12Day 42/ IL-12Day 1, qTNF = qTNFDay 42/ qTNFDay 1, qIL-1a = qIL-
1aDay 42/ qIL-1aDay 1. 

 

miR-33a-5p drives macrophage polarization toward 

M1 type via the adipocytokine signaling pathway 

 

To investigate the regulatory mechanism of miR-33-5p 

in macrophage M1 polarization, the regulated target 

mRNA genes of miR-33a-5p were screened. The R 

package, and miRNetR were used for the targeted 

mRNA genes of miRNA (Figure 4A). And the KEGG 

enrichment analyses showed that the target mRNA 

genes were enriched in the adipocytokine signaling 

pathway and the PPARα/AMPK/CPT-1a pathway was 

the key signaling pathways (Figure 4B). 

 

The macrophages were then transfected with the  

miR-33a-5p mimic (Mimic), mimic negative control 

(Mimic-NC), inhibitor (Int), and negative inhibitor 

control (Int-NC). The qRT-PCR results showed that 

the transfection was successful (Figure 4C). Compared 

with the control, the overexpression of the miR-33a-5p 

resulted in the suppression of PPARα/AMPK/CPT-1a 

 

 
 

Figure 2. (A) Protein concentrations of IL-1β/IL-6/IL-12/TNF-α in the plasma of blood samples (n=20,****P<0.001). (B) Relative mRNA 
expression in blood samples of 1 Day and 42 Day (*P<0.05). 
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as well as the elevation of ACC2 mRNA levels. In 

contrast, knockdown of miR-33a-5p had the opposite 

effect (Figure 4D). 

 

DISCUSSION 
 

The effect of RBC transfusion with different storage 

periods on individual clinical outcomes has been an 

active and controversial topic in the clinical community 

[5]. Stored blood cells undergo progressive biochemical 

and morphological deterioration, which include reduced 

erythrocyte viability, cell size, deformability, lipid 

membrane composition, and release of inflammatory 

factors [28]. Importantly, RBCs storage lesions are 

considered the cause of many adverse effects following 

transfusions [29]. RBCs storage also affects the immune 

function of the recipient. Long-term storage induced 

high expression levels of a variety of cytokines, 

including IL-6, IL-8, phospholipase A2, and superoxide 

anions, in plasma or whole blood samples [30]. 

 

During RBC suspension storage, various factors are 

continuously produced as tools for intercellular 

communication and molecular transportation. During 

storage, exosomal miRNAs in erythrocyte suspensions 

can promote the secretion of certain inflammatory 

cytokines and mediate T cell proliferation [31]. miRNAs 

play key roles in erythropoiesis. Many upregulated or 

downregulated miRNAs in erythropoiesis may not be 

removed or degraded but selectively remain in mature 

erythrocytes [32, 33]. Most miRNAs released by RBCs 

was stably expressed and the main source of miRNAs in 

the whole blood [18]. However, other components in the 

blood also release some miRNAs and they cannot be 

distinguished from miRNAs secreted from leukocytes 

and platelet [34]. This limits the application of miRNAs 

as disease biomarkers and affects their accuracy for the 

prediction of blood storage security and transfusion-

related adverse reactions. 

 

Therefore, a dataset of stored RBCs for analysis were 

selected to ensure that the resulting differential miRNAs 

were RBC-specific. We demonstrated, by time series 

analysis, that the expression levels of many miRNAs 

changed drastically during the first 10 days (Figure 1C). 

The miRNAs such as miR-33a-5p, miR-198, and 

 

 
 

Figure 3. (A) Flow cytometric examination of CD86/NOS2 expression of macrophages. (B) qRT–PCR for examination of 
PPARα/ACC2/AMPK/CPT-1a mRNA expression (*P<0.05). (C) Protein concentrations of IL-1β/IL-6/IL-12/TNF-α in the media of cells from 
different groups (*P<0.05). NC: normal macrophages group; Mimic: macrophages transfected with the miR-33a-5p mimic. All data are means 
± SD; n = 3. 
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miR-152 showed a rapid increase in expression levels, 

followed by a rapid decline, except for miR-720. The 

expression level of miR-720 continued to increase and a 

certain level was maintained which was similar to the 

results obtained by Yang et al. [30]. Yang et al. 

suggested that many cellular proteins and nucleic acids 

may undergo systematic degradation due to the 

physiological pressure experienced by RBCs during 

storage, and certain synthetic products in the cytoplasm 

can be used as stabilizers for particular selected 

miRNAs during storage. As observed in our study, there 

may be an increase in the false appearance of miRNAs 

during storage. Thus, the significant increase in 

miRNAs pre-storage is the result of the gradual 

stabilization of miRNAs over time during RBC storage 

[25]. The miR-720 was no more than a cleavage product 

of RBCs than a miRNA that is specifically regulated as 

a function of storage time. Metabolic parameters change 

rapidly during the first two weeks of RBC storage [26]. 

Thus, metabolism plays a role in RBC storage, 

maintaining RBC energy production during the first two 

weeks of metabolism; from day 14, RBCs start to 

produce metabolites that engage in antioxidant 

responses. There was a high degree of temporal overlap 

between the changes in these metabolic parameters and 

miRNAs, which can be used as biomarkers of blood 

storage damage. Studies have implicated miR-720 as a 

tRNA and have suggested removed from the miRBase 

[30]; and we collected RBC samples to compare the 

expression gaps of these miRNAs (Figure 1D), and only 

miR-720 and miR-33a-5p had distinct expression 

differences. Thus, miR-33a-5p was the focus of this 

study. 

 

Macrophages represent a heterogeneous cell 

population with a dynamic functional state spectrum 

from pro-inflammatory M1 to anti-inflammatory/ 

immunomodulatory selectively activated M2 micro- 

 

 
 

Figure 4. (A) The net plot of mir-33a-5p and its regulated mRNA target genes. (B) The signaling pathway of KEGG showed that the target 
mRNA genes were enriched in the adipocytokine signaling pathway and the PPARα/AMPK/CPT-1a pathway was the key signaling pathways. 
(C) qRT–PCR to examine miR-33a-5p expression. (*P<0.05 vs NC, #P<0.05 vs Mimic). (D) qRT–PCR to examine PPARα/ACC2/AMPK/CPT-1a 
mRNA expression. (*P<0.05 vs NC, #P<0.05 vs Mimic). NC: normal macrophages group; Mimic-NC: macrophages transfected with the mimic 
negative control; Mimic: macrophages transfected with the miR-33a-5p mimic; Int: macrophages transfected with the inhibitor; Int-
NC:macrophages transfected with the negative inhibitor control. All data are means ± SD; n = 3. 
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phages, exhibiting significant differences in gene 

expression characteristics and effector functions [27, 35, 

36]. The different functional phenotypes of macro-

phages M1 and M2 depend on the coordinated 

expression of various regulators that promote opposite 

functions. The release of chemokines IFN-γ, TNF-α, IL-

1β, IL-6, IL-12 and proteases, as well as the production 

of reactive oxygen species (ROS) and the cell surface 

molecules (Cd86, INOS/NOS2) is a prominent feature 

of M1, however, the M2 macrophages express other 

molecules, including chitinase family proteins and 

mannose receptor type 1 CD206 [27, 37, 38]. In our 

studies, the whole blood samples collected for long-

term storage demonstrated high expression levels of the 

inflammatory factors IL-1β, IL-6, IL-12, and TNF-α 

(Figure 2). And we found there was a significant 

correlation between the fold-change in level of miR-

33a-5p and the expression level of the inflammatory 

factors through the Pearson correlation. Therefore, we 

hypothesized that long-term storage of blood promotes 

the release of inflammatory factors by regulating M1 

polarization of macrophages via miR-33a-5p. 

 

To test this hypothesis, we transfected the macrophages 

with miR-33a-5p mimics, and we found the expression 

of the CD86/NOS2 was higher, resulting in the M1 type 

polarization (Figure 3A), as well as the release of 

inflammatory factors IL-1β, IL-6, IL-12, and TNF-α 

(Figure 3B, 3C). This was consistent with the result of 

Maryam [37], indicating that miR-33a-5p can regulate 

macrophage M1 polarization. The specific regulatory 

mechanism of miR-33a-5p in the M1 polarization of 

macrophages was investigated further. Firstly, the 

specific messenger RNA (mRNA) targets regulated by 

miRNA were predicted in different ways (Figure 4A), 

and the pathway enrichment analysis was performed on 

the targets. The adipocytokine signaling pathway was 

regulated by the miR-33a-5p multisite (Figure 4B). In 

the adipocytokine signaling pathway, miR-33a-5p 

targeted several genes such as PPARα/ACC2/AMPK/ 

CPT-1a. The activation of genes such as PPARα/AMPK/ 

CPT-1a can effectively promote lipid metabolism  

and alleviate inflammation-related diseases [39]. 

Accumulation of bioactive lipids during RBC storage 

has been identified as a potential source of transfusion-

related adverse effects in susceptible individuals [40]. A 

targeted metabolomics study showed an accumulation 

of polyunsaturated fatty acids (PUFAs) and their 

oxidation products (oxylipins) in RBC units stored for 

42 days. The accumulation analysis of a panel of 

bioactive lipids in leukoreduced and non-leukoreduced 

RBC units indicated that leukoreduction greatly 

attenuated the production of bioactive lipids [41]. Thus, 

it is highly likely that the adipocytokine signaling 

 

 

 

Figure 5. Summary schematic of this study: miR-33a-5p mediates the crosstalk between inflammatory factor accumulation 
in stored blood and macrophages. This contributed to the activation of M1 macrophages through the PPARα/ACC2/AMPK/CPT-1a 

pathway. 
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pathway is regulated by miR-33a-5p in leukocytes, 

which promotes lipid accumulation in long-term-stored 

blood samples. The presence or absence of lipids has a 

significant impact on macrophage biology, as macro-

phages have been implicated in the pathogenesis of 

diseases in which lipid homeostasis is disturbed [42]. In 

one study, CPT1A knockdown promoted the 

upregulation of iNOS, a pro-inflammatory marker, in 

macrophages [43]. Real-time qPCR was used to validate 

our results (Figure 4D). The miR-33 has also been 

implicated in regulating lipid metabolism in 

macrophages [44]. Transfusion-related acute lung injury 

(TRALI) is a major cause of adverse transfusion-related 

effects caused by anti-leukocyte antibodies or biological 

response modifiers (e.g. lipids) [45]. Various studies 

corroborate our findings, indicating that miR-33a-5p 

can be a therapeutic target for the prevention of 

transfusion-related adverse reactions. 

 

In conclusion, we demonstrated that miR-33a-5p 

mediates the crosstalk between inflammatory factor 

accumulation in stored blood and macrophages. This 

contributed to the activation of M1 macrophages 

through the PPARα/ACC2/AMPK/CPT-1a pathway. 

Our study indicates that miR-33a-5p may represent a 

novel target for the prevention of the progression of 

transfusion-related adverse reactions and may be a new 

biomarker for evaluating the quality of RBC units. 

 

Furthermore, with the long-term storage, miRNAs 

related to a variety of immune signaling pathways 

accumulate in the blood. Among these, miR-33-5p can 

be used as a biomarker to evaluate the quality of 

transfused blood (Figure 5). 
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